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Gene regulation and structural equation models

Eric H. Davidson, 2006

Ex: Gene regulatory network for pregastrular
endomesoderm specification in sea urchins

Sewell Wright, 1920

Sewell Wright developed the foundation of 
causal inference by studying heredity

Causal structural equation models:

- Represent causal relations by directed network

- Each node associated with random variable, stochasticity 
introduced by independent noise variables
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Problem:
Faithfulness 

violations are 
frequent when 

sample size n isn’t 
infinite

Learning causal networks from observational 
data has long history starting with work by 

Peter Spirtes in 1990s

Uhler et al., Ann. Statist., 2013; Raskutti & Uhler, Stat, 2018

Learning network on 100 nodes requires 
>>10^100 samples

These algorithms assume faithfulness, i.e., that 
causal effects cannot cancel each other out

Gene 1 Gene 2

Gene 3

n=100
n=10,000
n=1,000,000

Dixit et al, 
Cell, 2016

High-throughput perturbational data is available!

24 nodes, 15,000 samples

Perturb-seq

• Building on Frederick Eberhardt’s formalism, 
we developed first provably consistent 
algorithm for inferring causal network from 
observational & interventional data

• Scales to graphs with 1000s of nodes

10-node graphs

Wang et al., NeurIPS 2017;
Yang et al., ICML 2018;
Squires, et al. UAI 2020



Causal imputation problems in single-cell biology

Expression in 
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control
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control
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Causal transportability: Bareinboim, Pearl
Synthetic control / interventions: Abadie, Agarwal, Shah, Shen



J. Pearl, The Book of Why, 2018

Judea Pearl’s causal hierarchy

Availability of interventional data 
allows us to turn causal questions into 

(causal) prediction problems!

Causal imputation

CMap: 1.2mio samples 
(1000-dim expression 
vectors), 10,000s of 
perturbations  (knockouts, 
overexpression, small 
molecules), 10s-100s of 
contexts

We are great at solving prediction problems:

Idea 1: Causal inference by predicting interventions
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Over-parameterized neural networks

Discriminative
modeling:

Generative
modeling:

Autoencoder:

Over-parameterized neural networks:

MS92, Wed 2.45-3pm: Radhakrishnan, Belkin & Uhler, arXiv:2204.14126

• Deep neural networks can generalize while 
interpolating the training data

• Infinitely wide neural networks converge to 
the neural tangent kernel 

• Neural tangent kernel with specific activation 
function is Bayes optimal for classification

Belkin et al., PNAS 2019

Jacot et al., NeurIPS 2018
6.S088 Modern Machine Learning: Simple Methods that Work (mit.edu)

https://web.mit.edu/modernml/course/


Inductive bias of over-parameterized autoencoders

• Deep over-parameterized CNNs can 
interpolate training data even with 
random labels (Arpit et al. ICML 17; 
Zhang et al. ICLR 17)

• There are many ways to interpolate 
training data

• Over-parameterized autoencoders
learn maps that are contractive at 
training examples

Radhakrishnan, Belkin & Uhler, PNAS 2020
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Idea 2: Multi-modal learning to discover causal feature

Representation learning as a tool for causal feature discovery
by learning integrated latent spaces:

Causal features should be invariant to modality in which they are measured!

Yang et al., Nat Comm 2021

Invariant prediction for causal inference: Peters, Buehlmann, Meinshausen Causal feature learning: Chalupka, 
Invariant risk minimization: Arjovsky, Bottou, Gulrajani, Lopez-Paz Perona, Eberhardt

Disentanglement: Schoelkopf, Bengio,… 

Radhakrishnan et al., bioRxiv
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Latent spaces that align causal effects
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Idea 3: Over-parameterization to align causal effects

Latent spaces that align causal effects

Good 
alignment

Over-parameterized autoencoders provide more “space” 
to align causal effects:

We need to study their inductive biases and the interplay with causality!

Over-parameterized neural nets

Word2Vec analogy

 Over-parameterized 
autoencoders: interpolate, 
generalize, and align drug 
signatures across cell types!

Perfect 
reconstruction

Belyaeva et al., Nat Comm 2021



Idea 4: Matrix completion using neural tangent kernel
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approaches won’t 
work!

Radhakrishnan et al., PNAS 2022
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Target identification in the context of COVID-19

SARS-CoV-2 
disease 
signature

Transport effect of 
perturbations from 

CMap to SARS-CoV-2 
infected A549 cells and 
find drug that is most 

anticorrelated with 
disease signature Predicted drug effects

Belyaeva et al., Nat Comm, 2021

CMap

Causal structure discovery to identify putative causal drug targets:



CAUSALITY

GENERATIVE 
MODELING

DRUG 
DISCOVERY

GENE 
REGULATION

 Developed a theoretical and algorithmic framework for integrating and translating 
between observational and interventional data

 Autoencoders are not only extremely useful for data integration and translation, but also 
for studying the theoretical properties of neural networks

 Over-parameterization leads to remarkable self-regularization properties and 
computational gains

 If we are able to predict the effect of unseen perturbations, we can build active 
framework for optimal intervention design to induce desired distribution shift 

Summary and outlook

Zhang et al., NeurIPS 2021 & arXiv:2209.04744
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