Statistical discrimination in selection

Patrick Loiseau
Inria Saclay, FairPlay team

London School of Economics, March 2023

Joint work with

- PhD students
- Vitalii Emelianov
- Rémi Castera
- Collaborators
- Nicolas Gast, Inria
- Bary Pradelski, CNRS
- Krishna Gummadi, MPI-SWS

Discriminatory outcomes in selection problems

Hiring Discrimination Against Black Americans Hasn't
 Declined in 25 Years

by Lincoln Quillian, Devah Pager, Arnfinn H. Midtbøen and Ole Hexel October 11, 2017

THE MANY SINS OF COLLEGE ADMISSIONS
"Brise vocation", "Koh Lanta de l'orientation" : faut-il supprimer Parcoursup?

Q By Jeannie Suk Gersen October 7.2019

China: Gender Discrimination in Hiring Persists
11 Percent of Civil Service Ads Specify 'Men Only'

New Evidence of Age Bias in Hiring, and a Push to Fight It

Discriminatory outcomes in selection problems

Hiring Discrimination Against Black Americans Hasn't
 Declined in 25 Years

by Lincoln Quillian, Devah Pager, Arnfinn H. Midtbøen and Ole Hexel October 11, 2017

THE MANY SINS OF COLLEGE ADMISSIONS
"Brise vocation", "Koh Lanta de l'orientation" : faut-il supprimer Parcoursup ?

R ${ }^{\text {By }}$ Jeannie suk Gersen October 7, 2019

China: Gender Discrimination in Hiring Persists
11 Percent of Civil Service Ads Specify 'Men Only'

New Evidence of Age Bias in Hiring, and a Push to Fight It

All listed above problems are selection problems

What is a Selection Problem?

- Candidates are sorted based on their quality estimates
- Best candidates are selected

50% of candidates are women 25% of selected candidates are women

What is a Selection Problem?

- Candidates are sorted based on their quality estimates
- Best candidates are selected
- Decision-makers can use different fairness mechanisms:
- Rooney Rule (v)
- 80\%-Rule (x)
- Demographic Parity (x)

What is a Selection Problem?

- Candidates are sorted based on their quality estimates
- Best candidates are selected
- Decision-makers can use different fairness mechanisms:
- Rooney Rule (v)
- 80\%-Rule (x)
- Demographic Parity (x)
50% of candidates are women 25% of selected candidates are women

Main questions:

What causes discriminatory outcome? What is the effect of fairness mechanisms?

Algorithmic Fairness Literature

- Machine learning systems can lead to discrimination
- Different notions of fairness are proposed
X - feature representation, $G \in\{A, B\}$ - demographic group
Y - binary quality ($0=$ bad, $1=$ good), \hat{Y} - binary prediction ($0=$ reject, $1=$ accept)

Algorithmic Fairness Literature

- Machine learning systems can lead to discrimination
- Different notions of fairness are proposed

$$
\begin{aligned}
& X \text { - feature representation, } G \in\{A, B\} \text { - demographic group } \\
& Y \text { - binary quality }(0=\text { bad, } 1=\text { good }), \hat{Y} \text { - binary prediction }(0=\text { reject, } 1=\text { accept })
\end{aligned}
$$

Individual Fairness

Dwork et al., 2012:
$\left|\mathbb{P}(\hat{Y}=\mathbf{1} \mid X)-\mathbb{P}\left(\hat{Y}=\mathbf{1} \mid X^{\prime}\right)\right| \leq \lambda d\left(X, X^{\prime}\right)$

Kearns et al., 2017:

$$
\begin{aligned}
& \mathbb{P}(Y=1 \mid X) \geq \mathbb{P}\left(Y=1 \mid X^{\prime}\right) \Longrightarrow \\
& \mathbb{P}(\hat{Y}=1 \mid X) \geq \mathbb{P}\left(\hat{Y}=1 \mid X^{\prime}\right)
\end{aligned}
$$

Algorithmic Fairness Literature

- Machine learning systems can lead to discrimination
- Different notions of fairness are proposed

$$
\begin{aligned}
& X \text { - feature representation, } G \in\{A, B\} \text { - demographic group } \\
& Y \text { - binary quality }(0=\text { bad, } 1=\text { good }), \hat{Y} \text { - binary prediction }(0=\text { reject, } 1=\text { accept })
\end{aligned}
$$

Individual Fairness

Dwork et al., 2012:
$\left|\mathbb{P}(\hat{Y}=1 \mid X)-\mathbb{P}\left(\hat{Y}=1 \mid X^{\prime}\right)\right| \leq \lambda d\left(X, X^{\prime}\right)$

Kearns et al., 2017:

$$
\begin{aligned}
& \mathbb{P}(Y=1 \mid X) \geq \mathbb{P}\left(Y=1 \mid X^{\prime}\right) \Longrightarrow \\
& \mathbb{P}(\hat{Y}=1 \mid X) \geq \mathbb{P}\left(\hat{Y}=1 \mid X^{\prime}\right)
\end{aligned}
$$

Group Fairness

Demographic Parity

$$
\mathbb{P}(\hat{Y}=1 \mid A)=\mathbb{P}(\hat{Y}=1 \mid B)
$$

80\%-Rule

$$
\mathbb{P}(\hat{Y}=1 \mid A) / \mathbb{P}(\hat{Y}=1 \mid B) \geq 0.8
$$

Equal Opportunity
$\mathbb{P}(\hat{Y}=1 \mid Y=1, A)=\mathbb{P}(\hat{Y}=1 \mid Y=1, B)$

Algorithmic Fairness Literature

- Machine learning systems can lead to discrimination
- Different notions of fairness are proposed

$$
\begin{aligned}
& X \text { - feature representation, } G \in\{A, B\} \text { - demographic group } \\
& Y \text { - binary quality }(0=\text { bad, } 1=\text { good }), \hat{Y} \text { - binary prediction }(0=\text { reject, } 1=\text { accept })
\end{aligned}
$$

Individual Fairness

Dwork et al., 2012:
$\left|\mathbb{P}(\hat{Y}=\mathbf{1} \mid X)-\mathbb{P}\left(\hat{Y}=\mathbf{1} \mid X^{\prime}\right)\right| \leq \lambda d\left(X, X^{\prime}\right)$

Kearns et al., 2017:

$$
\begin{aligned}
& \mathbb{P}(Y=1 \mid X) \geq \mathbb{P}\left(Y=1 \mid X^{\prime}\right) \Longrightarrow \\
& \mathbb{P}(\hat{Y}=1 \mid X) \geq \mathbb{P}\left(\hat{Y}=1 \mid X^{\prime}\right)
\end{aligned}
$$

Group Fairness

$$
\begin{aligned}
& \text { Demographic Parity } \\
& \mathbb{P}(\hat{Y}=1 \mid A)=\mathbb{P}(\hat{Y}=1 \mid B) \\
& 80 \% \text {-Rule } \\
& \mathbb{P}(\hat{Y}=1 \mid A) / \mathbb{P}(\hat{Y}=1 \mid B) \geq 0.8
\end{aligned}
$$

Other notions

Counterfactual Fairness
(Kusner et al., 2017)
Envy-Freeness (Balcan et al., 2019)

Equal Opportunity
$\mathbb{P}(\hat{Y}=1 \mid Y=1, A)=\mathbb{P}(\hat{Y}=1 \mid Y=1, B)$

Algorithmic Fairness Literature

- Algorithmic solutions to ensure fairness

Preprocessing learning fair representations Zemel et al., 2013; Gordaliza et al., 2019 .

Inprocessing fairness as a constraint in the learning procedure
Zafar et al., 2017
Postprocessing resampling predictions to ensure fairness Hardt et al., 2016; Petersen et al., 2021

- Most literature studies fairness in classification problems
- The causes of discrimination are rarely taken into account

Algorithmic Fairness Literature

- Algorithmic solutions to ensure fairness

Preprocessing learning fair representations
Inprocessing fairness as a constraint in the learning procedure
Postprocessing resampling predictions to ensure fairness Hardt et al., 2016; Petersen et al., 2021

- Most literature studies fairness in classification problems
- The causes of discrimination are rarely taken into account
- A few works on fairness in selection problems
- Discrimination usually explained by bias
- This talk: second-order statistics create discrimination

Contents

(1) Introduction
(2) One decision-maker: selection problems

Vitalii Emelianov, Nicolas Gast, Krishna P. Gummadi, and Patrick Loiseau. On Fair Selection in the Presence of Implicit and Differential Variance.

EC '20 and Artificial Intelligence Journal '22
Vitalii Emelianov, Nicolas Gast, and Patrick Loiseau. Fairness in Selection Problems with Strategic Candidates.
(3) Two decision-makers: matching problems

Causes of Discrimination

Implicit Bias

(Kleinberg et al., 2018; Celis et al., 2021):

- Implicit bias naturally leads to discrimination (overrepresentation of a group)
- Fairness mechanisms (Rooney rule) can improve selection utility

Causes of Discrimination

Implicit Bias

biased estimate $(\beta>1)$ unbiased estimate

Differential Variance (our work)

$$
\widehat{W}_{i}=W_{i}+\varepsilon_{i} \cdot \sigma_{H} \quad \widehat{W}_{i}=W_{i}+\varepsilon_{i} \cdot \sigma_{L}
$$

$$
\text { noisy estimates, } \varepsilon_{i} \sim \mathcal{N}(0,1)
$$

(Kleinberg et al., 2018; Celis et al., 2021):

- Implicit bias naturally leads to discrimination (overrepresentation of a group)
- Fairness mechanisms (Rooney rule) can improve selection utility

Causes of Discrimination

Implicit Bias

biased estimate $(\beta>1)$ unbiased estimate
(Kleinberg et al., 2018; Celis et al., 2021):

- Implicit bias naturally leads to discrimination (overrepresentation of a group)
- Fairness mechanisms (Rooney rule) can improve selection utility

Differential Variance (our work)

quality

$\widehat{W}_{i}=W_{i}+\varepsilon_{i} \cdot \sigma_{H} \quad \widehat{W}_{i}=W_{i}+\varepsilon_{i} \cdot \sigma_{L}$

noisy estimates, $\varepsilon_{i} \sim \mathcal{N}(0,1)$

Main questions:

- What is the impact of differential variance on the selection outcome?
- What is the effect of fairness mechanisms on the selection utility?

Note: (Phelps, 1972; Lundberg et al., 1983) model differential variance in wages allocation

Selection Problem Setup

Assume (for simplicity) that the latent quality $W \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ (group-independent)
Technically: we assume that n is large and denote p_{H}, p_{L} the fractions of candidates for each group.

Selection Problem Setup

Assume (for simplicity) that the latent quality $W \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ (group-independent)
Technically: we assume that n is large and denote p_{H}, p_{L} the fractions of candidates for each group.

Baseline decision makers

- Group-oblivious: Sort candidates by decreasing estimate \widehat{W}_{i} and keep the best
- Does not look at group membership
- Bayesian: Computes posterior $\widetilde{W}_{i}=\mathbb{E}\left(W_{i} \mid \widehat{W}_{i}\right)$ and keep the best

- Looks at group membership
- Inverts the variance orders (now group H has lower variance)

Discrimination Caused by Differential Variance

Group-Oblivious DM

sort by \widehat{W}_{i} and keep best αn

Theorem ([Emelianov, Gast, Loiseau, Gummadi, EC '20])

Discrimination Caused by Differential Variance

Group-Oblivious DM

sort by \widehat{W}_{i} and keep best αn

Theorem ([Emelianov, Gast, Loiseau, Gummadi, EC '20])

- If the decision-maker is group-oblivious, then $r_{H}^{\mathrm{obl}}>r_{L}^{\mathrm{obl}} \Longleftrightarrow \alpha<0.5$

Discrimination Caused by Differential Variance

Group-Oblivious DM

sort by \widehat{W}_{i} and keep best αn

Bayesian DM

sort by $\widetilde{W}_{i}=\mathbb{E}\left(W_{i} \mid \widehat{W}_{i}\right)$ and keep best αn

Theorem ([Emelianov, Gast, Loiseau, Gummadi, EC '20])

- If the decision-maker is group-oblivious, then $r_{H}^{\text {obl }}>r_{L}^{\text {obl }} \Longleftrightarrow \alpha<0.5$
- If the decision-maker is Bayesian, then $r_{H}^{\text {bayes }}<r_{L}^{\text {bayes }} \Longleftrightarrow \alpha<0.5$

Discrimination Caused by Differential Variance

Group-Oblivious DM

sort by \widehat{W}_{i} and keep best αn

Bayesian DM

sort by $\widetilde{W}_{i}=\mathbb{E}\left(W_{i} \mid \widehat{W}_{i}\right)$ and keep best αn

Demographic Parity DM

 sort by \widetilde{W}_{i} (or \widehat{W}_{i}) and keep best αn_{G} from each group G

Theorem ([Emelianov, Gast, Loiseau, Gummadi, EC '20])

- If the decision-maker is group-oblivious, then $r_{H}^{\mathrm{obl}}>r_{L}^{\mathrm{obl}} \Longleftrightarrow \alpha<0.5$
- If the decision-maker is Bayesian, then $r_{H}^{\text {bayes }}<r_{L}^{\text {bayes }} \Longleftrightarrow \alpha<0.5$

Demographic Parity Can Improve Selection Utility

Theorem ([Emelianov, Gast, Loiseau, Gummadi, AIJ '22])

- If the decision-maker is Bayesian, then for all selection rates $\alpha \in(0,1)$:

$$
1 \leq \frac{\mathcal{U}^{\text {bayes }}}{\mathcal{U}^{\text {dp }}} \leq 1+\frac{p_{H}(v-1)}{p_{H}+p_{L} v} \text { where } v=\frac{\sqrt{\sigma_{H}+\eta^{2}}}{\sqrt{\sigma_{L}+\eta^{2}}}
$$

Demographic Parity Can Improve Selection Utility

Theorem ([Emelianov, Gast, Loiseau, Gummadi, AIJ '22])

- If the decision-maker is Bayesian, then for all selection rates $\alpha \in(0,1)$:

$$
1 \leq \frac{\mathcal{U}^{\text {bayes }}}{\mathcal{U}^{\text {dp }}} \leq 1+\frac{p_{H}(v-1)}{p_{H}+p_{L} v} \text { where } v=\frac{\sqrt{\sigma_{H}+\eta^{2}}}{\sqrt{\sigma_{L}+\eta^{2}}}
$$

- If the decision-maker is Group-Oblivious, then for all selection rates $\alpha \in(0,1)$:

$$
\mathcal{U}^{\mathrm{dp}} \geq \mathcal{U}^{\mathrm{obl}}
$$

Demographic Parity Can Improve Selection Utility

Theorem ([Emelianov, Gast, Loiseau, Gummadi, AIJ '22])

- If the decision-maker is Bayesian, then for all selection rates $\alpha \in(0,1)$:

$$
1 \leq \frac{\mathcal{U}^{\text {bayes }}}{\mathcal{U}^{\text {dp }}} \leq 1+\frac{p_{H}(v-1)}{p_{H}+p_{L} v} \text { where } v=\frac{\sqrt{\sigma_{H}+\eta^{2}}}{\sqrt{\sigma_{L}+\eta^{2}}}
$$

- If the decision-maker is Group-Oblivious, then for all selection rates $\alpha \in(0,1)$:

$$
\mathcal{U}^{\mathrm{dp}} \geq \mathcal{U}^{\mathrm{obl}}
$$

Proof Idea:

- Utility \mathcal{U} is a concave function of selection rate r_{H}
- From the previous slide, we know that

$$
r_{H}^{\text {bayes }}<r_{H}^{d p}=\alpha<r_{H}^{o b l}
$$

Using concavity of \mathcal{U}, can extend the result for the γ-rule

Summary and Discussion

- Second-order statistical differences between groups (differential variance) leads to discrimination
- Demographic parity (and γ-rule) fairness mechanism can increase the selection quality

Summary and Discussion

- Second-order statistical differences between groups (differential variance) leads to discrimination
- Demographic parity (and γ-rule) fairness mechanism can increase the selection quality

Extensions

- Generalize to group-dependent quality distribution and/or presence of implicit bias \Longrightarrow more nuanced results, typically for small selection budget (α)
- Candidates can be strategic, i.e., they can adapt to the selection rule \Longrightarrow results contrast with the non-strategic case \Longrightarrow demographic parity can sometimes improve quality even over Bayesian

Contents

(1) Introduction

(2) One decision-maker: selection problems
(3) Two decision-makers: matching problems

Rémi Castera, Patrick Loiseau, and Bary S.R. Pradelski. Statistical Discrimination in Stable Matchings.

Example of a matching problem: college admission

Figure: Example of a college admission problem

Left: stable

Middle: waste - Hermione and Ronald could go to Gryffindor
Right: justified envy - Hermione should replace Ronald in Gryffindor

Second-order correlation: motivating example

Colleges A and B have noisy estimates of applicants' qualities. Each applicant s has a latent quality $W^{s} \sim \mathcal{N}\left(0, \sigma^{2}\right)$; and her grade at each college is:

$$
\widehat{W}_{A}^{s}=W^{s}+\varepsilon_{A}^{s}, \widehat{W}_{B}^{s}=W^{s}+\varepsilon_{B}^{s}
$$

Second-order correlation: motivating example

Colleges A and B have noisy estimates of applicants' qualities. Each applicant s has a latent quality $W^{s} \sim \mathcal{N}\left(0, \sigma^{2}\right)$; and her grade at each college is:

$$
\widehat{W}_{A}^{s}=W^{s}+\varepsilon_{A}^{s}, \widehat{W}_{B}^{s}=W^{s}+\varepsilon_{B}^{s}
$$

Two groups of applicants: local and foreign. Evaluation of local applicants is more precise than for foreign applicants. For a local applicant $s, \varepsilon^{s} \sim \mathcal{N}\left(0, \sigma_{\text {loc }}^{2}\right)$ and for a foreign applicant $\varepsilon^{s} \sim \mathcal{N}\left(0, \sigma_{\text {for }}^{2}\right)$, with $\sigma_{\text {loc }}<\sigma_{\text {for }}$.

Second-order correlation: motivating example (continued)

For fairness purposes, colleges decide to standardize the grade distributions: grades of local students are fitted into $\mathcal{N}(0,1)$, and so are grades of foreign students:
for any local student $s, \widetilde{W}_{A}^{s}=\widehat{W}_{A}^{s} / \sqrt{\sigma^{2}+\sigma_{\text {loc }}^{2}}, \widetilde{W}_{B}^{s}=\widehat{W}_{B}^{s} / \sqrt{\sigma^{2}+\sigma_{\text {loc }}^{2}}$ for any foreign student $s, \widetilde{W}_{A}^{s}=\widehat{W}_{A}^{s} / \sqrt{\sigma^{2}+\sigma_{\text {for }}^{2}}, \widetilde{W}_{B}^{s}=\widehat{W}_{B}^{s} / \sqrt{\sigma^{2}+\sigma_{\text {for }}^{2}}$

Motivating example 2: different criteria

Two colleges, A and B, with different criteria. Suppose college A is interested in the level of applicants in maths, and college B in physics. Applicants come from two high schools:

Motivating example 2: different criteria

Two colleges, A and B, with different criteria. Suppose college A is interested in the level of applicants in maths, and college B in physics. Applicants come from two high schools:

High school 1: Physics is taught in a very theoretical way \rightarrow grades in maths and physics are highly correlated.

Motivating example 2: different criteria

Two colleges, A and B, with different criteria. Suppose college A is interested in the level of applicants in maths, and college B in physics. Applicants come from two high schools:

High school 1: Physics is taught in a very theoretical way \rightarrow grades in maths and physics are highly correlated.

High school 2: Physics is taught through experiments
\rightarrow grades in maths and physics are more independent.

Motivating example 2: different criteria

Two colleges, A and B, with different criteria. Suppose college A is interested in the level of applicants in maths, and college B in physics. Applicants come from two high schools:

High school 1: Physics is taught in a very theoretical way \rightarrow grades in maths and physics are highly correlated.

High school 2: Physics is taught through experiments
\rightarrow grades in maths and physics are more independent.

Figure: Example of distributions. Left: correlation 0.8 , right: correlation 0.3

Main questions

- How does the matching outcome depend on the correlation structure?
- If correlation depends on group, which group is "better-off"?

The model

- We consider a continuum of students S. Masses of students are measured with $\eta: S \rightarrow[0,1], \eta(S)=1$.

The model

- We consider a continuum of students S. Masses of students are measured with $\eta: S \rightarrow[0,1], \eta(S)=1$.
- S is divided into 2 groups G_{1} and G_{2}. Respective masses: $\gamma \in[0,1]$ and $1-\gamma$.

The model

- We consider a continuum of students S. Masses of students are measured with $\eta: S \rightarrow[0,1], \eta(S)=1$.
- S is divided into 2 groups G_{1} and G_{2}. Respective masses: $\gamma \in[0,1]$ and $1-\gamma$.
- We consider two colleges, A and B, with respective capacities: α_{A} and $\alpha_{B} \in[0,1]$, where $\alpha_{A}+\alpha_{B}<1$ (capacity shortage).

The model

- We consider a continuum of students S. Masses of students are measured with $\eta: S \rightarrow[0,1], \eta(S)=1$.
- S is divided into 2 groups G_{1} and G_{2}. Respective masses: $\gamma \in[0,1]$ and $1-\gamma$.
- We consider two colleges, A and B, with respective capacities: α_{A} and $\alpha_{B} \in[0,1]$, where $\alpha_{A}+\alpha_{B}<1$ (capacity shortage).
- For G_{1} : proportion β_{1} prefer $A, 1-\beta_{1}$ prefer B. Same for G_{2} with β_{2}.

The model

- We consider a continuum of students S. Masses of students are measured with $\eta: S \rightarrow[0,1], \eta(S)=1$.
- S is divided into 2 groups G_{1} and G_{2}. Respective masses: $\gamma \in[0,1]$ and $1-\gamma$.
- We consider two colleges, A and B, with respective capacities: α_{A} and $\alpha_{B} \in[0,1]$, where $\alpha_{A}+\alpha_{B}<1$ (capacity shortage).
- For G_{1} : proportion β_{1} prefer $A, 1-\beta_{1}$ prefer B. Same for G_{2} with β_{2}.
- Each college produces a ranking by giving a grade to each student.

Differential correlation

For each student s, their grades are $\left(W_{A}^{s}, W_{B}^{s}\right) \sim \mathcal{N}\left((0,0), C_{s}\right)$ with $C_{s}=\left(\begin{array}{cc}1 & \rho_{G(s)} \\ \rho_{G(s)} & 1\end{array}\right)$.

Differential correlation

For each student s, their grades are $\left(W_{A}^{s}, W_{B}^{s}\right) \sim \mathcal{N}\left((0,0), C_{s}\right)$ with
$C_{s}=\left(\begin{array}{cc}1 & \rho_{G(s)} \\ \rho_{G(s)} & 1\end{array}\right)$.
Groups have different correlation levels, but the same marginals (e.g., normalization).

Figure: Grades distributions for different correlation levels, left to right: $\rho_{s}=0,0.8,1$.

Stable Matching

Definition (Stable matching)

For each student s, for each college c such that s prefers c to the college they are matched with, all students matched to c were ranked better than s at c.

Figure: Green: matched to A, blue: matched to B, white: unmatched

Market clearing equations (solution of stable matching)
Let $P_{A}, P_{B} \in \mathbb{R}$ be cutoffs, i.e., the grade of the 'worst' admitted student in resp. A and B.

Market clearing equations (solution of stable matching)

Let $P_{A}, P_{B} \in \mathbb{R}$ be cutoffs, i.e., the grade of the 'worst' admitted student in resp. A and B. Define the demand at each college:

$$
\begin{aligned}
D_{A}\left(P_{A}, P_{B}\right)= & \eta\left(\left\{s \in S \mid W_{A}^{s} \geq P_{A} \text { and } s \text { prefers } A \text { to } B\right\}\right) \\
& +\eta\left(\left\{s \in S \mid W_{A}^{s} \geq P_{A}, W_{B}^{s}<P_{B} \text { and } s \text { prefers } B \text { to } A\right\}\right) \\
D_{B}\left(P_{A}, P_{B}\right)= & \eta\left(\left\{s \in S \mid W_{B}^{s}>P_{B} \text { and } s \text { prefers } B \text { to } A\right\}\right) \\
& +\eta\left(\left\{s \in S \mid W_{B}^{s} \geq P_{B}, W_{A}^{s}<P_{A} \text { and } s \text { prefers } A \text { to } B\right\}\right)
\end{aligned}
$$

Market clearing equations (solution of stable matching)

Let $P_{A}, P_{B} \in \mathbb{R}$ be cutoffs, i.e., the grade of the 'worst' admitted student in resp. A and B. Define the demand at each college:

$$
\begin{aligned}
D_{A}\left(P_{A}, P_{B}\right)= & \eta\left(\left\{s \in S \mid W_{A}^{s} \geq P_{A} \text { and } s \text { prefers } A \text { to } B\right\}\right) \\
& +\eta\left(\left\{s \in S \mid W_{A}^{s} \geq P_{A}, W_{B}^{s}<P_{B} \text { and } s \text { prefers } B \text { to } A\right\}\right) \\
D_{B}\left(P_{A}, P_{B}\right)= & \eta\left(\left\{s \in S \mid W_{B}^{s}>P_{B} \text { and } s \text { prefers } B \text { to } A\right\}\right) \\
& +\eta\left(\left\{s \in S \mid W_{B}^{s} \geq P_{B}, W_{A}^{s}<P_{A} \text { and } s \text { prefers } A \text { to } B\right\}\right)
\end{aligned}
$$

We say that the cutoffs P_{A} and P_{B} are market clearing if

$$
D_{A}\left(P_{A}, P_{B}\right)=\alpha_{A} \text { and } D_{B}\left(P_{A}, P_{B}\right)=\alpha_{B}
$$

Market clearing equations (solution of stable matching)

Let $P_{A}, P_{B} \in \mathbb{R}$ be cutoffs, i.e., the grade of the 'worst' admitted student in resp. A and B. Define the demand at each college:

$$
\begin{aligned}
D_{A}\left(P_{A}, P_{B}\right)= & \eta\left(\left\{s \in S \mid W_{A}^{s} \geq P_{A} \text { and } s \text { prefers } A \text { to } B\right\}\right) \\
& +\eta\left(\left\{s \in S \mid W_{A}^{s} \geq P_{A}, W_{B}^{s}<P_{B} \text { and } s \text { prefers } B \text { to } A\right\}\right) \\
D_{B}\left(P_{A}, P_{B}\right)= & \eta\left(\left\{s \in S \mid W_{B}^{s}>P_{B} \text { and } s \text { prefers } B \text { to } A\right\}\right) \\
& +\eta\left(\left\{s \in S \mid W_{B}^{s} \geq P_{B}, W_{A}^{s}<P_{A} \text { and } s \text { prefers } A \text { to } B\right\}\right)
\end{aligned}
$$

We say that the cutoffs P_{A} and P_{B} are market clearing if

$$
D_{A}\left(P_{A}, P_{B}\right)=\alpha_{A} \text { and } D_{B}\left(P_{A}, P_{B}\right)=\alpha_{B}
$$

Theorem (Azevedo et al., 2016)

There is a unique stable matching, and it is given by the unique pair of market clearing cutoffs.

Matching outcomes

Each student will get either their first choice, second choice, or stay unmatched. The masses of students in each of these cases can be expressed using the cutoffs:

$$
\begin{aligned}
V_{1}^{G_{1}, A} & =\mathbb{P}\left(s \text { is matched to } A \mid s \text { prefers } A \text { and } s \in G_{1}\right) \\
& =\mathbb{P}_{\rho_{1}}\left(W_{A}^{s} \geq P_{A}\right)
\end{aligned}
$$

Define analogously $V_{1}^{G_{1}, B}, V_{1}^{G_{2}, A}$ and $V_{1}^{G_{2}, B}$.

Matching outcomes

Each student will get either their first choice, second choice, or stay unmatched. The masses of students in each of these cases can be expressed using the cutoffs:

$$
\begin{aligned}
V_{1}^{G_{1}, A} & =\mathbb{P}\left(\mathrm{s} \text { is matched to } \mathrm{A} \mid \mathrm{s} \text { prefers } \mathrm{A} \text { and } s \in G_{1}\right) \\
& =\mathbb{P}_{\rho_{1}}\left(W_{A}^{s} \geq P_{A}\right)
\end{aligned}
$$

Define analogously $V_{1}^{G_{1}, B}, V_{1}^{G_{2}, A}$ and $V_{1}^{G_{2}, B}$.

Similarly, the probability of getting their second choice or to stay unmatched is given by:

$$
\begin{aligned}
V_{2}^{G_{1}, A} & =\mathbb{P}\left(s \text { is matched to } \mathrm{B} \mid \mathrm{s} \text { prefers } \mathrm{A} \text { and } s \in G_{1}\right) \\
& =\mathbb{P}_{\rho_{1}}\left(W_{A}^{s}<P_{A}, W_{B}^{s} \geq P_{B}\right) \\
V_{\varnothing}^{G_{1}, A} & =\mathbb{P}\left(s \text { is unmatched } \mid \mathrm{s} \text { prefers } A \text { and } s \in G_{1}\right) \\
& =\mathbb{P}_{\rho_{1}}\left(W_{A}^{s}<P_{A}, W_{B}^{s}<P_{B}\right)
\end{aligned}
$$

Solving the market clearing equation

To compute the matching, it suffices to find the market clearing cutoffs P_{A} and P_{B}, i.e., to solve the equations:

$$
\left\{\begin{array}{l}
\gamma_{1} \beta_{1}^{A} V_{1}^{G_{1}, A}+\gamma_{1} \beta_{1}^{B} V_{2}^{G_{1}, B}+\gamma_{2} \beta_{2}^{A} V_{1}^{G_{2}, A}+\gamma_{2} \beta_{2}^{B} V_{2}^{G_{2}, B}=\alpha_{A}, \\
\gamma_{1} \beta_{1}^{A} V_{2}^{G_{1}, A}+\gamma_{1} \beta_{1}^{B} V_{1}^{G_{1}, B}+\gamma_{2} \beta_{2}^{A} V_{2}^{G_{2}, A}+\gamma_{2} \beta_{2}^{B} V_{1}^{G_{2}, B}=\alpha_{B} .
\end{array}\right.
$$

This equation generally has no analytic solution, thus the matching cannot be computed directly. However, it can be used to derive qualitative results.

Statistical discrimination

First question: is one group advantaged compared to the other?

Statistical discrimination

First question: is one group advantaged compared to the other?

Theorem ([Castera, Loiseau, Pradelski, EC '22])

i) The probability for a student to get her first choice is independent of the group she belongs to. $\left(V_{1}^{G_{1}, A}=V_{1}^{G_{2}, A}, V_{1}^{G_{1}, B}=V_{1}^{G_{2}, B}\right)$
ii) Students from the high correlation group have a lower probability to get their second choice, and therefore a higher probability of staying unmatched. (If $\rho_{1}<\rho_{2}$, then $V_{2}^{G_{1}, A}>V_{2}^{G_{2}, A}$ and $V_{\varnothing}^{G_{1}, A}<V_{\varnothing}^{G_{2}, A}$; same for B.)

Therefore, belonging to the high correlation group leads to a worse outcome.
Proof idea: Probabilities of the type $\mathbb{P}_{\rho}\left(W_{A}^{s}<P_{A}, W_{B}^{s} \geq P_{B}\right)$ decrease with ρ (property of the Gaussian distribution).

Illustration

Figure: Illustration of statistical discrimination

Comparative statics

Second question: what happens when correlation levels change?

Comparative statics

Second question: what happens when correlation levels change?

Theorem ([Castera, Loiseau, Pradelski, EC '22])

i) The probability of a student getting their first choice is increasing in both groups' correlation levels. (For $G \in\left\{G_{1}, G_{2}\right\}$, for $C \in\{A, B\}, \frac{\partial V_{1}^{G}, C}{\partial \rho_{G}}>0$.)
ii) The probability of a student remaining unmatched is decreasing in the other group's correlation level and increasing in her own. (For $G \in\left\{G_{1}, G_{2}\right\}$, for $C \in\{A, B\}$, $\frac{\partial V_{G}^{G, C}}{\partial \rho_{G}}>0$ and $\frac{\partial V_{C}^{G . C}}{\partial \rho_{G}}<0$.)

Students benefit from an increase in the other group's correlation level, but may suffer from an increase of their own correlation level.

Proof idea + Illustration

Proof idea: implicit function theorem to compute variation of the thresholds wrt the correlation coefficients (+ Gaussian assumption).

Figure: Illustration of the consequence of a correlation increase

Extension to non-Gaussian distributions

Important thing: the probabilities of type $\mathbb{P}_{\rho}\left(W_{A}^{s}<P_{A}, W_{B}^{s} \geq P_{B}\right)$ decrease with ρ.

It is enough to assume that $\left(W_{A}^{s}, W_{B}^{s}\right)$ follows a joint distribution of densitiy f_{θ} with parameter θ (dependent on the group) such that:

- The marginals (at each college) are the same for both groups (i.e., independent of θ)
- The family f_{θ} is coherent: the cumulative $F_{\theta}(x, y)$ is increasing in θ for all x, y

Note: if f_{θ} is coherent, then standard correlation coefficients are increasing in θ (Scarsini, 1984).
This assumption is satisfied by natural copulas (gaussian, Archimedean).
This lets the marginal be completely free (no need for Gaussian marginals).

Conclusion

- Differential correlation alone leads to discrimination
\Longrightarrow imposing "fair rankings" (\sim normalization) does not implies fair matchings
- Some qualitatively counter-intuitive outcomes:
- Differential correlation has no effect on good students.
- Intermediate students are better off in the low correlation group.
- An increase in the correlation level of one group will benefit good students from both groups.
- At the same time, it will hurt intermediate students of this group and benefit those from the other group.

Open questions

- What is the effect of fixing discrimination? (and how to do it in the first place?)
- What happens with a mix of differential variance (i.e., different marginals) and differential correlation?

Thank you!

Papers:
Vitalii Emelianov, Nicolas Gast, Krishna P. Gummadi, and Patrick Loiseau. On Fair Selection in the Presence of Implicit and Differential Variance.

EC '20 and Artificial Intelligence Journal '22
Vitalii Emelianov, Nicolas Gast, and Patrick Loiseau. Fairness in Selection Problems with Strategic Candidates.

EC '22
Rémi Castera, Patrick Loiseau, and Bary S.R. Pradelski. Statistical Discrimination in Stable Matchings.

EC '22
Contact:
patrick.loiseau@inria.fr

