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INTRODUCTION: PROBLEM SETUP

> Given:
> Domain S = [0, 1].
> Input/predictor process X(t), t € S.
> Output/response Y € R.

> Functional linear model:
V= [ X(O8 () de e = (X, BYias) + ¢
S

> Here, € is an exogenous additive noise such that
E[e|X] = 0 and E[¢?] = o2.



INTRODUCTION: PROBLEM SETUP

> Functional single-index model:

Y=g (/S X(t)p"(1) df) +e=g ((X,8)2s) +e (1)

for some function g : R — R.

> The parameter 8* is called the index and the function g the
link function.

> When g(a) = a, the single-index model in (1) becomes the
functional linear model.



INTRODUCTION: PROBLEM SETUP

> Given n observations {(Xj, Yi)}1<i<n that are independent
and identically distributed copies of (X, Y), we study how to
estimate the index parameter 5* in (1).

> Estimation procedure is agnostic to the specification of the
link function - interaction between the allowed class of link
functions and the distribution of the covariate X becomes
crucial.

> Throughout, we assume that X is a zero-mean Gaussian
process.



INTRODUCTION: RELATED WORK

> Yuan and Cai (2010), and Cai and Yuan (2012) considered an
RKHS approach for linear setting. They assumed the truth
lies inside the RKHS. Avoids restrictive eigen-gap assumptions
made in prior FPCA-based works.

> Muller and Stadmuller (2005) proposed and analyzed an
MLE-based approach for generalized functional linear models
(special cases of single-index models) and established
consistency results.

> Shang and Cheng (2015) considered an RKHS approach for
the generalized functional linear models and established
inferential results when the truth is in RKHS.

> The above works require knowledge of the link function g to
estimate the index parameter.



INTRODUCTION: METHODOLOGICAL CONTRIBUTIONS

> We provide a unified framework for estimating the index for
both the linear and single-index models, for a wide class of
unknown link functions.

> Specifically, we illustrate that the standard functional linear
RKHS least-squares estimator also provides an efficient
estimator of the index parameter in the single-index model
under the Gaussian process assumption.

> Justification based on infinite-dimensional analogues of
Gaussian Stein's identity.

> Naturally handles mis-specification with respect to the link
function for both the linear and single-index models.



INTRODUCTION: THEORETICAL CONTRIBUTIONS

> Rates of estimating the index depends on
> Integral operator T associated to the RKHS

> Covariance operator C of the Gaussian process X.

> Compared to previous works, we provide results without:
> Restrictive commutativity assumptions on T and C.

> [3* being inside the RKHS under consideration.



Methodology



METHODOLOGY

> Infinite-dimensional extensions of Gaussian Stein’s identity:

For a zero-mean Gaussian random element X in a separable
Hilbert space with covariance operator C, and for smooth
enough real-valued functions f, we have

E[Xf(X)] = CE[Vf(X)],

where V is the Fréchet derivative.



METHODOLOGY

> In our context, by leveraging the version of Stein's identity for
Hilbert-valued random vectors, we have

E[YX] =E[Vg ((8,X))] = Jg,-C5",

where V is the Fréchet derivative.



METHODOLOGY

> g g+ is a constant depending on the link function g and the
index 5*.

> The exact form of the constant is irrelevant for our purpose as
we focus on estimating the direction of the index parameter.

> We assume that g is such that 9, g« # 0 throughout the rest
of the paper.

> In particular, when g is the identity function, it is easy to see
that we have ¥z g« = 1.

> We define 3* := g 3+3", to handle the single-index and linear
model in a unified manner.



METHODOLOGY

> Based on this, note that we have

3* :=arg min E[Y — (X, 2,
5 =arg min E[Y - (X.0)
> Given (X1, Y1),...(Xp, Yn) be ni.id. copies of random
variables (X, Y). For some A > 0, our estimator based on

minimizing the penalized least-squares criterion over the
RKHS H is given by:

B = arg min *Z[Y BXOPE+AIBIG. ()

BeEH



METHODOLOGY

> Let H be an RKHS with the associated kernel k: S xS — R.

> Define 3: H — L%(S), f — f, to be the inclusion operator
mapping functions in the RKHS H to L?(S).

> We use J* : L2(S) — H to refer to the adjoint of J.

> We also define the following two important operators that
arise in our analysis:

T =33 : [3(S) — L%(S),
C =FE[X ® X]: L?(S) = L2(S),

where ® represents the L?(S) tensor product.



METHODOLOGY

> Note that the solution of the above optimization problem is
given by

. 1<
=172 X @ X /
B [J (nz ® >3+/\

i=1

-1

1 n
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METHODOLOGY

> By applying the representer theorem it follows that

Bespan{/k(-,t)x,(t)dt:i:1,...,n},
S

ie, Ja —(al,.. an)’ € R" such that

B=37 Liai fsk( t)X t) dt

> Solving for « yields
a=(K+n\l) 1ty

where

K € R™" with [K]; —// (t,s)Xi(t)X;(t) dt ds

andy = (Y1,..., Y, €R".

> Therefore, 3 can be computed by solving a finite dimensional
linear system of size n, which is not obvious from the previous
expression.



Theory



THEORY

> Let | T-2F*|| < oo, ie., f* € Z(T®) for a € (0,1/2].
> Define

. RY
= (20,5 - x.5) .
> Suppose one of the following conditions hold:

(a) Tr(CY?) < oo and s € (0, 0),
(b) x=0and Tr(C) < cc.



THEORY

The assumption 3* € 2 (T®) imposes certain smoothness
condition on 3*. It is well-known that 3* € H when a = %
which we refer to as the well-specified setting. This
assumption is equivalent to the condition that * lies in an
interpolation space between L2(S) and H with a being the
interpolating index.

While Tr(C) < oo is guaranteed by the well-definedness of the
Gaussian process. The following Theorem requires a slightly
stronger condition given as Tr(C'/?) < co, when 3 # 0.

The parameter s captures the degree~ of non—IineNarity of the
model. Indeed, 5 = 0 implies g((X, 5*)) = (X, 5*) with
probability 1. Conversely, when the model is linear, s = 0.



THEORY

> Define
@ := TCT + X IC(TC+ )T,
Tr(©)
d(\) = )
W= e

== T(TY2CTY2 + M)72T,
N(\) = Tr [( TYV2CTY2 4 AN-LTY2CTY2]
> Let 0 € (0,1/e], n 2 (d(\) Vlog(1/d)) and let

Tr(TH2CTH?) _

- ASITVECT @)




THEORY

> Theorem: With probability at least 1 — 3§, we have

1 3] 5 bias(y) + =) YAND)

)‘HEH% <H T1/2CT1/2H + \/X> H T”%_a|’7—_a/é*" H®” 7—”(9)7

n

where BIas(\) == || T(CT + M)~1CG* — 3.



Commutative Setting



THEORY

> Let | T~2F*|| < oo for a € (0,1/2]. Suppose the operators T
and C commute and have simple eigenvalues (i.e., of
multiplicity one) denoted by u; and &; for i € N, such that,

TS SiT and iTCSEG SIS (5)

where t > 1. Suppose one of the following conditions hold:
(a) € (0,00) and ¢ > 2, (b) ¢ =0 and c > 1.



THEORY

> Theorem: We have that
at
18— Bl Spn~ THEF2O=) (6)
for

t+c
AN=n L+tcr2t(l-a), (7)



THEORY

> When a=1/2, ie., 5* € H (well-specified case), we obtain
~ ~ ot
16— 5| Spn 20Ft+e)

which matches with the minimax optimal rate obtained in
Yuan and Cai (2010), when the model is linear.

> However, the interesting point is that even in the single-index
model setting, we obtain the same rate as obtained for the
linear model (when ¢ > 2) as long as » < cc.

> For the linear model setting, the above result extends the
results of Cai and Yuan (2010), to the misspecified setting,
ie., B* € L2(S)\H

> The requirement of ¢ > 2 ensures that Tr(C'/?) < oo.



Non-commutative Setting



FIRST-SETTING

> Let (¢j)ier denote the eigenvalues of T1/2CT1/2 with
it < ¢ < i~b, for some b > 1.

> Suppose §* € Z (TY2(TY2CTY?)") for v € (0,1] and
n < OQ.

> Theorem: For
___b
A=n I1b+2bv,
we have

N - b
18— Bl Sp - Trb42E0.



FIRST-SETTING

> Unlike in the commutative case, the results are presented in
terms of the eigen decay behavior of T/2CT/2. When T
and C commute, we obtain b=t + c.

> We would like to highlight that to the best of our knowledge,
no result is known in the literature for the estimation error,
i.e., ||B — B*||, in the non-commutative setting, even for linear
models.



FIRST-SETTING

> The assumption §* € Z (TY/?(TY/2CTY?)"), implies
Jh € L2(S) such that

T1/2(T1/2CT1/2)I/h — B*,

which implies §* € Z (T'/?) = H.

> Therefore, the assumption 3* € Z (TY3(TY2CTY2)") is
stronger than assuming * € Z (T'/?).

> The key reason to make this strong assumption is to control
BIAS(A) in a finer manner and obtain meaningful convergence
rates. Indeed, by simply assuming 3* € 2 (T'/?) ensures
BIAS(A) — 0 as A — 0, using which consistency of /3 can be
established, but with no handle on the convergence rate.



SECOND-SETTING

> Let ((j, ¢i) and (ui, ;) for i € N, denote the eigensystems of
TY2CTY2 and T respectively. Suppose

it<Gg<iPand it < <t

for some b, t > 1. Let the eigenfunctions of TY/2CTY2 and
T satisfy
2

sup . D il i) (b1 )| < oo (8)
J

il i




SECOND-SETTING

> Theorem: Assuming 3 < oo and
B* € % (TY?(TY2CTY2)¥) for some v € (0,
have

y o b
15 =57l <p n tbt2by

for

b
\ = n t+b+2bv .

N



THEORY

> For v € (0, % — 55|, the rate in latter Theorem is clearly faster
than that in former Theorem.



Interpreting Range Space Conditions on (3*



RANGE SPACE CONDITIONS

> Proposition: For x,y € [0, 1], suppose that the reproducing
kernel k and the covariance function c are given respectively
by

xy) =Y aigi(x)i(y)s  c(xy) =D bmtbm(x)ibm(x),

i>1 m>1

where a; > 0 for all i, b,, > 0 for all m, 2,21 a; < oo,

> m>1bm < o0 and ()i and (¢)m)m form an orthonormal
basis of L2([0,1]). Define 7j :=>". a,ni where

nij = Zm>1 bmOmiOmj and Omj = (¢m, i), and assume
sup; 7j < 00.



RANGE SPACE CONDITIONS

> Then the following hold:
(i) The RKHS induced by the kernel k is given by

H= f(x):Zﬁ-qS,-(x),xe[O,l]:Zf<oo :

i>1 i

with the associated inner product defined by
<f7g>7'[: ia,'_lfl'gi-



RANGE SPACE CONDITIONS

(i) The space Z(TY?(T'/2CT'/?)) satisfies the inclusion
R(TYXTV2CTY?) cH C H,

where
= {f(x) = Z fidi
RKHS induced by the kernel
= i~1 aiTidi(x)¢i(y) with inner product

> = o1 figi(riar)

oo},



A CONCRETE EXAMPLE

> Suppose ¢;(x) = cos(imx), x € [0,1] and ¥,(+) = cos(wmm-)
where wy,, = am + b for some a, b € R such that w,, ¢ Z and
m e N. Let by, < m~ (149 for some § > 0.

> Then, we have

TWm

Omi = sin(mwm)(—1)".

mlw2, — (im)?
Furthermore,
ey —mi| o+1
ny S (i), (10)
> This implies that 7; < j~™n(®+12) and sup; | 7j| < co. Hence,
the inclusion Z(TY/?(TY2CTY/2)) c # C H, follows, where
‘H consists of functions that are min (1, %) more smoother
than the functions in H.



MORE RESULTS

> In the paper we also provide:

> similar results for prediction.

> several other examples.



Thank you!



