Statistical discrimination in selection

Patrick Loiseau Inria Saclay, FairPlay team

London School of Economics, March 2023

Joint work with

- PhD students
 - Vitalii Emelianov
 - Rémi Castera
- Collaborators
 - Nicolas Gast, Inria
 - Bary Pradelski, CNRS
 - Krishna Gummadi, MPI-SWS

Discriminatory outcomes in selection problems

Hiring Discrimination Against Black Americans Hasn't Declined in 25 Years

by Lincoln Quillian, Devah Pager, Arnfinn H. Midtbøen and Ole Hexel October 11, 2017

"Brise vocation", "Koh Lanta de l'orientation" : faut-il supprimer Parcoursup ?

THE MANY SINS OF COLLEGE ADMISSIONS

By Jeannie Suk Gersen October 7, 2019

per Sonia Princet 😏 publié le 18 janvier 2022 à 13h24

China: Gender Discrimination in Hiring Persists

11 Percent of Civil Service Ads Specify 'Men Only'

New Evidence of Age Bias in Hiring, and a Push to Fight It

Discriminatory outcomes in selection problems

Hiring Discrimination Against Black Americans Hasn't Declined in 25 Years

by Lincoln Quillian, Devah Pager, Arnfinn H. Midtbøen and Ole Hexel October 11, 2017

"Brise vocation", "Koh Lanta de l'orientation" : faut-il supprimer Parcoursup ?

THE MANY SINS OF COLLEGE ADMISSIONS

By Jeannie Suk Gersen October 7, 2019

per Sonia Princet 💓 publié le 18 janvier 2022 à 13h24

China: Gender Discrimination in Hiring Persists

11 Percent of Civil Service Ads Specify 'Men Only'

New Evidence of Age Bias in Hiring, and a Push to Fight It

All listed above problems are selection problems

What is a Selection Problem?

- Candidates are sorted based on their quality estimates
- Best candidates are selected

50% of candidates are women 25% of selected candidates are women

What is a Selection Problem?

- Candidates are sorted based on their quality estimates
- Best candidates are selected
- Decision-makers can use different fairness mechanisms:
 - Rooney Rule (v)
 - 80%-Rule (x)
 - Demographic Parity (x)

50% of candidates are women 25% of selected candidates are women

What is a Selection Problem?

- Candidates are sorted based on their quality estimates
- Best candidates are selected
- Decision-makers can use different fairness mechanisms:
 - Rooney Rule (v)
 - 80%-Rule (x)
 - Demographic Parity (x)

50% of candidates are women 25% of selected candidates are women

Main questions: What causes discriminatory outcome? What is the effect of fairness mechanisms?

• Machine learning systems can lead to discrimination

Larson et al., 2016; Speicher et al., 2018...

• Different notions of fairness are proposed

X – feature representation, $G \in \{A, B\}$ – demographic group

Y – binary quality (0=bad, 1=good), \hat{Y} – binary prediction (0=reject,1=accept)

• Machine learning systems can lead to discrimination

Larson et al., 2016; Speicher et al., 2018...

• Different notions of fairness are proposed

X – feature representation, $G \in \{A, B\}$ – demographic group

Y - binary quality (0=bad, 1=good), \hat{Y} - binary prediction (0=reject,1=accept)

Individual Fairness

Dwork et al., 2012:

 $|\mathbb{P}(\hat{Y} = \mathbf{1}|X) - \mathbb{P}(\hat{Y} = \mathbf{1}|X')| \le \lambda d(X, X')$

Kearns et al., 2017: $\mathbb{P}(Y = 1|X) \ge \mathbb{P}(Y = 1|X') \implies$ $\mathbb{P}(\hat{Y} = 1|X) \ge \mathbb{P}(\hat{Y} = 1|X')$

• Machine learning systems can lead to discrimination

Larson et al., 2016; Speicher et al., 2018...

• Different notions of fairness are proposed

X – feature representation, $G \in \{A, B\}$ – demographic group

Y - binary quality (0=bad, 1=good), \hat{Y} - binary prediction (0=reject,1=accept)

Individual Fairness

Group Fairness

Dwork et al., 2012: $|\mathbb{P}(\hat{Y} = 1|X) - \mathbb{P}(\hat{Y} = 1|X')| \le \lambda d(X, X')$ Kearns et al., 2017: $\mathbb{P}(Y = 1|X) \ge \mathbb{P}(Y = 1|X') \implies$ $\mathbb{P}(\hat{Y} = 1|X) \ge \mathbb{P}(\hat{Y} = 1|X')$ $\begin{array}{l} Demographic \mbox{ Parity}\\ \mathbb{P}(\hat{Y}=1|A)=\mathbb{P}(\hat{Y}=1|B)\\ 80\%\mbox{-Rule}\\ \mathbb{P}(\hat{Y}=1|A)/\mathbb{P}(\hat{Y}=1|B)\geq 0.8\\ \hline \\ Equal \mbox{ Opportunity}\\ \mathbb{P}(\hat{Y}=1|Y=1,A)=\mathbb{P}(\hat{Y}=1|Y=1,B) \end{array}$

• Machine learning systems can lead to discrimination

Larson et al., 2016; Speicher et al., 2018...

• Different notions of fairness are proposed

X – feature representation, $G \in \{A, B\}$ – demographic group Y – binary quality (0=bad, 1=good), \hat{Y} – binary prediction (0=reject,1=accept)

Individual Fairness

Group Fairness

Dwork et al., 2012: $|\mathbb{P}(\hat{Y} = 1|X) - \mathbb{P}(\hat{Y} = 1|X')| \le \lambda d(X, X')$ Kearns et al., 2017: $\mathbb{P}(X = 1|X) \ge \mathbb{P}(X = 1|X') = 0$

$$\begin{split} \mathbb{P}(Y = \mathbf{1}|X) \geq \mathbb{P}(Y = \mathbf{1}|X') \implies \\ \mathbb{P}(\hat{Y} = \mathbf{1}|X) \geq \mathbb{P}(\hat{Y} = \mathbf{1}|X') \end{split}$$

Demographic Parity $\mathbb{P}(\hat{Y} = 1|A) = \mathbb{P}(\hat{Y} = 1|B)$ 80%-Rule $\mathbb{P}(\hat{Y} = 1|A)/\mathbb{P}(\hat{Y} = 1|B) \ge 0.8$

Equal Opportunity $\mathbb{P}(\hat{Y} = 1 | Y = 1, A) = \mathbb{P}(\hat{Y} = 1 | Y = 1, B)$

Other notions

Counterfactual Fairness

(Kusner et al., 2017)

Envy-Freeness (Balcan et al., 2019)

• Algorithmic solutions to ensure fairness

Preprocessing learning fair representationsZemel et al., 2013; Gordaliza et al., 2019...Inprocessing fairness as a constraint in the learning procedureZafar et al., 2017...Postprocessing resampling predictions to ensure fairnessHardt et al., 2016; Petersen et al., 2021

Most literature studies fairness in classification problems
The causes of discrimination are rarely taken into account

• Algorithmic solutions to ensure fairness

Preprocessing learning fair representationsZemel et al., 2013; Gordaliza et al., 2019...Inprocessing fairness as a constraint in the learning procedureZafar et al., 2017...Postprocessing resampling predictions to ensure fairnessHardt et al., 2016; Petersen et al., 2021

Most literature studies fairness in classification problems
The causes of discrimination are rarely taken into account

• A few works on fairness in selection problems

Kleinberg et al., 2018; Hu et al., 2019...

- Discrimination usually explained by bias
- This talk: second-order statistics create discrimination

Patrick Loiseau (Inria)

Statistical discrimination in selection

Contents

Introduction

One decision-maker: selection problems

Vitalii Emelianov, Nicolas Gast, Krishna P. Gummadi, and Patrick Loiseau. On Fair Selection in the Presence of Implicit and Differential Variance. EC '20 and Artificial Intelligence Journal '22

> Vitalii Emelianov, Nicolas Gast, and Patrick Loiseau. Fairness in Selection Problems with Strategic Candidates. *EC '22*

Causes of Discrimination

Implicit Bias

biased estimate $(\beta > 1)$ unbiased estimate

(Kleinberg et al., 2018; Celis et al., 2021):

- Implicit bias naturally leads to discrimination (overrepresentation of a group)
- Fairness mechanisms (Rooney rule) can improve selection utility

Causes of Discrimination

Implicit Bias

biased estimate $(\beta > 1)$ unbiased estimate

(Kleinberg et al., 2018; Celis et al., 2021):

- Implicit bias naturally leads to discrimination (overrepresentation of a group)
- Fairness mechanisms (Rooney rule) can improve selection utility

Differential Variance (our work)

Causes of Discrimination

Implicit Bias

biased estimate $(\beta > 1)$ unbiased estimate

noisy estimates, $arepsilon_i \sim \mathcal{N}(0,1)$

(Kleinberg et al., 2018; Celis et al., 2021):

- Implicit bias naturally leads to discrimination (overrepresentation of a group)
- Fairness mechanisms (Rooney rule) can improve selection utility

Main questions:

- What is the impact of differential variance on the selection outcome?
- What is the effect of fairness mechanisms on the selection utility?

Note: (Phelps, 1972; Lundberg et al., 1983) model differential variance in wages allocation

Patrick Loiseau (Inria)

Selection Problem Setup

Assume (for simplicity) that the latent quality $W \sim \mathcal{N}(\mu, \sigma^2)$ (group-independent)

Technically: we assume that n is large and denote p_H , p_L the fractions of candidates for each group.

Selection Problem Setup

Assume (for simplicity) that the latent quality $W \sim \mathcal{N}(\mu, \sigma^2)$ (group-independent)

Technically: we assume that n is large and denote p_H , p_L the fractions of candidates for each group.

Baseline decision makers

- Group-oblivious: Sort candidates by decreasing estimate \widehat{W}_i and keep the best
 - Does not look at group membership

• Bayesian: Computes posterior $\widetilde{W}_i = \mathbb{E}(W_i | \widehat{W}_i)$ and keep the best

$$\widetilde{W}_{G} = \widehat{W}_{G}\rho_{G}^{2} + (1 - \rho_{G}^{2})\mu,$$

where $\rho_{G}^{2} = \frac{\sigma^{2}}{\sigma^{2} + \sigma_{G}^{2}}$

- Looks at group membership
- Inverts the variance orders (now group H has lower variance)

Theorem ([Emelianov, Gast, Loiseau, Gummadi, EC '20])

Patrick Loiseau (Inria)

Theorem ([Emelianov, Gast, Loiseau, Gummadi, EC '20])

• If the decision-maker is group-oblivious, then $r_{H}^{obl} > r_{L}^{obl} \iff \alpha < 0.5$

Theorem ([Emelianov, Gast, Loiseau, Gummadi, EC '20])

- If the decision-maker is group-oblivious, then $r_{H}^{obl} > r_{L}^{obl} \iff \alpha < 0.5$
- If the decision-maker is **Bayesian**, then $r_{H}^{\rm bayes} < r_{L}^{\rm bayes} \iff \alpha < 0.5$

Patrick Loiseau (Inria)

Theorem ([Emelianov, Gast, Loiseau, Gummadi, EC '20])

- If the decision-maker is group-oblivious, then $r_{H}^{obl} > r_{L}^{obl} \iff \alpha < 0.5$
- If the decision-maker is **Bayesian**, then $r_{H}^{\rm bayes} < r_{L}^{\rm bayes} \iff \alpha < 0.5$

Patrick Loiseau (Inria)

Demographic Parity Can Improve Selection Utility

Theorem ([Emelianov, Gast, Loiseau, Gummadi, AIJ '22])

• If the decision-maker is **Bayesian**, then for all selection rates $\alpha \in (0, 1)$:

$$1 \leq rac{\mathcal{U}^{ ext{bayes}}}{\mathcal{U}^{ ext{dp}}} \leq 1 + rac{p_{H}(
u - 1)}{p_{H} + p_{L}
u} ext{ where }
u = rac{\sqrt{\sigma_{H} + \eta^{2}}}{\sqrt{\sigma_{L} + \eta^{2}}}$$

Demographic Parity Can Improve Selection Utility

Theorem ([Emelianov, Gast, Loiseau, Gummadi, AIJ '22])

• If the decision-maker is **Bayesian**, then for all selection rates $\alpha \in (0, 1)$:

$$1 \leq rac{\mathcal{U}^{ ext{bayes}}}{\mathcal{U}^{ ext{dp}}} \leq 1 + rac{p_{H}(
u - 1)}{p_{H} + p_{L}
u} ext{ where }
u = rac{\sqrt{\sigma_{H} + \eta^{2}}}{\sqrt{\sigma_{L} + \eta^{2}}}$$

• If the decision-maker is Group-Oblivious, then for all selection rates $\alpha \in (0,1)$: $\mathcal{U}^{dp} \geq \mathcal{U}^{obl}$

Demographic Parity Can Improve Selection Utility

Theorem ([Emelianov, Gast, Loiseau, Gummadi, AIJ '22])

• If the decision-maker is **Bayesian**, then for all selection rates $\alpha \in (0, 1)$:

$$1 \leq \frac{\mathcal{U}^{\text{bayes}}}{\mathcal{U}^{\text{dp}}} \leq 1 + \frac{p_{H}(\nu - 1)}{p_{H} + p_{L}\nu} \text{ where } \nu = \frac{\sqrt{\sigma_{H} + \eta^{2}}}{\sqrt{\sigma_{L} + \eta^{2}}}$$

• If the decision-maker is Group-Oblivious, then for all selection rates $\alpha\in(0,1)$: $\mathcal{U}^{dp}\geq\mathcal{U}^{obl}$

Proof Idea:

- Utility \mathcal{U} is a concave function of selection rate r_H
- From the previous slide, we know that

$$r_{H}^{bayes} < r_{H}^{dp} = \alpha < r_{H}^{obl}$$

Using concavity of $\mathcal U_{\text{r}}$ can extend the result for the $\gamma\text{-rule}$

Summary and Discussion

- Second-order statistical differences between groups (differential variance) leads to discrimination
- Demographic parity (and γ -rule) fairness mechanism can increase the selection quality

Summary and Discussion

- Second-order statistical differences between groups (differential variance) leads to discrimination
- Demographic parity (and γ -rule) fairness mechanism can increase the selection quality

Extensions

- Generalize to group-dependent quality distribution and/or presence of implicit bias \implies more nuanced results, typically for small selection budget (α)
- Candidates can be strategic, i.e., they can adapt to the selection rule
 - \implies results contrast with the non-strategic case
 - \implies demographic parity can sometimes improve quality even over Bayesian

Contents

Introduction

One decision-maker: selection problems

Two decision-makers: matching problems

Rémi Castera, Patrick Loiseau, and Bary S.R. Pradelski. Statistical Discrimination in Stable Matchings. *EC '22*

Example of a matching problem: college admission

Figure: Example of a college admission problem

Left: **stable** Middle: **waste** - Hermione and Ronald could go to Gryffindor Right: **justified envy** - Hermione should replace Ronald in Gryffindor

Second-order correlation: motivating example

Colleges A and B have noisy estimates of applicants' qualities. Each applicant s has a **latent** quality $W^s \sim \mathcal{N}(0, \sigma^2)$; and her grade at each college is:

$$\widehat{W}^{s}_{A}=W^{s}+arepsilon^{s}_{A}$$
, $\widehat{W}^{s}_{B}=W^{s}+arepsilon^{s}_{B}$

Second-order correlation: motivating example

Colleges A and B have noisy estimates of applicants' qualities. Each applicant s has a **latent** quality $W^s \sim \mathcal{N}(0, \sigma^2)$; and her grade at each college is:

$$\widehat{W}^{s}_{A} = W^{s} + arepsilon^{s}_{A}, \ \widehat{W}^{s}_{B} = W^{s} + arepsilon^{s}_{B}$$

Two groups of applicants: local and foreign. Evaluation of local applicants is more precise than for foreign applicants. For a local applicant s, $\varepsilon^s \sim \mathcal{N}(0, \sigma_{loc}^2)$ and for a foreign applicant $\varepsilon^s \sim \mathcal{N}(0, \sigma_{for}^2)$, with $\sigma_{loc} < \sigma_{for}$.

Second-order correlation: motivating example (continued)

For fairness purposes, colleges decide to standardize the grade distributions: grades of local students are fitted into $\mathcal{N}(0, 1)$, and so are grades of foreign students:

for any local student s, $\widetilde{W}^s_A = \widehat{W}^s_A / \sqrt{\sigma^2 + \sigma^2_{loc}}$, $\widetilde{W}^s_B = \widehat{W}^s_B / \sqrt{\sigma^2 + \sigma^2_{loc}}$

for any foreign student s, $\widetilde{W}_{A}^{s} = \widehat{W}_{A}^{s} / \sqrt{\sigma^{2} + \sigma_{for}^{2}}$, $\widetilde{W}_{B}^{s} = \widehat{W}_{B}^{s} / \sqrt{\sigma^{2} + \sigma_{for}^{2}}$

Motivating example 2: different criteria

Two colleges, A and B, with **different criteria**. Suppose college A is interested in the level of applicants in maths, and college B in physics. Applicants come from two high schools:

Motivating example 2: different criteria

Two colleges, A and B, with **different criteria**. Suppose college A is interested in the level of applicants in maths, and college B in physics. Applicants come from two high schools:

High school 1: Physics is taught in a very theoretical way \rightarrow grades in maths and physics are **highly correlated**.

Motivating example 2: different criteria

Two colleges, A and B, with **different criteria**. Suppose college A is interested in the level of applicants in maths, and college B in physics. Applicants come from two high schools:

High school 1: Physics is taught in a very theoretical way \rightarrow grades in maths and physics are **highly correlated**.

High school 2: Physics is taught through experiments \rightarrow grades in maths and physics are more **independent**.

Motivating example 2: different criteria

Two colleges, A and B, with **different criteria**. Suppose college A is interested in the level of applicants in maths, and college B in physics. Applicants come from two high schools:

High school 1: Physics is taught in a very theoretical way \rightarrow grades in maths and physics are **highly correlated**.

High school 2: Physics is taught through experiments \rightarrow grades in maths and physics are more **independent**.

- How does the matching outcome depend on the correlation structure?
- If correlation depends on group, which group is "better-off"?

• We consider a continuum of students S. Masses of students are measured with $\eta: S \rightarrow [0, 1], \ \eta(S) = 1.$

- We consider a continuum of students S. Masses of students are measured with $\eta: S \rightarrow [0, 1], \ \eta(S) = 1.$
- S is divided into 2 groups G_1 and G_2 . Respective masses: $\gamma \in [0, 1]$ and 1γ .

- We consider a continuum of students S. Masses of students are measured with $\eta: S \rightarrow [0, 1], \ \eta(S) = 1.$
- S is divided into 2 groups G_1 and G_2 . Respective masses: $\gamma \in [0, 1]$ and 1γ .
- We consider two colleges, A and B, with respective capacities: α_A and $\alpha_B \in [0, 1]$, where $\alpha_A + \alpha_B < 1$ (capacity shortage).

- We consider a continuum of students S. Masses of students are measured with $\eta: S \rightarrow [0, 1], \ \eta(S) = 1.$
- S is divided into 2 groups G_1 and G_2 . Respective masses: $\gamma \in [0, 1]$ and 1γ .
- We consider two colleges, A and B, with respective capacities: α_A and $\alpha_B \in [0, 1]$, where $\alpha_A + \alpha_B < 1$ (capacity shortage).
- For G_1 : proportion β_1 prefer A, $1 \beta_1$ prefer B. Same for G_2 with β_2 .

- We consider a continuum of students S. Masses of students are measured with $\eta: S \to [0, 1], \ \eta(S) = 1.$
- S is divided into 2 groups G_1 and G_2 . Respective masses: $\gamma \in [0, 1]$ and 1γ .
- We consider two colleges, A and B, with respective capacities: α_A and $\alpha_B \in [0, 1]$, where $\alpha_A + \alpha_B < 1$ (capacity shortage).
- For G_1 : proportion β_1 prefer A, $1 \beta_1$ prefer B. Same for G_2 with β_2 .
- Each college produces a ranking by giving a grade to each student.

Differential correlation

For each student *s*, their grades are $(W_A^s, W_B^s) \sim \mathcal{N}((0, 0), C_s)$ with $C_s = \begin{pmatrix} 1 & \rho_{G(s)} \\ \rho_{G(s)} & 1 \end{pmatrix}$.

Differential correlation

For each student *s*, their grades are $(W_A^s, W_B^s) \sim \mathcal{N}((0, 0), C_s)$ with $C_s = \begin{pmatrix} 1 & \rho_{G(s)} \\ \rho_{G(s)} & 1 \end{pmatrix}$.

Groups have different correlation levels, but the same marginals (e.g., normalization).

Figure: Grades distributions for different correlation levels, left to right: $\rho_s = 0, 0.8, 1.$

Patrick Loiseau (Inria)

Stable Matching

Definition (Stable matching)

For each student s, for each college c such that s prefers c to the college they are matched with, all students matched to c were ranked better than s at c.

Let $P_A, P_B \in \mathbb{R}$ be **cutoffs**, i.e., the grade of the 'worst' admitted student in resp. A and B.

Let $P_A, P_B \in \mathbb{R}$ be **cutoffs**, i.e., the grade of the 'worst' admitted student in resp. A and B. Define the **demand** at each college:

$$D_A(P_A, P_B) = \eta(\{s \in S | W_A^s \ge P_A \text{ and } s \text{ prefers } A \text{ to } B\}) + \eta(\{s \in S | W_A^s \ge P_A \text{ , } W_B^s < P_B \text{ and } s \text{ prefers } B \text{ to } A\})$$
$$D_B(P_A, P_B) = \eta(\{s \in S | W_B^s > P_B \text{ and } s \text{ prefers } B \text{ to } A\})$$

$$+\eta(\{s \in S | W_B^s \ge P_B \text{ , } W_A^s < P_A \text{ and } s \text{ prefers } A \text{ to } B\})$$

Let $P_A, P_B \in \mathbb{R}$ be **cutoffs**, i.e., the grade of the 'worst' admitted student in resp. A and B. Define the **demand** at each college:

$$\begin{array}{ll} D_A(P_A, P_B) = & \eta(\{s \in S | W_A^s \geq P_A \text{ and } s \text{ prefers } A \text{ to } B\}) \\ & +\eta(\{s \in S | W_A^s \geq P_A \text{ , } W_B^s < P_B \text{ and } s \text{ prefers } B \text{ to } A\}) \end{array}$$
$$\begin{array}{ll} D_B(P_A, P_B) = & \eta(\{s \in S | W_B^s > P_B \text{ and } s \text{ prefers } B \text{ to } A\}) \\ & +\eta(\{s \in S | W_B^s \geq P_B \text{ , } W_A^s < P_A \text{ and } s \text{ prefers } A \text{ to } B\}) \end{array}$$

We say that the cutoffs P_A and P_B are market clearing if

$$D_A(P_A, P_B) = \alpha_A$$
 and $D_B(P_A, P_B) = \alpha_B$

Let $P_A, P_B \in \mathbb{R}$ be **cutoffs**, i.e., the grade of the 'worst' admitted student in resp. A and B. Define the **demand** at each college:

$$\begin{array}{ll} D_A(P_A,P_B) = & \eta(\{s \in S | W_A^s \geq P_A \text{ and } s \text{ prefers } A \text{ to } B\}) \\ & +\eta(\{s \in S | W_A^s \geq P_A \text{ , } W_B^s < P_B \text{ and } s \text{ prefers } B \text{ to } A\}) \end{array}$$
$$\begin{array}{ll} D_B(P_A,P_B) = & \eta(\{s \in S | W_B^s > P_B \text{ and } s \text{ prefers } B \text{ to } A\}) \\ & +\eta(\{s \in S | W_B^s \geq P_B \text{ , } W_A^s < P_A \text{ and } s \text{ prefers } A \text{ to } B\}) \end{array}$$

We say that the cutoffs P_A and P_B are market clearing if

$$D_A(P_A, P_B) = \alpha_A$$
 and $D_B(P_A, P_B) = \alpha_B$

Theorem (Azevedo et al., 2016)

There is a unique stable matching, and it is given by the unique pair of market clearing cutoffs.

Patrick Loiseau (Inria)

Matching outcomes

Each student will get either their first choice, second choice, or stay unmatched. The masses of students in each of these cases can be expressed using the cutoffs:

$$V_1^{G_1,A} = \mathbb{P}(s \text{ is matched to } A \mid s \text{ prefers } A \text{ and } s \in G_1)$$

= $\mathbb{P}_{
ho_1}(W_A^s \ge P_A)$

Define analogously $V_1^{G_1,B}$, $V_1^{G_2,A}$ and $V_1^{G_2,B}$.

Matching outcomes

Each student will get either their first choice, second choice, or stay unmatched. The masses of students in each of these cases can be expressed using the cutoffs:

$$\begin{array}{ll} V_1^{G_1,A} &= \mathbb{P}(\text{s is matched to } \mathsf{A} \mid \text{s prefers } \mathsf{A} \text{ and } s \in G_1) \\ &= \mathbb{P}_{\rho_1}(W_A^s \geq P_A) \end{array}$$

Define analogously $V_1^{G_1,B}$, $V_1^{G_2,A}$ and $V_1^{G_2,B}$.

Similarly, the probability of getting their second choice or to stay unmatched is given by:

$$\begin{array}{ll} V_2^{G_1,A} &= \mathbb{P}(\text{s is matched to } B \mid \text{s prefers A and } s \in G_1) \\ &= \mathbb{P}_{\rho_1}(W_A^s < P_A, W_B^s \ge P_B) \\ V_{\varnothing}^{G_1,A} &= \mathbb{P}(\text{s is unmatched} \mid \text{s prefers A and } s \in G_1) \\ &= \mathbb{P}_{\rho_1}(W_A^s < P_A, W_B^s < P_B) \end{array}$$

Solving the market clearing equation

To compute the matching, it suffices to find the market clearing cutoffs P_A and P_B , i.e., to solve the equations:

$$\begin{cases} \gamma_1 \beta_1^A V_1^{G_1,A} + \gamma_1 \beta_1^B V_2^{G_1,B} + \gamma_2 \beta_2^A V_1^{G_2,A} + \gamma_2 \beta_2^B V_2^{G_2,B} &= \alpha_A, \\ \gamma_1 \beta_1^A V_2^{G_1,A} + \gamma_1 \beta_1^B V_1^{G_1,B} + \gamma_2 \beta_2^A V_2^{G_2,A} + \gamma_2 \beta_2^B V_1^{G_2,B} &= \alpha_B. \end{cases}$$

This equation generally has no analytic solution, thus the matching cannot be computed directly. However, it can be used to derive qualitative results.

Statistical discrimination

First question: is one group advantaged compared to the other?

Statistical discrimination

First question: is one group advantaged compared to the other?

Theorem ([Castera, Loiseau, Pradelski, EC '22])

i) The probability for a student to get her first choice is independent of the group she belongs to. $(V_1^{G_1,A} = V_1^{G_2,A}, V_1^{G_1,B} = V_1^{G_2,B})$

ii) Students from the high correlation group have a lower probability to get their second choice, and therefore a higher probability of staying unmatched. (If $\rho_1 < \rho_2$, then $V_2^{G_1,A} > V_2^{G_2,A}$ and $V_{\oslash}^{G_1,A} < V_{\oslash}^{G_2,A}$; same for B.)

Therefore, belonging to the high correlation group leads to a worse outcome.

Proof idea: Probabilities of the type $\mathbb{P}_{\rho}(W_A^s < P_A, W_B^s \ge P_B)$ decrease with ρ (property of the Gaussian distribution).

Illustration

Figure: Illustration of statistical discrimination

Comparative statics

Second question: what happens when correlation levels change?

Comparative statics

Second question: what happens when correlation levels change?

Theorem ([Castera, Loiseau, Pradelski, EC '22])

i) The probability of a student getting their first choice is increasing in both groups' correlation levels. (For $G \in \{G_1, G_2\}$, for $C \in \{A, B\}$, $\frac{\partial V_1^{G,C}}{\partial \rho_G} > 0$.)

ii) The probability of a student remaining unmatched is decreasing in the other group's correlation level and increasing in her own. (For $G \in \{G_1, G_2\}$, for $C \in \{A, B\}$, $\frac{\partial V_{\odot}^{G,C}}{\partial \rho_G} > 0$ and $\frac{\partial V_{\odot}^{G,C}}{\partial \rho_G} < 0$.)

Students benefit from an increase in the other group's correlation level, but may suffer from an increase of their own correlation level.

Proof idea + Illustration

Proof idea: implicit function theorem to compute variation of the thresholds wrt the correlation coefficients (+ Gaussian assumption).

Figure: Illustration of the consequence of a correlation increase

Extension to non-Gaussian distributions

Important thing: the probabilities of type $\mathbb{P}_{\rho}(W_A^s < P_A, W_B^s \ge P_B)$ decrease with ρ .

It is enough to assume that (W_A^s, W_B^s) follows a joint distribution of densitiv f_θ with parameter θ (dependent on the group) such that:

- The marginals (at each college) are the same for both groups (i.e., independent of θ)
- The family f_{θ} is coherent: the cumulative $F_{\theta}(x, y)$ is increasing in θ for all x, y

Note: if f_{θ} is coherent, then standard correlation coefficients are increasing in θ (Scarsini, 1984).

This assumption is satisfied by natural copulas (gaussian, Archimedean).

This lets the marginal be completely free (no need for Gaussian marginals).

Conclusion

- Differential correlation alone leads to discrimination
 - \implies imposing "fair rankings" (\sim normalization) does not implies fair matchings
- Some qualitatively counter-intuitive outcomes:
 - Differential correlation has no effect on good students.
 - Intermediate students are better off in the low correlation group.
 - An increase in the correlation level of one group will benefit good students from both groups.
 - At the same time, it will hurt intermediate students of this group and benefit those from the other group.

Open questions

- What is the effect of fixing discrimination? (and how to do it in the first place?)
- What happens with a mix of differential variance (i.e., different marginals) and differential correlation?

Thank you!

Papers:

Vitalii Emelianov, Nicolas Gast, Krishna P. Gummadi, and Patrick Loiseau. On Fair Selection in the Presence of Implicit and Differential Variance. *EC '20 and Artificial Intelligence Journal '22*

> Vitalii Emelianov, Nicolas Gast, and Patrick Loiseau. Fairness in Selection Problems with Strategic Candidates. *EC '22*

Rémi Castera, Patrick Loiseau, and Bary S.R. Pradelski. Statistical Discrimination in Stable Matchings. *EC '22*

Contact:

patrick.loiseau@inria.fr