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Machine learning: intro

• We have some dataset (xi,yi)Ni=1 where xi’s are the input datapoints
and yi the ‘to-predict’ values.

• Our goal is to learn a mapping x → ŷ ≈ y.
• A three-choice menu:
– The parametrisation of the model, i.e. the function ŷ(x|θ) with θ some
parameters.

– Some loss function f(x, y|θ) that measures how close ŷ is to the true value y.
– The learning algorithm, i.e. how we find the θ that minimize the loss.



What we would want
• The standard goal is to find θ∗ given by,

θ∗ = argmin
θ∈Θ

N∑
i=1

f(xi,yi|θ).

• We want our algorithm to:
– Converge to θ∗ with minimal computational resources e.g. few iterations of
an iterative algorithm.

– Robustness: i) to noise, ii) in terms of out of sample performance.
– Preserve the privacy of the individuals whose data we train over. Specific
notion of privacy to be defined later.

– Learn from small datasets.



What we would want
• We will work with variants of gradient descent algorithms:

dθt = ∇f(θt))dt︸ ︷︷ ︸
gradient step

+ ΣdWt︸ ︷︷ ︸
Brownian noise

• Note: the noise can come from the stochastic gradient (SGD) or can be
added into the algorithm.



The setting.

• Notation change: we think of x being the parameters of some model, f
being some loss function of the model output y(x).

• Consider some objective function f of x ∈ Rd. We will work with f being
one of:
– Or µf-strongly convex: (∇f(x)−∇f(x′))T(x− x′) ≥ µf||x− x′||22,
– Or the log-Sobolev inequality holds; i.e. for g : Rn → R with Eν [g2] ≤ ∞,

Eν [g
2 logg2]− Eν [g

2] lnEν [g
2] ≤ 2

α
Eν [||∇g||2]. (1)

– Or we take a quadratic: f(x) = 1
2
xTAx with A ∈ Rm×d. Typically we take A

with some high or low condition number.



i. Convergence speed



The setting.

• We consider two (related) goals:
– the goal being to sample from the invariant measure,

π :=
1

Z
e−f(x)dx, Z :=

∫
e−f(x)d, (2)

– the goal being to find,

x∗ = argmin
x∈X

f(x). (3)

For this talk X is the whole of Rd.

• The relation between these goals: the mode of x ∼ π is x∗.



Background: Langevin dynamics

• Consider the Langevin dynamics for xt ∈ Rd

dxt = −∇f(xt)dt+ σdWt. (4)

• Denote with πt the probability densitity function of xt at time t. These
dynamics satisfy the Fokker-Plank equation,

∂tπt = ∇ · (∇fπt +∇πt). (5)

• Under appropriate assumptions, a stationary measure exists π ∼ e−f(x).
• If f is µf-strongly convex Convergence to optimum x∗,

||xt − x∗||22 ≤ e−µft||x0 − x∗||22 +
dσ2

µf
. (6)

• If α-LSI holds Convergence to the invariant measure π,

KL(πt||π) ≤ e−2αKL(π0||π). (7)



Background: speeding up Langevin
dynamics
A subset of the ideas that have been proposed to speed up convergence to
the optimum or to the invariant measure:
• Precondition the dynamics [Some Remarks on Preconditioning Molecular
Dynamics; H. AlRachid, L. Mones, C. Ortner]

– Let K be a preconditoner,

dxt = −(K∇f)(xt)dt+ (∇ · K)(xt)dt+ σ
√
K(xt)dWt. (8)

– The preconditioner can be taken to be the Hessian of the objective function.
But: how to compute it? Approximations do not always lead to satisfactory
results.



Background: speeding up Langevin
dynamics
A subset of the ideas that have been proposed to speed up convergence to
the optimum or to the invariant measure:
• Precondition with covariance marix [Affine Invariant Interacting Langevin
Dynamics for Bayesian Inference A. Garbuno-Inigo, N. Nüsken, S. Reich]
[Interacting Langevin Diffusions: Gradient Structure And Ensemble Kalman
Sampler, A. Garbuno-Inigo, F. Hoffmann, W. Li and A. M. Stuart]:

dxit = −C(x)∇f(xi)dt+ (∇ · C)(x)dt+
√

2C(x)dWt, (9)

where

C(x) =
1

N

N∑
k=1

(xk − x̄)⊗ (xk − x̄), (10)

where x̄ = 1
N

∑N
i=1 x

i.



Background: speeding up Langevin
dynamics
A subset of the ideas that have been proposed to speed up convergence to
the optimum or to the invariant measure:
• Optimal drift [Optimal non-reversible linear drift for the convergence to
equilibrium of a diffusion; T. Lelievre, F. Nier G.A. Pavliotis] [Optimal
non-symmetric Fokker-Planck equation for the convergence to a given
equilibrium, A. Arnold and B. Signarello] [Optimal linear drift for the speed of
convergence of an hypoelliptic diffusion A. Guillin, P. Monmarché] [Variance
reduction using nonreversible Langevin samplers AB Duncan, T Lelievre, GA
Pavliotis] :

dxt = −∇f(xt)dt+ J∇f(xt)dt+ σdWt. (11)

• The dynamics are non-reversible (generator is not self adjoint).
• The convergence speed / asymptotic variance can be improved with
the right choice of J.



Background: speeding up Langevin
dynamics
A subset of the ideas that have been proposed to speed up convergence to
the optimum or to the invariant measure:

• N copies of optimal drift dynamics [Accelerating the diffusion-based
ensemble sampling by non-reversible dynamics, F. Futami, I. Sato, M.
Sugiyama],

dxit = −∇f(xit)dt+ Ji∇f(xit)dt+ σidWi
t. (12)

• These dynamics do not seem faster than the single-particle dynamics...



Our prior work

This work considers fi = ∇f, quadratic interaction, σdWi
t noise and shows

how the spectrum of the interaction matrix can be used to optimize the
convergence of the interacting dynamics - we will discuss more about this.



Our idea: the dynamics considered.

• A general form of the dynamics:

dxit = fi(x
i
t))dt︸ ︷︷ ︸

local dynamics

+

N∑
j=1

ϕ(xit, x
j
t)dt︸ ︷︷ ︸

interaction with other agents

+ ΣidWi
t︸ ︷︷ ︸

Brownian noise

(13)

• Here we will consider a specific form:
– Local dynamics: −∇f(xit) (a gradient over f),
– Interaction is quadratic and interactin strentgh is governed by θ:

θAij(x
i
t − xjt),

– Noise: σdWi
t, σ ∈ R.

• This leads to

dxit = −∇f(xit)dt+ θ

N∑
j=1

Aij(x
j
t − xit)dt+ σdBi

t. (14)



On to the results.
• Remember our dynamics,

dxit = −∇f(xit)dt+
N∑
j=1

Aij(x
i
t − xjt)dt+ σidWi

t. (15)

• In vectorized form we write,

dxt = −∇f(x)dt+ Lxtdt+ σdWt, (16)

where∇f(x) = [∇f(x1), ...,∇f(xN)]T and where L = L⊗ 1 with L the
graph Laplacian of A.



Convergence speed

• Note that the invariant measure of the particle system is given by,

π(dx) =
1

ZN
exp

(
− 2

σ2

(
1

2
xTLx+

N∑
i=1

f(xi)

))
dx =:

1

ZN
exp(−W(x)).

• It is not the same as our original π ∼ e−f.
• In the case of optimization, we care about the mode of this distribution.

Lemma (Interaction preserves the minimum)
Let x∗ := argminx f(x), and let W(x) be as above. Then

x∗ = (x∗T, . . . , x∗T)
T
is a minimizer of W(x).

Proof.
Follows from interaction term vanishing at consensus.



Convergence speed

• Background: if the logarithmic Sobolev inequality holds, exponential
convergence to the invariant measure in e.g. KL-divergence holds with
speed governed by LSI constant (in our notation α).

• Spectral gap is the smallest eigenvalue of the generator other than
zero. If generator has a spectral gap, then the dynamics can satisfy LSI
or Poincare.

• What is the spectrum of our system?

• Consider the quadratic system with f(x) = xTAx where
A = diag([A, ...,A]).



Convergence speed

Lemma (Spectrum for a quadratic potential)
Assume that f(x) = xTAx, where A ∈ RdN. Let the spectrum of A be given by
λA
1 ≤ ... ≤ λA

k . Denote withA the generator of our interacting dynamics. Then,
the spectrum ofA can be related to the spectrum of the drift as follows:

σ(A) =

{ r∑
j=1

−njλA
j ,nj ⊂ N

}
. (17)

• From this result, we are thus interested in the eigenvalues of A+ L,
and specifically if L can improve the spectral gap (thus improving
convergence speed).

• When is minσ(A+ L) ≥ minσ(A) = minσ(A)?
• A result based on [Eigenvalues of sums of Hermitian matrices, W.
Fulton]

λ2(B+ L) ≥ λ1(B) + λ2(L). (18)



Convergence speed: numerics

• Consider f(x) = xTAx or for all particles f(x) = xTAx.

• Consider A with different condition numbers.

• Consider L to be 0 (i.i.d.), a circle graph (each xi is connected to xi+1

and a fully-connected graph.

• We make the distinction between graph Laplacian L being doubly
stochastic (all rows and columns sum to one) and non-doubly
stochastic.



Convergence speed: numerics

Figure 1: The quadratic setting with condition number 10; N = 10 and λ2 is 1 and
0.049, respectively. (T) uses an interaction strength of 100, while (B) uses 1.
Interactions help and a fully-connected graph is slightly better



Convergence speed: numerics

Figure 2: The quadratic setting with condition number 1 and interaction strength
10, (T)N = 2with λ2 is 1 and 1 and (B)N = 50with λ2 is 1 and 0.002, respectively.



Convergence speed: numerics

Figure 3: The quadratic setting with condition number 1, a non-doubly stochastic
graph Laplacian and interaction strength 10, (T) N = 2 with λ2 is 1 and 1 and (B)
N = 50 with λ2 is 50 and 0.004, respectively.



ii. Robustness to noise



Our prior work

These works consider fi = ∇f, quadratic interaction, σdWi
t noise and

shows variance reduction effects of interactions for the general mirror
descent setup - we will discuss more about this.



Variance reduction
• We have already seen it a bit in the last numerics, but it seems like the
spread of the parameter values is decreased with interactions.

• Can we make this precise?

Background:

• noise in the algorithm can come from e.g. gradient subsampling or
corruptions in the graph communication structure.

• To reduce the effect of noise, in practice one can decrease the learning
rate over time.

• What if we do not want to decrease the learning rate? Interactions can
help.



Variance reduction
• Let f be a µf-strongly convex function. Define x̃it = xit − 1

N

∑N
i=1 x

i
t (a

fluctuation term). Then we have,

1

T

∫ T

0

E[(f(xit)− f(x∗))]dt ≤ 1

2T
||x0 − xT||22 +

σ2

2N

+

∫ T

0

L
µT

E
[
||x̃it||∗

]
dt+

∫ T

0

2L
µNT

N∑
i=1

E
[
||x̃it||∗

]
dt.



Variance reduction
• How do we derive this? Define xNt = 1

N

∑N
i=1 x

i
t. Observe that∫ T

0

(f(xit)− f(x∗))dt =
∫ T

0

(f(xNt )− f(x∗))dt+
∫ T

0

(f(xit)− f(xNt ))dt

≤
∫ T

0

(f(xNt )− f(x∗))dt+
∫ T

0

L||xit − yNt ||dt

• Bound the first term by a Lyapunov argument and note that the second
term is the fluctuation.



Variance reduction
• 1

2T ||x0 − xT||22: the standard optimization error giving linear in time
convergence mirror map also appears here, so its choice can influence
the convergence speed,

• σ2

2N : variance is decreased by a factor of N;

•
∫ T
0

L
µTE

[
||x̃it||∗

]
and

∫ T
0

2L
µNT

∑N
i=1 E

[
||x̃it||∗

]
dtmeasure deviation from

the particle average.

• If, fluctuation term x̃it is bounded and non-increasing with N, variance
is reduced!



Variance reduction: Bounding the
fluctuation term
• Luckily, fluctuation is bounded under certain assumptions.

• We have, for a µf-strongly convex function f,

E

[
1

N

N∑
i=1

||x̃it||2∗

]
≤ e−θ(µf+λ)tC+

dK
θ(µf + λ)

σ2N− 1

N
.

• For a sufficiently large θ(κ+ λ) the interaction is controlled.

• Strong convexity µf plays a role.

• Interaction strength θ plays a role.

• Connectivity of the particles plays a role through λ.



Numerics for variance reduction
• Consider again our quadratic function.

• Consider,

f(x) =
1

m

m∑
i=1

fi(x) :=
1

m

m∑
i=1

||Wi,·x− bi||22. (19)

• In every iteration, the gradient is computed over a subset of the data,
fS(x) = 1

|S|
∑

i∈S fi(X), where |S| refers to the size of the batch.
• The noise is thus implicit in the gradient∇fS .



Numerics for variance reduction

Figure 4: The loss function (L) and the histogram (R) for ISMD with different
batch sizes with κ(W) = 200. Using interacting particles allows to use a smaller
batch size while still attaining convergence. The presented results are averaged
over 10 runs.



iii. Robustness in terms of
generalisation.



Nonconvex case
• So far we have seen some benefits of interactions in the convex case.
What about the nonconvex setting?

Background:

• In deep learning a common goal is to achieve good out-of-sample
performance, i.e. to have our model configuration generalize well to
unseen data.

• Remember: a neural network loss surface is very nonconvex (saddle
points, local minima, sharp minima, flat minima).



More on robustness.
• x∗ minimises the train loss i.e. on the train dataset the performance
will be good.

• But what about the test loss i.e. the performance on unseen data?
• A classical example [Explaining and harnessing adversarial examples,
I.J. Goodfellow et al.]:

• The model does not generalize to unseen data.



Nonconvex case
• Generalization can be related to ‘robustness’ to changes in the dataset.
• The intuition goes that [Flat minima S Hochreiter, J Schmidhuber] flat
minima generalize better since these can handle more perturbations in
data without affecting performance.

Figure 5: Picture from [On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima, N.S. Keskar, D. Mudigere, J. Nocedal, M.
Smelyanskiy, P. Tak, P. Tang]



Nonconvex case: toy example

• Consider the Müller-Brown (MB) objective function,

f(x,y) =
4∑

i=1

Ai exp(ai(x− x̄i)
2 + bi(x− x̄i)(y− ȳi) + ci(y− ȳi)

2).

• It has several saddle points and local minima.

• Deep learning: flat minima are good. Can interaction help?



Nonconvex case: toy example

Figure 6: Starting from a saddle point with 10 particles using interacting SGD
with a low and high interaction strength in a no-noise setting. Interactions seem
to help converge to flatter minima!



Nonconvex case: neural nets
• But the benefit is not that clear in neural networks...
• We distinguish two different configurations:
– Deep neural networks: are considered to be more nonconvex
– Wide neural networks: are considered to be more convex

• Note: EASGD is elastic averaging SGD [Deep learning with Elastic
Averaging SGD, S. Zhang, A. E. Choromanska, Y. LeCun]

• FC is fully connected graph; 2B is a 2-Barbell graph

10 nodes/layer 100 nodes/layer

method train test method train test

i.i.d. 0.153 0.753 i.i.d. 0.044 0.748

ISGD FC 0.113 0.686 ISGD FC 0.039 0.710

ISGD 2B 0.123 0.684 ISGD 2B 0.039 0.704

EASGD 0.273 0.618 EASGD 0.117 0.623

• To be continued...



iv. Privacy risks



On the privacy

• Remember: we train our models over potentially sensitive datasets.

• Issue: There exist ‘attacks’ that can extract sensitive information from
parameters or gradients.

• How? some attacker is able to get his hands on some parameters or
gradients from the model and she performs some kind of computation
to extract private information from this.

• The literature on such attacks is huge [Do Gradient Inversion Attacks
Make Federated Learning Unsafe?, Ali Hatamizadeh et al.], [Inverting
gradients–how easy is it to break privacy in federated learning, J. Geiping et
al.], [Quantifying and Localizing Private Information Leakage from Neural
Network Gradients, Fan Mo, et al.] and very many more.



Attacks.
• How does such an attack work? Suppose the attacker obtains
gradients.
1. Randomly initialize dummy data
2. Feed into the neural network model to get dummy gradients
3. Optimize dummy data such that dummy gradient is close to real gradient

(obtained from other devices).
• From: [Quantifying and Localizing Private Information Leakage from
Neural Network Gradients, Fan Mo, et al.]:



Attacks.
• How does such an attack work? Suppose we share gradients.
1. Randomly initialize dummy data
2. Feed into the neural network model to get dummy gradients
3. Optimize dymmy data such that dummy gradient is close to real gradient

(obtained from other devices).
• From: [Inverting gradients–how easy is it to break privacy in federated
learning, J. Geiping et al.]



The algorithm here

• Stochastic gradient descent can be related to the Langevin dynamics
(the continuous-time limit):

dxt = −∇f(xt)dt+Σ(xt)dWt. (20)

• Of interest is to understand the privacy risk of these dynamics.



How do we measure privacy?

• So how can we measure if a model is privacy-proof or not?

• One way of measuring the extent to which a learning algorithm
preserves privacy is differential privacy.

• Informally:
– Consider a dataset over which we compute a loss function f(x)
– Consider a second dataset which is almost identical to the first but one
datapoint differs f′(x)

– Differential privacy means: if we optimize the parameters over the two
datasets, the parameter distribution should be indistinguishable.



A formal definition
• The classic definition of differential privacy is based on a worst-case
privacy guarantee:

Definition ((ϵ, δ)-differential privacy Dwork (2014))
Consider two adjacent datasets D,D′ ∈ Dn. The randomized estimator
ν : Dn → P(X ) is said to be (ϵ, δ)-differentially private if for all
measurable sets A ∈ X and for all adjacent datasets D,D′ it holds,

ν(A) ≤ exp(ϵ)ν′(A) + δ. (21)

with ν, ν′ are computed D,D′, respectively.



An alternative formulation
• Consider a measure ν = p(x)dx computed over dataset D, and
similarly p′(x) computed over dataset D′.

• An alternative formulation: (ϵ, δ)-differential privacy is satisfied if,

ν

(
ln

p(x)
p′(x)

≥ ϵ

)
≤ δ, (22)

for every adjacent pair of datasets D,D′.



How to compute this? One option.

• Of interest is thus the quantity ln p(x)
p′(x) .

• Let the measure ν ∈ P(Rd) satistfy a log Sobolev inequality with
constant α. Then we have the following concentration inequality:

ν (F ≥ r+ Eν [F]) ≤ exp

(
− αr2

2 ∥F∥2Lip

)
(23)

for any Lipschitz F where ||F||Lip denotes the Lipschitz constant of F.
• For F = ln p(x)

p′(x) this directly implies (for the right choice of ϵ and δ):

ν

(
ln

p(x)
p′(x)

≥ ϵ

)
≤ δ. (24)

• It thus requries a bound on the KL-divergence:

Eν

[
ln p(x)

p′(x)

]
= KL(p||p′).



Prior work: Gibbs distribution privacy risk

• Typically, the assumption is made that the noise covariance is isotropic
Σ(xt) = σId.

• Prior work [Differential privacy without sensitivity, Minami et al.]
considers two Gibbs distributions,

p(x) =
1

Z
e−

1
2σ2 f(x), (25)

p′(x) =
1

Z′ e
− 1

2σ2 f
′(x), (26)

• Suppose that f is L-Lipschitz in the data so that |∇f(x)| ≤ L. Assume
also that ν := pt(x)dx satisfies the log-Sobolev inequality with
constant α. Then,

KL(p|p′) ≤ 2L2

ασ4
. (27)

The (ϵ, δ)-differential privacy guarantee is then given for an r such that,

r+
2L2

ασ4
≤ ϵ, exp

(
− r2σ4

2αL2

)
≤ δ, (28)



Prior work
• Using a derivation similar to the work [Differential privacy dynamics
of langevin diffusion and noisy gradient descent, Shokri et al.] one cna
show that the privacy risk is bounded as follows,

d
dt
KL(pt||p′

t) ≤ σ−1||(∇f′(x)−∇f(x))||22.

• This only holds for isotropic noise.



Langevin dynamics with anisotropic noise

• Our work:

d
dt
KL(pt||p′

t) ≤
∥∥∥Σ−1/2(∇f′(x)−∇f(x))

∥∥∥2
2
. (29)

• Why is this of interest? The impact of anisotropic noise on the privacy
risks is made explicit.

• It can further show the impact of the objective function structures.



v. Learn from small datasets.



The challenges that arise: dataset size

• Deep neural networks are able to achieve excellent performance when
trained on big datasets, even if the input data size is very large (e.g.
28× 28 pixels for the MNIST dataset).

• System constraints such as on-device computing or simply the fact that
large datasets are not always available has led to a renewed interest in
learning over small datasets.

• How to choose the datapoints optimally?



Our prior work



The method
• We consider the goal of learning a function representation f̂ from
datapoints (xi, f(xi))Ni=1.

• In one dimension: we use the curvature to determine good points.
• In two dimensions: we exploit literature on mesh optimization from
computer graphics:
– This method defines a triangulation: a mesh that ‘covers’ a surface using
simplices.

– It assumes an initial triangulation is given which consists of an arbitrary
number of vertices.

– The algorithm simplifies this triangulation to obtain a triangulation with a
given number of vertices.

– It does so by iteratively contracting sets of vertices if the cost associated to
their contraction (i.e. how much accuracy is lost by removing one of the
vertices in the approximated surface) is not too high.



Some results
• We consider a modified version of the Rastrigin function

f(x) = −25e−
∥x∥2
1.5 − 10e

∥x∥2
0.5 + 10d+

d∑
i=1

−10 cos(2πxi). (30)

• We present the results for N = 12, d = 1 and a neural network
architecture of width=23 and nr of layers=2 trained with Adam.



Some results
• We consider a modified version of the Rastrigin function

f(x) = −25e−
∥x∥2
1.5 − 10e

∥x∥2
0.5 + 10d+

d∑
i=1

−10 cos(2πxi). (31)

• Here we show the results for different number of datapoints and
model architectures:



THE END!
• Directions of interest in the theory:
– Robustness of machine learning algorithms,
– Better understanding deep neural networks and the optimisation
algorithms’ performance there,

– Defining privacy-preserving algorithms to safeguard sensitive data over
which models are trained.

• I didn’t mention the applications of interest but some current lines of
work:
– Smart cities: optimize logistics or mobility flows in cities.
– Deep brain stimulation: analyse data from the brain to understand how to
stimulate the brain to help patients with Parkinson.

– Robotics and optimal control: we apply neural networks to learn the
‘optimal control’.


