From Interventions to Causality using Over-Parameterized Neural Networks

Caroline Uhler (MIT & Broad Institute)

Need for causal representation learning

Huge amounts of unlabeled data of many different modalities

Representation learning allows integrating different modalities and extracting latent structures that capture intrinsic behavior without labeled data

Need for causal representation learning

Huge amounts of unlabeled data of many different modalities

Representation learning allows integrating different modalities and extracting latent structures that capture intrinsic behavior without labeled data

Understanding the underlying mechanisms / causal relationships is critical in biomedical sciences

Need for causal representation learning

Huge amounts of unlabeled data of many different modalities

Representation learning allows integrating different modalities and extracting latent structures that capture intrinsic behavior without labeled data

Understanding the underlying mechanisms / causal relationships is critical in biomedical sciences

We need a theory of causal representation learning! Perturbations (CRISPR, drugs, ...) represent unique

opportunity!

Gene regulation and structural equation models

Ex: Gene regulatory network for pregastrular Sewell Wright developed the foundation of endomesoderm specification in sea urchins causal inference by studying heredity frizzled LiCl-GSK-3 Maternal Inputs Mat G-cadherin Sire Mat cß 1). Mat Notch nβ-TCF ECNS Nucl. frizzled GSK-3 ECNS LICI frizzled la lb Blimp1/Krox RhoA GSK-3⊦ unkn mes/end rep nβ-TCF unkn vegetal activ nβ-TCI Ubiqh SU(H) Pmar1 R of mic SoxB1 Wnt8 Su(H):NIC Hnf 6 la 1b Blimp1/Kro βαOtx by G Ubiq Krl Eve Ubiq Notch Hnf 6 PMC la 1b Blimp1/Krox unkn mes activ R of mi FoxA GataF Chance Ubiq Endoderm Gcm unkn mes activ TBr Hox11/13b Ftsl Ubig GataC (oral) 1 GataE Alx1 r7 r11 Delta Krl Brn1/2/4 FoxB Dri Snail -H а n Gcm (abo Alx1 FoxA FoxB VEGFR VEGF Eve Hox11/13b Mesoderm Not Endomesoderm Vea1 Endo Skel Endo Sm50 Msp130 Msp-L SuTx CAPK Dpt Pks OrCT Kakapo OrCT Kakapo CyP FvMo1,2,3 Decorin Dam Eric H. Davidson, 2006 Sewell Wright, 1920

Causal structural equation models:

- Represent causal relations by directed network
- Each node associated with random variable, stochasticity introduced by independent noise variables ϵ_i

 $egin{aligned} X_1 &\leftarrow f_1(X_3,\epsilon_1) \ X_2 &\leftarrow f_2(X_1,\epsilon_2) \ X_3 &\leftarrow f_3(\epsilon_3) \ X_4 &\leftarrow f_4(X_2,X_3,\epsilon_4) \end{aligned}$

Learning causal networks from observational data has long history starting with work by Spirtes in 1990s

These algorithms assume faithfulness, i.e., that causal effects cannot cancel each other out

Learning causal networks from observational data has long history starting with work by Spirtes in 1990s

These algorithms assume faithfulness, i.e., that causal effects cannot cancel each other out

Proportion of unfaithful distributions

Problem:

Faithfulness violations are frequent when sample size n isn't infinite

Learning network on 100 nodes requires >>10^100 samples

Uhler et al., Ann. Statist., 2013; Raskutti & Uhler, Stat, 2018

Learning causal networks from observational data has long history starting with work by Spirtes in 1990s

These algorithms assume faithfulness, i.e., that causal effects cannot cancel each other out

Problem: Faithfulness violations are frequent when sample size n isn't infinite

Learning network on 100 nodes requires >>10^100 samples

Uhler et al., Ann. Statist., 2013; Raskutti & Uhler, Stat, 2018

High-throughput perturbational data is available!

Learning causal networks from observational data has long history starting with work by *Peter Spirtes* in 1990s

These algorithms assume faithfulness, i.e., that causal effects cannot cancel each other out

Expected neighborhood size

Proportion of unfaithful distributions

1.0 0.9

0.8

0.7 0.6

0.5 0.4

0.3

0.2

0.1

Problem: Faithfulness violations are frequent when sample size n isn't infinite

Learning network on 100 nodes requires >>10^100 samples

Uhler et al., Ann. Statist., 2013; Raskutti & Uhler, Stat, 2018

High-throughput perturbational data is available!

- Building on Frederick Eberhardt's formalism, we developed first provably consistent algorithm for inferring causal network from observational & interventional data
- Scales to graphs with 1000s of nodes

24 nodes, 15,000 samples

Wang et al., NeurIPS 2017; Yang et al., ICML 2018; Squires, et al. UAI 2020

Causal imputation problems in single-cell biology

Causal transportability: Bareinboim, Pearl Synthetic control / interventions: Abadie, Agarwal, Shah, Shen

Idea 1: Causal inference by predicting interventions

Judea Pearl's causal hierarchy

J. Pearl, The Book of Why, 2018

Causal imputation

We are great at solving prediction problems:

Availability of interventional data allows us to turn causal questions into (causal) prediction problems!

Causal imputation problems in single-cell biology

Over-parameterized neural networks

Over-parameterized neural networks

Autoencoder:

Over-parameterized neural networks:

- Deep neural networks can generalize while interpolating the training data Belkin et al., PNAS 2019
- Infinitely wide neural networks converge to the neural tangent kernel Jacot et al., NeurIPS 2018
 6.5088 Modern Machine Learning: Simple Methods that Work (mit.edu)
- Neural tangent kernel with specific activation function is Bayes optimal for classification
 MS92, Wed 2.45-3pm: Radhakrishnan, Belkin & Uhler, arXiv:2204.14126

Inductive bias of over-parameterized autoencoders

Radhakrishnan, Belkin & Uhler, PNAS 2020

- Deep over-parameterized CNNs can interpolate training data even with random labels (*Arpit et al. ICML 17; Zhang et al. ICLR 17*)
- There are many ways to interpolate training data
- Over-parameterized autoencoders learn maps that are contractive at training examples

Causal imputation problems in single-cell biology

Idea 2: Multi-modal learning to discover causal feature

Representation learning as a tool for causal feature discovery by learning integrated latent spaces:

Causal features should be invariant to modality in which they are measured!

Invariant prediction for causal inference: Peters, Buehlmann, Meinshausen Invariant risk minimization: Arjovsky, Bottou, Gulrajani, Lopez-Paz Causal feature learning: Chalupka, Perona, Eberhardt Disentanglement: Schoelkopf, Bengio,...

Idea 3: Over-parameterization to align causal effects

Latent spaces that align causal effects

Idea 3: Over-parameterization to align causal effects

Latent spaces that align causal effects

Over-parameterized neural nets

 Over-parameterized autoencoders: interpolate, generalize, and align drug signatures across cell types!

Belyaeva et al., Nat Comm 2021

Over-parameterized autoencoders provide more "space" to align causal effects:

We need to study their inductive biases and the interplay with causality!

Idea 4: Matrix completion using neural tangent kernel

Idea 4: Matrix completion using neural tangent kernel

Idea 4: Matrix completion using neural tangent kernel

CMap (Full Dataset) CMap (Sparse Regime)

Evaluation Metric*	Mean Over Cell Type (Naïve Baseline)	FaLRTC (Llu et al. 2013)	DNPP (Hodos et al. 2018)	NTK (Ours)
Pearson r	0.374 ± 0.0004	0.545 ± 0.0003	0.556 ± 0.0003	0.572 ± 0.0002
Mean R ²	0.134 ± 10^(-5)	0.286 ± 0.0003	0.296 ± 0.0004	0.320 ± 0.0002
Mean Cosine Similarity	0.371 ± 10^(-5)	0.536 ± 0.0004	0.541 ± 0.0004	0.554 ± 0.0002

Evaluation Metric*	Mean Over Cell Type (Naïve Baseline)	FaLRTC (Liu et al. 2013)	DNPP (Hodos et al. 2018)	NTK (Ours)
Pearson r	0.450	0.544	0.538	0.573
Mean R ²	0.197	0.285	0.278	0.324
Mean Cosine Similarity	0.448	0.536	0.532	0.565

Radhakrishnan et al., PNAS 2022

Target identification in the context of COVID-19

Transport effect of perturbations from CMap to SARS-CoV-2 infected A549 cells and find drug that is most anticorrelated with disease signature

Causal structure discovery to identify putative causal drug targets:

Summary and outlook

- Developed a theoretical and algorithmic framework for integrating and translating between observational and interventional data
- Autoencoders are not only extremely useful for data integration and translation, but also for studying the theoretical properties of neural networks
- Over-parameterization leads to remarkable self-regularization properties and computational gains
- If we are able to predict the effect of unseen perturbations, we can build active framework for optimal intervention design to induce desired distribution shift

Acknowledgments

PhD students:

- Louis Cammarata
- Parmida Davarmanesh
- Daniel Paysan
- Adityanarayanan Radhakrishnan
- Chandler Squires
- Yitong Tseo
- Karren Yang
- Jiaqi Zhang
- Xinyi Zhang

MSc/undergraduate students

- Cathy Cai
- Emily Liu
- Max Ruiz Luyten
- Nten Nyiam
- Ishika Shah

Postdocs:

- Salil Bhate
- Wengong Jin
- Neriman Tokcan

Collaborators: Misha Belkin (UCSD) GV Shivashankar (ETH Zurich)

Funding:

ERIC AND WENDY SCHMIDT CENTER

AT BROAD INSTITUTE

