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Discriminatory outcomes in selection problems

All listed above problems are selection problems
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What is a Selection Problem?

Candidates are sorted based on
their quality estimates

Best candidates are selected

Decision-makers can use different
fairness mechanisms:

- Rooney Rule (v)
- 80%-Rule (x)
- Demographic Parity (x)

estimated quality

50% of candidates are women
25% of selected candidates are women

Main questions:
What causes discriminatory outcome? What is the effect of fairness mechanisms?
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Algorithmic Fairness Literature

Machine learning systems can lead to discrimination Larson et al., 2016; Speicher et al., 2018. . .

Different notions of fairness are proposed
X – feature representation, G ∈ {A,B} – demographic group
Y – binary quality (0=bad, 1=good), Ŷ – binary prediction (0=reject,1=accept)

Group Fairness
Demographic Parity
P(Ŷ = 1|A) = P(Ŷ = 1|B)

80%-Rule
P(Ŷ = 1|A)/P(Ŷ = 1|B) ≥ 0.8

Equal Opportunity
P(Ŷ = 1|Y = 1,A) = P(Ŷ = 1|Y = 1,B)

Individual Fairness

Dwork et al., 2012:

|P(Ŷ = 1|X )−P(Ŷ = 1|X ′)| ≤ λd(X ,X ′)

Kearns et al., 2017:
P(Y = 1|X ) ≥ P(Y = 1|X ′) =⇒

P(Ŷ = 1|X ) ≥ P(Ŷ = 1|X ′)

Other notions

Counterfactual Fairness
(Kusner et al., 2017)

Envy-Freeness (Balcan et al.,

2019)

Patrick Loiseau (Inria) Statistical discrimination in selection LSE, March ’23 5 / 32



Algorithmic Fairness Literature

Machine learning systems can lead to discrimination Larson et al., 2016; Speicher et al., 2018. . .

Different notions of fairness are proposed
X – feature representation, G ∈ {A,B} – demographic group
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Other notions

Counterfactual Fairness
(Kusner et al., 2017)

Envy-Freeness (Balcan et al.,

2019)

Patrick Loiseau (Inria) Statistical discrimination in selection LSE, March ’23 5 / 32



Algorithmic Fairness Literature

Machine learning systems can lead to discrimination Larson et al., 2016; Speicher et al., 2018. . .

Different notions of fairness are proposed
X – feature representation, G ∈ {A,B} – demographic group
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P(Ŷ = 1|X ) ≥ P(Ŷ = 1|X ′)

Other notions

Counterfactual Fairness
(Kusner et al., 2017)

Envy-Freeness (Balcan et al.,

2019)

Patrick Loiseau (Inria) Statistical discrimination in selection LSE, March ’23 5 / 32



Algorithmic Fairness Literature
Algorithmic solutions to ensure fairness

Preprocessing learning fair representations Zemel et al., 2013; Gordaliza et al., 2019...

Inprocessing fairness as a constraint in the learning procedure Zafar et al., 2017...

Postprocessing resampling predictions to ensure fairness Hardt et al., 2016; Petersen et al., 2021

Most literature studies fairness in classification problems
The causes of discrimination are rarely taken into account

A few works on fairness in selection problems Kleinberg et al., 2018; Hu et al., 2019...

Discrimination usually explained by bias
This talk: second-order statistics create discrimination
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Contents

1 Introduction

2 One decision-maker: selection problems

Vitalii Emelianov, Nicolas Gast, Krishna P. Gummadi, and Patrick Loiseau.
On Fair Selection in the Presence of Implicit and Differential Variance.

EC ’20 and Artificial Intelligence Journal ’22

Vitalii Emelianov, Nicolas Gast, and Patrick Loiseau.
Fairness in Selection Problems with Strategic Candidates.

EC ’22

3 Two decision-makers: matching problems
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Causes of Discrimination

Implicit Bias

Wi

quality

Ŵi = Wi/β

biased estimate (β > 1)

Ŵi = Wi

unbiased estimate

(Kleinberg et al., 2018; Celis et al., 2021):

Implicit bias naturally leads to discrimination
(overrepresentation of a group)

Fairness mechanisms (Rooney rule) can
improve selection utility

Differential Variance (our work)

Wi

quality

Ŵi = Wi + ε i · σH Ŵi = Wi + ε i · σL
noisy estimates, εi ∼ N (0, 1)

Main questions:

What is the impact of differential variance
on the selection outcome?

What is the effect of fairness mechanisms
on the selection utility?

Note: (Phelps, 1972; Lundberg et al., 1983) model differential variance in wages allocation
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Selection Problem Setup

n candidates

nH + nL

select αn, α ∈ (0, 1)

budget

rHnH + rLnL

selection rates

U = ∑i∈selection Wi

utility of selection

Ŵi

Assume (for simplicity) that the latent quality W ∼ N (µ, σ2) (group-independent)

Technically: we assume that n is large and denote pH , pL the fractions of candidates for each group.
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Baseline decision makers

Group-oblivious: Sort candidates by decreasing estimate Ŵi and
keep the best

I Does not look at group membership

Bayesian: Computes posterior W̃i = E(Wi |Ŵi ) and keep the best

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ŵ
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2.0

W̃

A

B

W̃G =ŴGρ2
G + (1− ρ2

G )µ,

where ρ2
G =

σ2

σ2 + σ2
G

I Looks at group membership
I Inverts the variance orders (now group H has lower variance)
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Discrimination Caused by Differential Variance

Group-Oblivious DM

sort by Ŵi and keep best αn
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ŴH

Ŵ L

W ∼ N (µ, η2)

Bayesian DM

sort by W̃i = E(Wi |Ŵi ) and
keep best αn
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W̃G = ŴG ρ2
G + (1− ρ2

G )µ

W̃H
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Demographic Parity DM

sort by W̃i (or Ŵi ) and keep
best αnG from each group G
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W̃G

r
dp
H = r

dp
L = α

W̃H

W̃ L

Theorem ([Emelianov, Gast, Loiseau, Gummadi, EC ’20])

If the decision-maker is group-oblivious, then robl
H > robl

L ⇐⇒ α < 0.5

If the decision-maker is Bayesian, then r
bayes
H < r

bayes
L ⇐⇒ α < 0.5

Note: Similar observations in (temnyalov19)
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keep best αn

0.02 0.01 0.00 0.01 0.02
0

20

40

60

80

100

120

W̃G = ŴG ρ2
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Demographic Parity Can Improve Selection Utility

Theorem ([Emelianov, Gast, Loiseau, Gummadi, AIJ ’22])
If the decision-maker is Bayesian, then for all selection rates α ∈ (0, 1):

1 ≤ U
bayes

Udp ≤ 1+
pH(ν− 1)
pH + pLν

where ν =

√
σH + η2√
σL + η2

If the decision-maker is Group-Oblivious, then for all selection rates α ∈ (0, 1):
Udp ≥ Uobl

Proof Idea:

Utility U is a concave function of selection rate rH

From the previous slide, we know that

rbayesH < rdpH = α < roblH

Using concavity of U , can extend the result for the γ-rule 0 1α rH

bayes dp
obl

U
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Summary and Discussion

Second-order statistical differences between groups (differential variance) leads to
discrimination

Demographic parity (and γ-rule) fairness mechanism can increase the selection quality

Extensions
Generalize to group-dependent quality distribution and/or presence of implicit bias
=⇒ more nuanced results, typically for small selection budget (α)

Candidates can be strategic, i.e., they can adapt to the selection rule
=⇒ results contrast with the non-strategic case
=⇒ demographic parity can sometimes improve quality even over Bayesian
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Contents

1 Introduction

2 One decision-maker: selection problems

3 Two decision-makers: matching problems
Rémi Castera, Patrick Loiseau, and Bary S.R. Pradelski.

Statistical Discrimination in Stable Matchings.
EC ’22
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Example of a matching problem: college admission

Figure: Example of a college admission problem

Left: stable
Middle: waste - Hermione and Ronald could go to Gryffindor
Right: justified envy - Hermione should replace Ronald in Gryffindor
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Second-order correlation: motivating example

Colleges A and B have noisy estimates of applicants’ qualities. Each applicant s has a latent
quality W s ∼ N (0, σ2); and her grade at each college is:

Ŵ s
A = W s + εsA, Ŵ

s
B = W s + εsB

Two groups of applicants: local and foreign. Evaluation of local applicants is more precise
than for foreign applicants. For a local applicant s, εs ∼ N (0, σ2

loc) and for a foreign applicant
εs ∼ N (0, σ2

for ), with σloc < σfor .
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Second-order correlation: motivating example (continued)
For fairness purposes, colleges decide to standardize the grade distributions: grades of local
students are fitted into N (0, 1), and so are grades of foreign students:

for any local student s, W̃ s
A = Ŵ s

A/
√

σ2 + σ2
loc , W̃

s
B = Ŵ s

B/
√

σ2 + σ2
loc

for any foreign student s, W̃ s
A = Ŵ s

A/
√

σ2 + σ2
for , W̃

s
B = Ŵ s

B/
√

σ2 + σ2
for
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Motivating example 2: different criteria

Two colleges, A and B , with different criteria. Suppose college A is interested in the level of
applicants in maths, and college B in physics. Applicants come from two high schools:

High school 1: Physics is taught in a very theoretical way
→ grades in maths and physics are highly correlated.

High school 2: Physics is taught through experiments
→ grades in maths and physics are more independent.

Figure: Example of distributions. Left: correlation 0.8, right: correlation 0.3
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Main questions

How does the matching outcome depend on the correlation structure?

If correlation depends on group, which group is “better-off”?

Patrick Loiseau (Inria) Statistical discrimination in selection LSE, March ’23 19 / 32



The model

We consider a continuum of students S . Masses of students are measured with
η : S → [0, 1], η(S) = 1.

S is divided into 2 groups G1 and G2. Respective masses: γ ∈ [0, 1] and 1− γ.

We consider two colleges, A and B , with respective capacities: αA and αB ∈ [0, 1],
where αA + αB < 1 (capacity shortage).

For G1: proportion β1 prefer A, 1− β1 prefer B . Same for G2 with β2.

Each college produces a ranking by giving a grade to each student.
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Differential correlation

For each student s, their grades are (W s
A,W

s
B) ∼ N ((0, 0),Cs) with

Cs =

(
1 ρG (s)

ρG (s) 1

)
.

Groups have different correlation levels, but the same marginals (e.g., normalization).

Figure: Grades distributions for different correlation levels, left to right: ρs = 0, 0.8, 1.
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Stable Matching

Definition (Stable matching)
For each student s, for each college c such that s prefers c to the college they are matched
with, all students matched to c were ranked better than s at c .

Figure: Green: matched to A, blue: matched to B, white: unmatched
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Market clearing equations (solution of stable matching)

Let PA,PB ∈ R be cutoffs, i.e., the grade of the ‘worst’ admitted student in resp. A and B .

Define the demand at each college:

DA(PA,PB) = η({s ∈ S |W s
A ≥ PA and s prefers A to B})

+η({s ∈ S |W s
A ≥ PA , W s

B < PB and s prefers B to A})

DB(PA,PB) = η({s ∈ S |W s
B > PB and s prefers B to A})

+η({s ∈ S |W s
B ≥ PB , W s

A < PA and s prefers A to B})

We say that the cutoffs PA and PB are market clearing if

DA(PA,PB) = αA and DB(PA,PB) = αB

Theorem (Azevedo et al., 2016)
There is a unique stable matching, and it is given by the unique pair of market clearing cutoffs.
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Matching outcomes

Each student will get either their first choice, second choice, or stay unmatched. The masses of
students in each of these cases can be expressed using the cutoffs:

V G1,A
1 = P(s is matched to A | s prefers A and s ∈ G1)

= Pρ1(W
s
A ≥ PA)

Define analogously V G1,B
1 ,V G2,A

1 and V G2,B
1 .

Similarly, the probability of getting their second choice or to stay unmatched is given by:

V G1,A
2 = P(s is matched to B | s prefers A and s ∈ G1)

= Pρ1(W
s
A < PA,W

s
B ≥ PB)

V G1,A
∅ = P(s is unmatched| s prefers A and s ∈ G1)

= Pρ1(W
s
A < PA,W

s
B < PB)
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Solving the market clearing equation

To compute the matching, it suffices to find the market clearing cutoffs PA and PB , i.e., to
solve the equations:

{
γ1βA

1V
G1,A
1 + γ1βB

1 V
G1,B
2 + γ2βA

2V
G2,A
1 + γ2βB

2 V
G2,B
2 = αA,

γ1βA
1V

G1,A
2 + γ1βB

1 V
G1,B
1 + γ2βA

2V
G2,A
2 + γ2βB

2 V
G2,B
1 = αB .

This equation generally has no analytic solution, thus the matching cannot be computed
directly. However, it can be used to derive qualitative results.
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Statistical discrimination

First question: is one group advantaged compared to the other?

Theorem ([Castera, Loiseau, Pradelski, EC ’22])
i) The probability for a student to get her first choice is independent of the group she
belongs to. (V G1,A

1 = V G2,A
1 , V G1,B

1 = V G2,B
1 )

ii) Students from the high correlation group have a lower probability to get their
second choice, and therefore a higher probability of staying unmatched. (If ρ1 < ρ2,
then V G1,A

2 > V G2,A
2 and V G1,A

∅ < V G2,A
∅ ; same for B .)

Therefore, belonging to the high correlation group leads to a worse outcome.

Proof idea: Probabilities of the type Pρ(W s
A < PA,W

s
B ≥ PB) decrease with ρ (property of the

Gaussian distribution).
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Illustration

Figure: Illustration of statistical discrimination
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Comparative statics

Second question: what happens when correlation levels change?

Theorem ([Castera, Loiseau, Pradelski, EC ’22])
i) The probability of a student getting their first choice is increasing in both groups’

correlation levels. (For G ∈ {G1,G2}, for C ∈ {A,B}, ∂V G ,C
1

∂ρG
> 0.)

ii) The probability of a student remaining unmatched is decreasing in the other
group’s correlation level and increasing in her own. (For G ∈ {G1,G2}, for C ∈ {A,B},
∂V G ,C

∅
∂ρG

> 0 and ∂V G ,C
∅

∂ρḠ
< 0.)

Students benefit from an increase in the other group’s correlation level, but may suffer from an
increase of their own correlation level.
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Proof idea + Illustration
Proof idea: implicit function theorem to compute variation of the thresholds wrt the correlation
coefficients (+ Gaussian assumption).

Figure: Illustration of the consequence of a correlation increase
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Extension to non-Gaussian distributions

Important thing: the probabilities of type Pρ(W s
A < PA,W

s
B ≥ PB) decrease with ρ.

It is enough to assume that (W s
A,W

s
B) follows a joint distribution of densitiy fθ with parameter

θ (dependent on the group) such that:
The marginals (at each college) are the same for both groups (i.e., independent of θ)
The family fθ is coherent: the cumulative Fθ(x , y) is increasing in θ for all x , y

Note: if fθ is coherent, then standard correlation coefficients are increasing in θ (Scarsini, 1984).

This assumption is satisfied by natural copulas (gaussian, Archimedean).

This lets the marginal be completely free (no need for Gaussian marginals).
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Conclusion

Differential correlation alone leads to discrimination
=⇒ imposing “fair rankings” (∼ normalization) does not implies fair matchings

Some qualitatively counter-intuitive outcomes:
I Differential correlation has no effect on good students.
I Intermediate students are better off in the low correlation group.
I An increase in the correlation level of one group will benefit good students from both groups.
I At the same time, it will hurt intermediate students of this group and benefit those from the

other group.

Open questions

What is the effect of fixing discrimination? (and how to do it in the first place?)

What happens with a mix of differential variance (i.e., different marginals) and differential
correlation?
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Thank you!

Papers:

Vitalii Emelianov, Nicolas Gast, Krishna P. Gummadi, and Patrick Loiseau.
On Fair Selection in the Presence of Implicit and Differential Variance.

EC ’20 and Artificial Intelligence Journal ’22

Vitalii Emelianov, Nicolas Gast, and Patrick Loiseau.
Fairness in Selection Problems with Strategic Candidates.

EC ’22

Rémi Castera, Patrick Loiseau, and Bary S.R. Pradelski.
Statistical Discrimination in Stable Matchings.

EC ’22

Contact:

patrick.loiseau@inria.fr
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