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Motivation and outline

• Predicting epidemics: important for risk assessment, evaluating the 
effectiveness of countermeasures, and seeding

• This talk: simple algorithms for estimating the size & likelihood of 
outbreaks, and their time evolution

• Main technical ingredient: graph limits, a generalization for most 
existing network models
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after some time T e.g.
Poisson with rate γ (contact process)
constant

The epidemic model

Susceptible-Infected-Recovered (SIR) 
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at rate "(no of infected contacts)

[Ross and Hudson 1916, Kermack, McKendrick 1927]

Susceptible                         Infected

Infected                         Removed 



Predicting the spreading of an infection

o Mean-Field Models (Curie-Weiss, cf. Keeling, Rohani ’07]
o Average over the whole network  
o Does not capture stochasticity of the process

o Random graph Models (cf. Bollobas 2011, Durrett 2005)
o Stochastic processes on random graphs 
o Relies on the estimation of network parameters
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Epidemics on random networks

• Erdos-Renyi graphs aka ! ", $
each pair is connected independently with probability $
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Epidemics on random networks

• Erdos-Renyi graphs aka !(", $)

outbreak if    (" − 1)$ !
"
≥ 1

6

expected degree

transmission probability



Epidemics on random networks

• Erdos-Renyi graphs aka !(", $)

outbreak if    (" − 1)$ !
"
≥ 1

• Power-law random graphs: configuration model 
[Molloy-Reed, Barabasi, Watts ‘11], preferential 
attachment [Bollobás-Riordan ‘03]

outbreak if   #
!$#
%#

!
"
≥ 1
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Second moment expected degree



Epidemics on random networks

• Erdos-Renyi graphs aka !(", $)

outbreak if    (" − 1)$ !
"
≥ 1

• Power-law random graphs: configuration model 
[Molloy-Reed, Barabasi, Watts ‘11], preferential 
attachment [Bollobás-Riordan ‘03]

outbreak if   #
!$#
%#

!
"
≥ 1

Many others e.g. stochastic block model, household 
models…
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Predicting the spreading of an infection

o Mean-Field Models (Curie-Weiss, cf. Keeling, Rohani ’07]
o Average over the whole network  
o Does not capture stochasticity of the process

o Random graph Models (cf. Bollobas 2011, Durrett 2005)
o Stochastic processes on random graphs 
o Relies on the estimation of network parameters

o Stochastic simulation on the network
o Requires complete network access (expensive, privacy concerns) 
o hard to determine robustness to network mis-specification
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This talk in a nutshell: 
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Under general assumptions, local information about a small sample of 
nodes is sufficient for estimating the final size and the time evolution of 
the epidemics. 

Stylized models (using mean-field calculations or random graphs) are 
great for gaining insights but fall short for prediction tasks. On the 
other hand, simulations on the whole network are often costly or even 
impossible. 

Summary



How to estimate the probability of 
states (S,I, R) of node $ at time t?

Naive Method
Input: %, and time &
o Find %-hop neighborhood of $
o Simulate infection until time t
o Return state of $

Local estimator
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node v



How to estimate the probability of 
states (S,I, R) of node $ at time t?

Naive Method
Input: %, and time &
o Find %-hop neighborhood of $
o Simulate infection until time t
o Return state of $

Exponential growth of nodes 
explored (in %) 

Local estimator
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node v

Example for & = 2



A better implementation: backward process
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Simulates the state of a uniformly 
random node $ at time & going 
backwards in time

Timed Backward Process
Input: %, and time &
o Simulate infection backward until 

see % people or reach time t
o Return state of $

node )

1

2

1.2

3

Example for  * = 4, & = 4

is infectious



A better implementation: backward process
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Simulates the state of a uniformly 
random node $ at time & going 
backwards in time

Timed Backward Process
Input: %, and time &
o Simulate infection backward until 

see % people or reach time t
o Return state of $

node )

1

1.5

0.1

1

Example for  * = 4, & = 4

is recovered



A better implementation: backward process
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Simulates the state of a uniformly 
random node $ at time & going 
backwards in time

Timed Backward Process
Input: %, and time &
o Simulate infection backward until 

see % people or reach time t
o Return state of $

Estimator: average over queries

node )

1

2

1

Example for  * = 4, & = 4

is susceptible



Key features of the local estimators

o Their running times are independent of network size! 
o They do not assume anything about the structure of the network
o Can be implemented in a way that preserves edge-differential privacy

[book by Dwork, Roth ‘14]
o Can be adapted to evolving networks [survey by Hanauer, Henzinger, Schulz 

‘21]

Most important: 
A constant No. of queries to the local estimators gives a 1 − ϵ -approximation 
for the final size and time evolution of the epidemics. 
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Theorem [Alimohmmadi, Borgs, Hofstad, Saberi (’22)]
Consider the SIR process on a convergent sequence of graphs, in which 
each node is infected with probability * > 0 and susceptible otherwise.
Then for any - > 0, there exist constants .!, %! ≥ 0 such that after .!
queries, asymptotically:

And .! queries to backward process truncated at (%", ∞), gives 1 − ϵ -
approximation of the final size, whp. 
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Timed backward process 
truncated at (%", t)

.! queries 1 − ϵ -approximation of 
size of infection at time 3



Graph convergence [Benjamini-Schramm 01]
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A sequence of graphs is convergent if  the distribution of the neighborhood 
of a typical node converges.

A sequence of finite graphs {!-}-∈ converges in probability to G, o ∼ / if for any 
rooted graph 0 and integer 1, the probability that a 1 neighborhood of a random node 
is isomorphic to 0 converges,

1

|3 !- |
4

/∈0(2")

5(64 2",/ ≃ 0)→
ℙ
ℙ(2,6)∼8 B9 G, o ≃ 0



Well-known network models locally converge

o Erdos-Renyi
o Configuration model [Molloy-Reed, Newman-Barabasi-Watts ‘11
o Preferential attachment [Bollobás-Riordan ‘03]
o Small-world networks [Watts-Strogatz ‘00]
o Random geometric graphs [Estrada, Meloni, Sheerin, Moreno ’15]
o Household models [Ball-Sirl-Trapman 2009, Hofstad-Leeuwaarden-

Stegehuis. ’15]
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Proof Idea: Application of graph limits to epidemics

Size of infection at time 
; on a  finite
network !-

Probability of infectious 
root at time ; on the 
limit (!, <)

Approximate the 
infection size on the 
finite graph

Approximate the 
infection size on the 
limit

Graph limits



Summary so far

• Simple algorithm that uses local information about a small sample of 
nodes for estimating the final size and the time evolution of the 
epidemics.  
• Correctness does rely on specific features of the graph (e.g. degree 

sequence, local tree structure, or independence of edges) 

On the other hand, the initial condition in our theorem (a constant fraction 
of nodes infected at the start) is restrictive. 



Part II: epidemics starting from a 
single infection
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Epidemics starting from one node
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Initially a uniform random node is in I, Everyone else is susceptible. 

The problem becomes much more complicated:
o Hard to control the stochasticity
o The infection may die out fast (the probability of outbreak?)
o Same local structure but different outbreak

A collection of 4-regular 
random graphs, each of size log =

A 4-regular random graph 
of size=



Epidemics starting from one node

Initially a uniform random node is in I, Everyone else is S. 

The problem becomes much more complicated:
oWe need a condition that the network is well-connected .
oWe can only analyze the process when the recovery times are constant.
oWe cannot say anything about the time evolution (yet). 



Well-connected graphs (expanders)

4(5, ̅5)

5
̅57 is a 8-expander if for every 

subset S ⊂ ; 7

4(5, ̅5) ≥ 8min 5 , ̅5

i.e. you can’t disconnect a large set of vertices by removing a few edges
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SIR with constant recovery time

Transmission network:

o Replace each edge =, > by directed 
edges = → > and j→ =

o Keep directed edges independently 
with probability $
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Result at a high level
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Consider SIR with constant recovery time with single seeding initial 
condition in well-connected network. Then local information is 
enough to estimate the relative size and probability of an outbreak.

Event of outbreak: when ?(@) people eventually get infected.
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Theorem. [Alimohammadi, Borgs, Saberi (AOP’23, SODA’22)]
Let G> >∈ℕ be a sequence of well-connected graphs with bounded average degree. Let 
?(∞) be final infection size for SIR with constant recovery time. Then there exists $@
and A $ s.t. for transmission probability $ < $@, 

and for $ > $@:

infection dies or 
infects A p " + <(")

Infection will die 
almost surely

? ∞

"
→
ℙ
GA

GA = I
0. with prob 1 − A($)
A $ . with prob A($)

? ∞

"
→
ℙ
0
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Theorem. [Alimohammadi, Borgs, Saberi (AOP’23, SODA’22)]
Let G> >∈ℕ be a sequence of well-connected graphs with bounded average degree. Let 
?(∞) be final infection size for SIR with constant recovery time. Then there exists $@
and A $ s.t. for transmission probability $ < $@, 

and for $ > $@:

Furthermore, $@ and A $ can be estimated using local queries. 

? ∞

"
→
ℙ
GA

? ∞

"
→
ℙ
0

infection dies or 
infects A p " + <(")

Infection will die 
almost surely



Proof: a structure theorem 

When ! < !! # the transmission network is composed of small components  

i.e. |#$% & |
' →ℙ 0, |)' & |

' →ℙ 0, and |*++!|' →ℙ 0.



Proof: a structure theorem 

When ! > !" # the transmission network has a ``bow-tie’’ structure:

small component

BCC!
": Nodes infected in an 

outbreak
1
=
FGG#$ →

ℙ
I J

BCC!
$: Nodes leading to an 

outbreak
#
& FGG#

" →
ℙ
I J

KL* ) \FGG#
" = K =

N= ) \FGG#$ = K =

FGG#
=

→
ℙ
I' J ,

where I' J ≥ I( J



Theorem [Alimohammadi, Borgs, Saberi (AoP ’23)]: for the same models and 
parameters as in Theorem 2,

• If $ < $@ ! , for a uniform random node R whp
|6TU / |

-
→
ℙ
0,
|V- / |
-

→
ℙ
0, and |WXX#|

-
→
ℙ
0.

• If  $ > $@(!):

o There exists AY $ ≥ AZ $ such that WXX#
-

→
ℙ
A′($).

o [
-
TUU[

\ →
ℙ
A $ and [

-
TUU[

$ →
ℙ
A $

o For a uniform random node R whp <V; R \TUU[
\ = < " , and  

=" R \TUU[
$ = < " .
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A few notes

oBow-tie structure coined by Broder et al: 
Web is a bow-tie [Broder, Kumar, Maghoul, Raghavan, Rajagopalan,   
Stata, Tomkins, Wiener (2000)]

o Similar structure theorem was proved Bow-tie on Erdos Renyi [Karp ‘90 
Luzcak ‘90] and configuration model [Cooper, Frieze ‘04]. Similar results 
were known for preferential attachment graphs and small-world 
networks. 

o Our result unifies and (weakly) generalizes them. 



Does the Algorithm Work on Real-world Graphs?

o Copenhagen dataset
o Bluetooth data of 700 students
o Edge exists if distance <6 ft

Data: “Interaction data: Copenhagen Networks Study”
[Sapiezynski, Stopczynksi, Lassen, & Lehman, Nature ’19]
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Num of queries = 10, J = 0.28, 
95% confidence interval is highlighted



Takeaways: Local Information Goes a Long Way!

Initial condition: single seeding
Local information is enough to estimate the probability and relative 
size of an outbreak for large class of networks under a simple 
infection spread.
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Initial condition:  well-mixed seeding
Local information is enough to estimate the time evolution of the 
epidemics. 

Other applications of graph limits in analyzing global quantities with 
local structures: Graph Neural Networks, network games
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Relative Size of the Giant in Expanders

Theorem 1. [Alimohammadi, Borgs, Saberi ’21 (Annals of Probability)]
Let G# #∈ℕ be a sequence of convergent large-set expanders with 
bounded. Let C& be the ith largest component. If p ≠ p' µ ,

|C(|
n
→
ℙ
ζ p ,

Also for	all	Q ∈ [0,1],
|+!|
# →

ℙ
0.

Takeaway: Giant in convergent expanders is unique, and its size converges 
to its limit.
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Proof Sketch: Size of the Giant Converges

Relative num of 

nodes in a 

component larger 

than k in `(J − b)
→) I*(J − b)

Relative num of 

nodes in the largest 

connected 

component of `(J)

Relative num of nodes 

in a component larger 

than & in ` J
→) I*(J)

Sprinkling!

I* p := d +,- ∼/[ℙ+ 0 ( connected component of K ≥ & )]. lim*→2I* p = I(J).
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Proof Sketch: Size of the Giant Converges

Relative num of 

nodes in a 

component larger 

than k in `(J − b)
→) I*(J − b)

Relative num of 

nodes in the largest 

connected 

component of `(J)

Relative num of nodes 

in a component larger 

than & in ` J
→) I*(J)

Sprinkling!
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Lemma. For a sequence of graphs satisfying the assumptions of Theorem 2, I(J) is continuous 
for all J ≠ J3(o). Equivalently, the limit o is ergodic.



Brief History of Sprinkling

[Erdös, Rényi’60] 
[Posa’76][Ajtai, Kolmós, Szemerédi ‘82]
[Bollobás, Riordan ‘01] [Alon, Benjamini, Stacey ‘02] 
[Borgs, Chayes, van der Hofstad, Slade, Spencer ‘07]
[Benjamini, Nachmias, Peres ‘09]
[Janson, Rucinski’10] [van der Hofstad, Nachmias ‘17] 
[Krivelevich, Sudakov ’17]
[Dudek,  C.  Reiher,  A.  Rucínski,  and  M.  Schacht ‘20] 
[Nenadov, Trujic ’21][Easo, Hutchcroft ’21]
[Alimohammadi, Borgs, Saberi ‘21+]
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Proof: the Lower Bound

Step 0: For some b > 0 let J# = J3 o + b be such that 1 − J = 1 − J# (1 − b).
Consider two copies of percolation `&(J#) and `&(b). The union of them gives an instance of `& J .

`&(J#) `&(b) The original graph `&
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Proof: the Lower Bound

Step 1: There exists some r > 0 such that for all s > 0, whp there are r= nodes with component larger 
than s in `& J# .

Step 2 (Sprinkling): Let	Z4 = nodes with component larger than s .
There is a path in `&(b) between any two large partition of components in y5:

ℙ+!(7) ∃ {, | ⊆ 29": { , | disconnected in `& b and `& J# , |A|, | ≥
r=
3
| `&(J#)

≤ exp(−=Ç :,;,<,7 )

Step 3: ℙ+!(0) ÇK=*ÉN=Ñ É ÇKÖJK=Ü=* Ká ÑNàÜ ;&
= → 1, as = → ∞.

Step 0: For some b > 0 let J# = J3 o + b be such that 1 − J = 1 − J# (1 − b).
Consider two copies of percolation `&(J#) and `&(b). The union of them gives an instance of `& J .
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Step 2: Sprinkling

|{ Menger’s Theorem. Let G be a finite undirected graph and A and | two 
disjoint set of vertices. Then the minimum edge-cut between A and | is 
equal to the number of pairwise edge-independent paths from A to |.

There are 
;:&
= edge-disjoint paths in `& between A and | (expansion).

Since the average degree is bounded by ä, the length of half of these 

paths is bounded by ℓ = ><
;:. (# paths = 

;:&
> )

Each path appear in `&(b) with probability bℓ.

The probability that non of the paths appear in `&(b) : 1 − bℓ
#0ABCD

Number of { , | partitions in `&(J#) : 2
#
"

Finally: 2
!
" 1 − b

$%
&'

&'!
$
≤ exp =(#5 −

;:
> b

$%
&')

Step 2 (Sprinkling): There is a path in `&(b) between any two large partition of components in y5:

ℙ+!(7) ∃ {, | ⊆ 29": { , | disconnected in `& b and `& J# , |A|, | ≥
r=
3
| `&(J#) ≤ exp(−=Ç :,;,<,7 )
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https://en.wikipedia.org/wiki/Path_(graph_theory)

