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My plan

@ Cournot’s principle and its 2 natural developments:
p-values (standard) and e-values.

@ Two versions of confidence regions: based on p-values
and based on e-values.

@ Applying both versions to multiple hypothesis testing:
controlling the number of true discoveries

e under arbitrary dependence between the base p- or
e-values,
e under independence (or sequential dependence).
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Cournot’s principle and its variants

Augustin Cournot’s bridge between probability theory and the
world: if a given event has a small probability, we do not expect
it to happen.

Cournot's principle

librati
p-values |<"""""C [e-values

Cournot’s principle is the basis of the classical approach to
statistics (testing statistical hypotheses and confidence
regions).
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Testing a probability measure Q

@ The most basic way: choose a critical region A with
probability Q(A) < a, « (the size) being a small positive
number; reject Q after observing an outcome w € A.

@ A disadvantage of this way of testing is that it is binary:
either we completely reject the null hypothesis or we find
no evidence whatsoever against it. Two ways to graduate
the notion of a critical region: using p-values and using
e-values.

@ A p-variable for testing Q is a nonnegative random variable
P such that, for any « € (0,1), Q(P < ) < a.
@ An e-variable for testing Q is a nonnegative extended

random variable E such that Eq(E) < 1. (Example:
likelihood ratio dQ’'/dQ; Bayesian flavour.)
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Embedding

We can embed basic testing into both p-testing and e-testing:
namely, to each critical region A corresponds the p-variable

P(w) = Q !f weEA
1 if not
and e-variable
E(w) = 1/a !fweA
0 if not,

where « is the size of the critical region A. These two random
variables carry the same information as A.
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An advantage of e-values

@ e-Values (=values taken by e-variables) can be merged
simply by averaging them (“multiple testing of a single
hypothesis”).

@ Averaging dominates (in a natural sense) any other
symmetric way of merging e-values (V. & Ruodu Wang,
2021).

@ This will show in testing multiple hypotheses: procedures
for controlling the numbers of false (or true) discoveries
based on e-values look more efficient.
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Conventional thresholds for p-values

@ Observing a small p-value or a large e-value provide
evidence against Q.

@ For p-values, the standard thresholds are 1% and 5%, and
they go back to Fisher.

@ If p < 0.05, the evidence against the null hypothesis is
significant.

@ If p < 0.01, the evidence is highly significant.
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Conventional thresholds for e-values

For e-values, this is Jeffreys’s (1961 book, Appendix B)
proposal (e-variables are likelihood ratios, i.e., Bayes factors for
simple statistical hypotheses):

If the e-value e is below 1, the null hypothesis is supported.

If e c (1,v/10) =~ (1,3.16), the evidence against the null
hypothesis is not worth more than a bare mention.

If e € (v10,10) ~ (3.16, 10), the evidence is substantial.
If e € (10,10%/2) ~ (10, 31.6), the evidence is strong.

If e € (10%/2,100) ~ (31.6,100), the evidence is very
strong.

If e > 100, the evidence is decisive.
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Jeffreys’s correspondence

@ “Users of these tests speak of the 5 per cent. point in much
the same way as | should speak of the K = 10~'/2 point,
and of the 1 per cent. point as | should speak of the
K = 10" point.”

@ In our terminology, people doing p-testing speak of a
p-value of 5% (resp. 1%) in much the same way as Jeffreys
should speak of an e-value of 10'/2 (resp. 10).
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Different versions

@ Confidence regions were introduced by Neyman (1934)
only in their basic version.

@ The p-version is usually implicit, and the e-version may
have been introduced only by Glenn Shafer in his 2021
RSS discussion paper.

@ Suppose we only know that the true probability measure

Q € Q for some Q C PB(Q) (Q is our statistical model on
the sample space Q).
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Basic tests

@ A basic test of size « is a family of critical regions
(Aq | Q € Q) of size .

@ A symmetric interpretation of a basic test is that w € Ag
means poor agreement between Q and w.

@ This binary relation of poor agreement and its
complementary relation of good agreement have two
sides:

e on the testing side, we start from Q and divide the ws into
those that conform to Q (w ¢ Ag) and those that do not
(w € Aq); the latter are strange;

@ on the estimation side, we start from w and divide the Qs
into those that agree with w (w ¢ Ag) and those that do not
(w € Ag).
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Parameters

@ We are often interested in a parameter 4, which is a
function of Q: 6 := ©(Q) for some function © on Q (e.g.,
©0:90— Rd).

@ Suppose we want a confidence region for 6.

@ (In our applications, © is often chosen post hoc; Cournot’s
principle only requires that the test be chosen in advance.)
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Basic confidence regions

@ On the estimation side we have the notion of a confidence
estimator as introduced by Neyman:

Nw):={6(Q)| Qe Q,w ¢ Aq}.

@ Our interpretation of the confidence region I'(w) is that
I'(w) covers the true § = ©(Q) unless w is strange.
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p-Tests and confidence regions

@ A p-testis a family of p-variables (Pq | Q € Q), and the
corresponding p-confidence regions are defined as

MNw) ={0(Q)| Qe 9, Pg(w) >a}, «ec(0,1).

@ We regard Pgp(w) as a measure of agreement between Q
and w, with small values indicating poor agreement, and
define I'(w) to be the set of ©(Q) for Q that agree with w at
level a.
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e-Tests and confidence regions

@ Similarly, an e-test is a family of e-variables (Eg | Q € Q).

@ We also regard Eg(w) as a measure of agreement
between Q and w, but now large values indicate poor
agreement.

@ We define the e-confidence regions as

MNw):={0(Q) | Qe Q,Eqg(w) < a}, ae(0,00).
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Setting (for e-values, for concreteness)

@ Let us specialize our setting. Now we take Q := PB(Q).

@ Suppose that we are given K e-variables Ej, ..., Ex for
testing composite hypotheses Hs, ..., Hk (our base
hypotheses); we would like to reject some of them.

@ Being an e-variable for H means being an e-variable for
any Q € H. [This is where e-variables diverge from Bayes
factors.]

@ The realized values of E4, ..., Ex are denoted by
eq,...,ek: sothat e, .= Ex(w) for the realized outcome w.
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Rejection sets

@ If we do not know anything about the nature of the
hypotheses H;, ..., Hk, it makes sense to reject a number
of them with the largest e.

@ But in general, we can consider an arbitrary non-empty
rejection set R C {1,..., K}; this is the set of base
hypotheses (represented by their indices) that the
researcher chooses to reject.

@ For example, R may include hypotheses connected by a
common theme (such as all relevant genes related to the
gastrointestinal tract in a medical application).
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True and false discoveries (1)

@ For each Q € P(Q2), we define
lg =4{ke{l,....,K} | Qe H}

to be the set of indices of hypotheses containing Q.
@ If the researcher rejects Hy, this is a discovery.

@ The discovery is true if Q ¢ Hy and false if Q € Hk, where
Q is the true (unknown) probability measure governing the
data generation.
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True and false discoveries (2)

@ For a rejection set R, the number of true discoveries is
IR\ lol={k € R| Q¢ Hy}|.
and the number of false discoveries is
IRNlgl ={k € R| Q€ Hk}l.

@ The sum of these two numbers is |R| (the total number of
discoveries), and so controlling the number of false
discoveries is the same thing as controlling the number of
true discoveries.
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True and false discoveries (3)

@ Researchers are sometimes interested in the proportion of
true or false discoveries |R\ Ig| /|R| or |[RNlg| /R,
respectively.

@ The researcher may be interested in other parameters 6
(e.g., # may be the weighted number of true discoveries in
R: e.g., some genes can be more important than other
genes). These are processed in the same way.
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Merging e-values

@ For e-confidence regions, we need an e-test (Eq)ocy(q)-

@ For each k € Iq, E is an e-variable for testing Q. We will
obtain Eq by merging (Ex)kel,-

@ An e-merging function is a Borel function
F U2 ,[0,00]" — [0, oc] that is increasing in each of its
arguments and maps any finite sequence of e-variables to
an e-variable: if Eq, ..., E, are e-variables, F(Eq,...,Ey)is
required to be an e-variable as well. (We always set F := 1
if the input sequence is empty.)
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Symmetric merging functions

@ An e-merging function is symmetric if it does not depend
on the order of its arguments. An example (essentially
dominating any symmetric merging function) is

1 n
(e1,...,en)HnZ;e,.
P

@ Let F be a symmetric e-merging function. The e-test
EQ = F(Ek ke IQ)

uniquely determines e-confidence regions.
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Confidence regions for the number of true discoveries

@ We will use the arithmetic-mean e-test

@ Once we have the e-test and the parameter |R \ Iq|
(number of true discoveries), we have the e-confidence
region for each significance level «, as defined earlier.

@ This definition is essentially the translation of Genovese
and Wasserman’s (2004) and Goeman and Solari’s (2011)
into the language of e-values.
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Optimal rejection sets

@ Let us now consider a family of rejection sets R that are
chosen in an optimal way. For each r € {1,..., K}, the set

R ={K-r+1,....K}

is the optimal rejection set of size r (assuming the e-values
are sorted in the ascending order), meaning that R, leads
to smaller (in the sense of C) confidence regions than any
other rejection set R C {1,...,K} of size r.

@ In the terminology of statistical decision theory, R, is a
complete class of rejection sets.
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Discovery e-matrices

@ The confidence regions for R, can be visualized as a
discovery e-matrix (pictures will follow momentarily).

@ It can be computed very efficiently. It takes time O(K) to
compute one row of the arithmetic-mean discovery
e-matrix (exact under free combinations, perhaps
conservative in general).
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Simulation study

@ Let us compute the arithmetic-mean discovery matrix for
K = 200: we generate 100 observations from N(—3, 1)
and then 100 from N(0, 1) (independently, but this is not
known).

@ The base e-values are the likelihood ratios

_dN(-3,1)
E(x):= W(x)

of the alternative to the null N(0, 1), where x ~ N(u, 1) is
the corresponding observation.

@ The base p-values are computed from E as the test
statistic (Neyman—Pearson).
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Discovery matrices D, ; (based on p-values, hommel,
Vs e-values)

20
40
60
80
100
120
140
160
180

0 20 40 60 80 100120140160180 0 20 40 60 80 100120140160180

Rows: r; columns: j, the number of true discoveries.
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Interpretation

@ The interesting colour codes are from black (decisive) to
yellow (substantial) on Jeffreys’s scale and red (highly
significant) to yellow (significant) on Fisher’s scale.

@ The black colour means that those cells cannot be the
numbers of true discoveries at level 100; we have decisive
evidence that the number of true discoveries in covered by
another colour.

@ Dark red: those cells cannot be the numbers of true
discoveries at level 10%/2; we have very strong evidence
that the number of true discoveries is light red, yellow, or
green.

@ Et cetera.

@ Comparison is informal, but for the e-values the picture
looks better.
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Hommel p-merging function and its admissible
modification

@ The p-merging function used in the previous picture is
(Hommel, 1983)

K

K
(p1,-- -, Pk) '_>£Kk/_\1 %P

(truncated at 1), where (x = Zf:1 k—' (not needed under
independence (Simes, 1986)).

@ lItis not admissible (V., Wang, Wang, 2022) and dominated
by the “grid harmonic p-merging function”.
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Another toy example

@ Next slide: the upper left corners of size 120 x 120 of the
discovery p-matrices for p-variables P4, ..., Piggo With the
first 100 observations coming from the alternative
distribution N(—4,1) and the remaining 900 from the null
distribution N(0, 1).

@ The correlation is 0.9 for all pairs of observations, except
for the last one (—0.9 with the rest, to violate MTPy).

@ Improvement is not as impressive as when moving to
e-values (unless high correlation), but more tangible (direct
comparability).

@ In fact, | will show the median over 10 simulations (to
reduce noise).
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Discovery p-matrix with Hommel and grid-harmonic
merging

Hommel grid harmonic
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e Controlling true discoveries (under independence)
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Merging e-values under independence

@ Under independence, it's obvious that the product of
e-variables is again an e-variable
(Eq(E1E2) = Eq(E1)Eq(E2) < 1).

@ Taking the product ey ... ek is too radical! (Destroyed by a
single small e-value.)

@ Instead we use the U-statistic

’
Un(er, ..., ek) = — > €k, - - - Eky»
(n) (koo ky 1o k)

for a small n (such as 2). (Or their convex mixture.)

@ This class includes product (for n = K), arithmetic average
(for n = 1), and constant 1 (for n = 0).

@ The U-statistics and their convex mixtures are admissible
ie-merging functions.
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Not using (n = 1) vs using (n = 2) independence for
e-values

20
40
60
80
100
120
140
160
180

20 40 60 80 100120140160 180 20 40 60 80 100120140160 180
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Another picture

@ The setting: testing 200 hypotheses, as before.

@ Now we extend Fisher’s scale: yellow is significant (5%),
red is highly significant (1%), dark red (0.5%), and black
(0.1%).

@ The e-values can be transformed into p-values (p:=1V ]—9
by Markov’s inequality; this is the best way) and vice versa
(lots of ways that are not comparable). Atrocious round-trip
efficiency.

@ Now the comparison will be less informal.
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p-Values: Simes vs transformed U>

20
40
60
80
100
120
140
160
180

20 40 60 80 100120140160 180 20 40 60 80 100120140160 180
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Thank you for your attention!
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