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My plan

Cournot’s principle and its 2 natural developments:
p-values (standard) and e-values.
Two versions of confidence regions: based on p-values
and based on e-values.
Applying both versions to multiple hypothesis testing:
controlling the number of true discoveries

under arbitrary dependence between the base p- or
e-values,
under independence (or sequential dependence).
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Cournot’s principle and its variants

Augustin Cournot’s bridge between probability theory and the
world: if a given event has a small probability, we do not expect
it to happen.

Cournot’s principle is the basis of the classical approach to
statistics (testing statistical hypotheses and confidence
regions).
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Testing a probability measure Q

The most basic way: choose a critical region A with
probability Q(A) ≤ α, α (the size) being a small positive
number; reject Q after observing an outcome ω ∈ A.
A disadvantage of this way of testing is that it is binary:
either we completely reject the null hypothesis or we find
no evidence whatsoever against it. Two ways to graduate
the notion of a critical region: using p-values and using
e-values.
A p-variable for testing Q is a nonnegative random variable
P such that, for any α ∈ (0,1), Q(P ≤ α) ≤ α.
An e-variable for testing Q is a nonnegative extended
random variable E such that EQ(E) ≤ 1. (Example:
likelihood ratio dQ′/dQ; Bayesian flavour.)
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Embedding

We can embed basic testing into both p-testing and e-testing:
namely, to each critical region A corresponds the p-variable

P(ω) :=

{
α if ω ∈ A
1 if not

and e-variable

E(ω) :=

{
1/α if ω ∈ A
0 if not,

where α is the size of the critical region A. These two random
variables carry the same information as A.
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An advantage of e-values

e-Values (=values taken by e-variables) can be merged
simply by averaging them (“multiple testing of a single
hypothesis”).
Averaging dominates (in a natural sense) any other
symmetric way of merging e-values (V. & Ruodu Wang,
2021).
This will show in testing multiple hypotheses: procedures
for controlling the numbers of false (or true) discoveries
based on e-values look more efficient.
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Conventional thresholds for p-values

Observing a small p-value or a large e-value provide
evidence against Q.
For p-values, the standard thresholds are 1% and 5%, and
they go back to Fisher.
If p ≤ 0.05, the evidence against the null hypothesis is
significant.
If p ≤ 0.01, the evidence is highly significant.
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Conventional thresholds for e-values

For e-values, this is Jeffreys’s (1961 book, Appendix B)
proposal (e-variables are likelihood ratios, i.e., Bayes factors for
simple statistical hypotheses):

If the e-value e is below 1, the null hypothesis is supported.
If e ∈ (1,

√
10) ≈ (1,3.16), the evidence against the null

hypothesis is not worth more than a bare mention.
If e ∈ (

√
10,10) ≈ (3.16,10), the evidence is substantial.

If e ∈ (10,103/2) ≈ (10,31.6), the evidence is strong.
If e ∈ (103/2,100) ≈ (31.6,100), the evidence is very
strong.
If e > 100, the evidence is decisive.
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Jeffreys’s correspondence

“Users of these tests speak of the 5 per cent. point in much
the same way as I should speak of the K = 10−1/2 point,
and of the 1 per cent. point as I should speak of the
K = 10−1 point.”
In our terminology, people doing p-testing speak of a
p-value of 5% (resp. 1%) in much the same way as Jeffreys
should speak of an e-value of 101/2 (resp. 10).
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Different versions

Confidence regions were introduced by Neyman (1934)
only in their basic version.
The p-version is usually implicit, and the e-version may
have been introduced only by Glenn Shafer in his 2021
RSS discussion paper.
Suppose we only know that the true probability measure
Q ∈ Q for some Q ⊆ P(Ω) (Q is our statistical model on
the sample space Ω).
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Basic tests

A basic test of size α is a family of critical regions
(AQ | Q ∈ Q) of size α.
A symmetric interpretation of a basic test is that ω ∈ AQ
means poor agreement between Q and ω.
This binary relation of poor agreement and its
complementary relation of good agreement have two
sides:

on the testing side, we start from Q and divide the ωs into
those that conform to Q (ω /∈ AQ) and those that do not
(ω ∈ AQ); the latter are strange;
on the estimation side, we start from ω and divide the Qs
into those that agree with ω (ω /∈ AQ) and those that do not
(ω ∈ AQ).
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Parameters

We are often interested in a parameter θ, which is a
function of Q: θ := Θ(Q) for some function Θ on Q (e.g.,
Θ : Q → Rd ).
Suppose we want a confidence region for θ.
(In our applications, Θ is often chosen post hoc; Cournot’s
principle only requires that the test be chosen in advance.)
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Basic confidence regions

On the estimation side we have the notion of a confidence
estimator as introduced by Neyman:

Γ(ω) := {Θ(Q) | Q ∈ Q, ω /∈ AQ}.

Our interpretation of the confidence region Γ(ω) is that
Γ(ω) covers the true θ = Θ(Q) unless ω is strange.
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p-Tests and confidence regions

A p-test is a family of p-variables (PQ | Q ∈ Q), and the
corresponding p-confidence regions are defined as

Γ(ω) := {Θ(Q) | Q ∈ Q,PQ(ω) > α}, α ∈ (0,1).

We regard PQ(ω) as a measure of agreement between Q
and ω, with small values indicating poor agreement, and
define Γ(ω) to be the set of Θ(Q) for Q that agree with ω at
level α.
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e-Tests and confidence regions

Similarly, an e-test is a family of e-variables (EQ | Q ∈ Q).
We also regard EQ(ω) as a measure of agreement
between Q and ω, but now large values indicate poor
agreement.
We define the e-confidence regions as

Γ(ω) := {Θ(Q) | Q ∈ Q,EQ(ω) < α}, α ∈ (0,∞).
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Setting (for e-values, for concreteness)

Let us specialize our setting. Now we take Q := P(Ω).
Suppose that we are given K e-variables E1, . . . ,EK for
testing composite hypotheses H1, . . . ,HK (our base
hypotheses); we would like to reject some of them.
Being an e-variable for H means being an e-variable for
any Q ∈ H. [This is where e-variables diverge from Bayes
factors.]
The realized values of E1, . . . ,EK are denoted by
e1, . . . ,eK : so that ek := Ek (ω) for the realized outcome ω.
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Rejection sets

If we do not know anything about the nature of the
hypotheses H1, . . . ,HK , it makes sense to reject a number
of them with the largest ek .
But in general, we can consider an arbitrary non-empty
rejection set R ⊆ {1, . . . ,K}; this is the set of base
hypotheses (represented by their indices) that the
researcher chooses to reject.
For example, R may include hypotheses connected by a
common theme (such as all relevant genes related to the
gastrointestinal tract in a medical application).
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True and false discoveries (1)

For each Q ∈ P(Ω), we define

IQ := {k ∈ {1, . . . ,K} | Q ∈ Hk}

to be the set of indices of hypotheses containing Q.
If the researcher rejects Hk , this is a discovery.
The discovery is true if Q /∈ Hk and false if Q ∈ Hk , where
Q is the true (unknown) probability measure governing the
data generation.
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True and false discoveries (2)

For a rejection set R, the number of true discoveries is

|R \ IQ| = |{k ∈ R | Q /∈ Hk}| ,

and the number of false discoveries is

|R ∩ IQ| = |{k ∈ R | Q ∈ Hk}| .

The sum of these two numbers is |R| (the total number of
discoveries), and so controlling the number of false
discoveries is the same thing as controlling the number of
true discoveries.
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True and false discoveries (3)

Researchers are sometimes interested in the proportion of
true or false discoveries |R \ IQ| / |R| or |R ∩ IQ| / |R|,
respectively.
The researcher may be interested in other parameters θ
(e.g., θ may be the weighted number of true discoveries in
R: e.g., some genes can be more important than other
genes). These are processed in the same way.
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Merging e-values

For e-confidence regions, we need an e-test (EQ)Q∈P(Ω).
For each k ∈ IQ, Ek is an e-variable for testing Q. We will
obtain EQ by merging (Ek )k∈IQ .
An e-merging function is a Borel function
F : ∪∞

n=0[0,∞]n → [0,∞] that is increasing in each of its
arguments and maps any finite sequence of e-variables to
an e-variable: if E1, . . . ,En are e-variables, F (E1, . . . ,En) is
required to be an e-variable as well. (We always set F := 1
if the input sequence is empty.)
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Symmetric merging functions

An e-merging function is symmetric if it does not depend
on the order of its arguments. An example (essentially
dominating any symmetric merging function) is

(e1, . . . ,en) 7→
1
n

n∑
i=1

ei .

Let F be a symmetric e-merging function. The e-test

EQ := F (Ek : k ∈ IQ)

uniquely determines e-confidence regions.
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Confidence regions for the number of true discoveries

We will use the arithmetic-mean e-test

EQ :=
1
|IQ|

∑
k∈IQ

Ek .

Once we have the e-test and the parameter |R \ IQ|
(number of true discoveries), we have the e-confidence
region for each significance level α, as defined earlier.
This definition is essentially the translation of Genovese
and Wasserman’s (2004) and Goeman and Solari’s (2011)
into the language of e-values.
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Optimal rejection sets

Let us now consider a family of rejection sets R that are
chosen in an optimal way. For each r ∈ {1, . . . ,K}, the set

Rr := {K − r + 1, . . . ,K}

is the optimal rejection set of size r (assuming the e-values
are sorted in the ascending order), meaning that Rr leads
to smaller (in the sense of ⊆) confidence regions than any
other rejection set R ⊆ {1, . . . ,K} of size r .
In the terminology of statistical decision theory, Rr is a
complete class of rejection sets.
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Discovery e-matrices

The confidence regions for Rr can be visualized as a
discovery e-matrix (pictures will follow momentarily).
It can be computed very efficiently. It takes time O(K ) to
compute one row of the arithmetic-mean discovery
e-matrix (exact under free combinations, perhaps
conservative in general).
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Simulation study

Let us compute the arithmetic-mean discovery matrix for
K = 200: we generate 100 observations from N(−3,1)
and then 100 from N(0,1) (independently, but this is not
known).
The base e-values are the likelihood ratios

E(x) :=
dN(−3,1)
dN(0,1)

(x)

of the alternative to the null N(0,1), where x ∼ N(µ,1) is
the corresponding observation.
The base p-values are computed from E as the test
statistic (Neyman–Pearson).
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Discovery matrices Dr ,j (based on p-values, hommel,
vs e-values)
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Rows: r ; columns: j , the number of true discoveries.
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Interpretation

The interesting colour codes are from black (decisive) to
yellow (substantial) on Jeffreys’s scale and red (highly
significant) to yellow (significant) on Fisher’s scale.
The black colour means that those cells cannot be the
numbers of true discoveries at level 100; we have decisive
evidence that the number of true discoveries in covered by
another colour.
Dark red: those cells cannot be the numbers of true
discoveries at level 103/2; we have very strong evidence
that the number of true discoveries is light red, yellow, or
green.
Et cetera.
Comparison is informal, but for the e-values the picture
looks better.

Vladimir Vovk Applications of e-values to multiple hypothesis testing 30



Testing and confidence regions
Controlling true discoveries (in general)

Controlling true discoveries (under independence)

True and false discoveries
Discovery e-matrices in a simple experiment
Discovery p-matrices in another simple experiment

Hommel p-merging function and its admissible
modification

The p-merging function used in the previous picture is
(Hommel, 1983)

(p1, . . . ,pK ) 7→ ℓK

K∧
k=1

K
k

p(k)

(truncated at 1), where ℓK :=
∑K

k=1 k−1 (not needed under
independence (Simes, 1986)).
It is not admissible (V., Wang, Wang, 2022) and dominated
by the “grid harmonic p-merging function”.

Vladimir Vovk Applications of e-values to multiple hypothesis testing 31



Testing and confidence regions
Controlling true discoveries (in general)

Controlling true discoveries (under independence)

True and false discoveries
Discovery e-matrices in a simple experiment
Discovery p-matrices in another simple experiment

Another toy example

Next slide: the upper left corners of size 120 × 120 of the
discovery p-matrices for p-variables P1, . . . ,P1000 with the
first 100 observations coming from the alternative
distribution N(−4,1) and the remaining 900 from the null
distribution N(0,1).
The correlation is 0.9 for all pairs of observations, except
for the last one (−0.9 with the rest, to violate MTP2).
Improvement is not as impressive as when moving to
e-values (unless high correlation), but more tangible (direct
comparability).
In fact, I will show the median over 10 simulations (to
reduce noise).
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Discovery p-matrix with Hommel and grid-harmonic
merging

0 20 40 60 80 100

0

20

40

60

80

100

Hommel

0 20 40 60 80 100

0

20

40

60

80

100

grid harmonic

Vladimir Vovk Applications of e-values to multiple hypothesis testing 33



Testing and confidence regions
Controlling true discoveries (in general)

Controlling true discoveries (under independence)

Merging e-values under independence (ie-merging)
Turning e-values into p-values

Plan

1 Testing and confidence regions

2 Controlling true discoveries (in general)

3 Controlling true discoveries (under independence)

Vladimir Vovk Applications of e-values to multiple hypothesis testing 34



Testing and confidence regions
Controlling true discoveries (in general)

Controlling true discoveries (under independence)

Merging e-values under independence (ie-merging)
Turning e-values into p-values

Merging e-values under independence
Under independence, it’s obvious that the product of
e-variables is again an e-variable
(EQ(E1E2) = EQ(E1)EQ(E2) ≤ 1).
Taking the product e1 . . . eK is too radical! (Destroyed by a
single small e-value.)
Instead we use the U-statistic

Un(e1, . . . ,eK ) :=
1(K
n

) ∑
{k1,...,kn}⊆{1,...,K}

ek1 . . . ekn ,

for a small n (such as 2). (Or their convex mixture.)
This class includes product (for n = K ), arithmetic average
(for n = 1), and constant 1 (for n = 0).
The U-statistics and their convex mixtures are admissible
ie-merging functions.
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Not using (n = 1) vs using (n = 2) independence for
e-values
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Another picture

The setting: testing 200 hypotheses, as before.
Now we extend Fisher’s scale: yellow is significant (5%),
red is highly significant (1%), dark red (0.5%), and black
(0.1%).
The e-values can be transformed into p-values (p := 1 ∨ 1

e
by Markov’s inequality; this is the best way) and vice versa
(lots of ways that are not comparable). Atrocious round-trip
efficiency.
Now the comparison will be less informal.
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p-Values: Simes vs transformed U2
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Thank you for your attention!
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