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Need for causal representation learning

Huge amounts of unlabeled data of many
different modalities

Representation learning allows integrating
different modalities and extracting latent
structures that capture intrinsic behavior

without labeled data
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T We need a theory of
Causal causal representation
Inference } learning!
k Perturbations
(CRISPR, drugs, ...)
[Representation} represent unique
Iearning\ opportunity!




Gene regulation and structural equation models

Ex: Gene regulatory network for pregastrular Sewell Wright developed the foundation of
endomesoderm specification in sea urchins causal inference by studying heredity
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Eric H. Davidson, 2006

Sewell Wright, 1920

Causal structural equation models: @

- Represent causal relations by directed network @ @

- Each node associated with random variable, stochasticity \ /
introduced by independent noise variables ¢;

X1+ (X3, €1)
Xo + (X1, €2)
X3 < f3(€3)

(

X4 < ffl— X2:X3:€4)



Learning causal networks from observational
data has long history starting with work by
Spirtes in 1990s

These algorithms assume faithfulness, i.e., that
causal effects cannot cancel each other out
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Learning causal networks from observational High-throughput perturbational data is available!
data has long history starting with work by
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High-throughput perturbational data is available!

() Pooled CRISPR screens | (2) Single cell RNA-Seq of
barcoded droplets

(3) Next-Gen sequencing of library

% ~4: | Perturb-seq
e

== Dixit et al,
o~ Cell, 2016

* Building on Frederick Eberhardt’s formalism,

we developed first provably consistent
algorithm for inferring causal network from
observational & interventional data

*  Scales to graphs with 1000s of nodes

24 nodes, 15,000 samples
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Expression in Expression in

Fontext 1 c.ontext 2 Single-cell Single-cell
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Causal transportability: Bareinboim, Pearl
Synthetic control / interventions: Abadie, Agarwal, Shah, Shen




ldea 1: Causal inference by predicting interventions

Judea Pearl’s causal hierarchy Causal imputation

20000 £

CMap: 1.2mio samples
(1000-dim expression
vectors), 10,000s of
perturbations (knockouts,
overexpression, small
molecules), 10s-100s of

= contexts
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(3. COUNTERFACTUALS 15000

ACTIVITY:  Imagining, Retrospection, Understanding

QUESTIONS:  What if 1 had done ...? Why?
(Was it X that caused Y? What if X had not
occurred? What if I had acted differently?)

»
>

EXAMPLES:  Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if T had not smoked for the J

last 2 years?

10000

Perturbation IDs

2. INTERVENTION

ACTIVITY:  Doing, Intervening

‘ i
| iimlu i

QUESTIONS:  What if 1do ...2 Hon?
(What would Y be if T do X?
A How can I make Y happen?)

EXAMPLES:  If T take aspirin, will my headache be cured?
What if we ban cigarettes?

NIRgy

1. ASSOCIATION ] " cetrpes
ACTIVITY:  Secing, Observing We are great at solving prediction problems:

QUESTIONS:  What if 1 see...2
(How are the variables related?
How would seeing X change my belief in Y?)

EXAMPLES:  What does a symptom tell me about a disease? Ava i I a bi I ity Of i nte rve nt i o n a I d ata

What does a survey tell us about the

B N allows us to turn causal questions into
(causal) prediction problems!

J. Pearl, The Book of Why, 2018
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Discriminative
modeling:

Generative
modeling:

Autoencoder:

Encoder Latent space

Decoder

Sanchez-Lengeling et al., Science 361, 360-365 (2018)
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Discriminative
modeling:

Generative
modeling:

&
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Autoencoder:

3 E Encoder Latent space Decoder

Sanchez-Lengeling et al., Science 361, 360-365 (2018)

Over-parameterized neural networks:

* Deep neural networks can generalize while
interpolating the training data Bseikin et al., PNAS 2019

* Infinitely wide neural networks converge to

the neural tangent kernel Jacot et al., NeurlPS 2018
6.5088 Modern Machine Learning: Simple Methods that Work (mit.edu)

* Neural tangent kernel with specific activation

function is Bayes optimal for classification
MS92, Wed 2.45-3pm: Radhakrishnan, Belkin & Uhler, arXiv:2204.14126


https://web.mit.edu/modernml/course/

Vi

| | |
W/

Deep over-parameterized CNNs can
interpolate training data even with
random labels (Arpit et al. ICML 17;
Zhang et al. ICLR 17)

There are many ways to interpolate
training data

Over-parameterized autoencoders
learn maps that are contractive at
training examples

Radhakrishnan, Belkin & Uhler, PNAS 2020
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Real RNA-seq
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Radhakrishnan et al., bioRxiv

Yang et al., Nat Comm 2021

Representation learning as a tool for causal feature discovery

Causal features should be invariant to modality in which they are measured!

by learning integrated latent spaces:

Invariant prediction for causal inference: Peters, Buehimann, Meinshausen Causal feature learning: Chalupka,

Invariant risk minimization: Arjovsky, Bottou, Gulrajani, Lopez-Paz

Perona, Eberhardt
Disentanglement: Schoelkopf, Bengio,...



Latent spaces that align causal effects

Treated cell
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Belyaeva et al., Nat Comm 2021

Latent spaces that align causal effects Over-parameterized neural nets
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to align causal effects:

Over-parameterized autoencoders provide more “space”

We need to study their inductive biases and the interplay with causality!




Perturbation IDs

Predict the effect of a
new perturbation /
context combination?

Standard low-rank
matrix completion
approaches won’t
work!
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Radhakrishnan et al., PNAS 2022



Perturbation IDs
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Predict the effect of a

new perturbation /

context combination?

Standard low-rank
matrix completion
approaches won’t
work!
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We built an NTK framework for matrix completion that
can make use of feature priors on rows and columns
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: : Application Specific Feature-Prior Space
Drug

Application

Feature-Prior

Movie Rating Prediction

Embedding of User & Mavie

Drug Imputation

Embedding of Drug

Image Inpainting/Reconstruction

Embedding of Image Coordinates

Radhakrishnan et al., PNAS 2022
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ldea 4: Matrix completion using neural tangent kernel
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Perturbation IDs

Predict the effect of a
new perturbation /
context combination?

Standard low-rank
- matrix completion
approaches won’t
work!

We built an NTK framework for matrix completion that
can make use of feature priors on rows and columns
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Cell Types Corrupted Image Image Inpainting/Reconstruction | Embedding of Image Coordinates Reconstructed Image
CMap CMap
(Full Dataset) (Sparse Regime)

Evaluation Mean Over Cell Type FaLRTC DNPP NTK Evaluation Mean Over Cell Type FaLRTC DNPP NTK

Metric™ (Malve Baseline) (Llu etal. 2013) | (Hodos et al. 2018) (Ours) Metric* [Maive Baseline) (Liu et al. 2013) | (Hodos et al. 2018) (Ours)
Pearson r 0.374 £ 0.0004 0.545 + 0.0003 0.556 + 0.0003 0.572 + 0.0002 Pearson r 0.450 0.544 0.538 0.573
Mean R? 0.134 £ 10"(-5) 0.286 + 0.0003 0.296 + 0.0004 0.320 % 0.0002 Mean R? 0.197 0.285 0.278 0.32a

Mean Cosine Mean Cosine

s 0.371+ 10"(-5) 0.536 + 0.0004 0.541 + 0.0004 0.554 + 0.0002 . 0.448 0.536 0.532 0.565

Similarity Similarity

*Higher is better, with a maximum of 1.

Radhakrishnan et al., PNAS 2022




Transport effect of
: SARS-CoV-2
perturbations from di
ISease
CMap to SARS-CoV-2 signature
infected A549 cells and

find drug that is most - -

anticorrelated with </\\>
disease signature Predicted drug effects
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Belyaeva et al., Nat Comm, 2021



GENE

CALSALITY REGULATION
GENERATIVE DRUG
MODELING DISCOVERY

Developed a theoretical and algorithmic framework for integrating and translating
between observational and interventional data

Autoencoders are not only extremely useful for data integration and translation, but also
for studying the theoretical properties of neural networks

Over-parameterization leads to remarkable self-regularization properties and
computational gains

If we are able to predict the effect of unseen perturbations, we can build active
framework for optimal intervention design to induce desired distribution shift
Zhang et al., NeurlPS 2021 & arXiv:2209.04744
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