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introduction: problem setup

. Given:

. Domain S = [0, 1].

. Input/predictor process X (t), t ∈ S .

. Output/response Y ∈ R.

. Functional linear model:

Y =

∫
S
X (t)β∗(t) dt + ε = 〈X , β∗〉L2(S) + ε,

. Here, ε is an exogenous additive noise such that
E [ε|X ] = 0 and E[ε2] = σ2.
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introduction: problem setup

. Functional single-index model:

Y = g

(∫
S
X (t)β∗(t) dt

)
+ ε = g

(
〈X , β∗〉L2(S)

)
+ ε, (1)

for some function g : R→ R.

. The parameter β∗ is called the index and the function g the
link function.

. When g(a) = a, the single-index model in (1) becomes the
functional linear model.
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introduction: problem setup

. Given n observations {(Xi ,Yi )}1≤i≤n that are independent
and identically distributed copies of (X ,Y ), we study how to
estimate the index parameter β∗ in (1).

. Estimation procedure is agnostic to the specification of the
link function - interaction between the allowed class of link
functions and the distribution of the covariate X becomes
crucial.

. Throughout, we assume that X is a zero-mean Gaussian
process.
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introduction: related work

. Yuan and Cai (2010), and Cai and Yuan (2012) considered an
RKHS approach for linear setting. They assumed the truth
lies inside the RKHS. Avoids restrictive eigen-gap assumptions
made in prior FPCA-based works.

. Muller and Stadmuller (2005) proposed and analyzed an
MLE-based approach for generalized functional linear models
(special cases of single-index models) and established
consistency results.

. Shang and Cheng (2015) considered an RKHS approach for
the generalized functional linear models and established
inferential results when the truth is in RKHS.

. The above works require knowledge of the link function g to
estimate the index parameter.
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introduction: methodological contributions

. We provide a unified framework for estimating the index for
both the linear and single-index models, for a wide class of
unknown link functions.

. Specifically, we illustrate that the standard functional linear
RKHS least-squares estimator also provides an efficient
estimator of the index parameter in the single-index model
under the Gaussian process assumption.

. Justification based on infinite-dimensional analogues of
Gaussian Stein’s identity.

. Naturally handles mis-specification with respect to the link
function for both the linear and single-index models.
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introduction: theoretical contributions

. Rates of estimating the index depends on

. Integral operator T associated to the RKHS

. Covariance operator C of the Gaussian process X .

. Compared to previous works, we provide results without:

. Restrictive commutativity assumptions on T and C .

. β̃∗ being inside the RKHS under consideration.
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Methodology
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Methodology

. Infinite-dimensional extensions of Gaussian Stein’s identity:

For a zero-mean Gaussian random element X in a separable
Hilbert space with covariance operator C , and for smooth
enough real-valued functions f , we have

E[Xf (X )] = CE[∇f (X )],

where ∇ is the Fréchet derivative.
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Methodology

. In our context, by leveraging the version of Stein’s identity for
Hilbert-valued random vectors, we have

E [YX ] = E [∇g (〈β,X 〉)] = ϑg ,β∗Cβ∗,

where ∇ is the Fréchet derivative.

11 / 39



Methodology

. ϑg ,β∗ is a constant depending on the link function g and the
index β∗.

. The exact form of the constant is irrelevant for our purpose as
we focus on estimating the direction of the index parameter.

. We assume that g is such that ϑg ,β∗ 6= 0 throughout the rest
of the paper.

. In particular, when g is the identity function, it is easy to see
that we have ϑg ,β∗ = 1.

. We define β̃∗ := ϑg ,β∗β∗, to handle the single-index and linear
model in a unified manner.
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Methodology

. Based on this, note that we have

β̃∗ := arg min
β∈L2(S)

E [Y − 〈X , β〉]2 .

. Given (X1,Y1), . . . (Xn,Yn) be n i.i.d. copies of random
variables (X ,Y ). For some λ > 0, our estimator based on
minimizing the penalized least-squares criterion over the
RKHS H is given by:

β̂n,λ = arg min
β∈H

1

n

n∑
i=1

[Yi − 〈β,Xi 〉]2 + λ‖β‖2H. (2)
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Methodology

. Let H be an RKHS with the associated kernel k : S × S → R.

. Define I : H → L2(S), f 7→ f , to be the inclusion operator
mapping functions in the RKHS H to L2(S).

. We use I∗ : L2(S)→ H to refer to the adjoint of I.

. We also define the following two important operators that
arise in our analysis:

T := II∗ : L2(S)→ L2(S),

C := E[X ⊗ X ] : L2(S)→ L2(S),

where ⊗ represents the L2(S) tensor product.
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Methodology

. Note that the solution of the above optimization problem is
given by

β̂n,λ =

[
I∗

(
1

n

n∑
i=1

Xi ⊗ Xi

)
I + λI

]−1
I∗

[
1

n

n∑
i=1

YiXi

]
.
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Methodology

. By applying the representer theorem it follows that

β̂ ∈ span

{∫
S
k(·, t)Xi (t) dt : i = 1, . . . , n

}
,

i.e., ∃α := (α1, . . . , αn)> ∈ Rn such that
β̂ =

∑n
i=1 αi

∫
S k(·, t)Xi (t) dt.

. Solving for α yields

α = (K + nλI )−1y ,

where

K ∈ Rn×n with [K ]ij :=

∫
S

∫
S
k(t, s)Xi (t)Xj(t) dt ds

and y = (Y1, . . . ,Yn)> ∈ Rn.

. Therefore, β̂ can be computed by solving a finite dimensional
linear system of size n, which is not obvious from the previous
expression.
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Theory
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Theory

. Let ‖T−αβ̃∗‖ <∞, i.e., β̃∗ ∈ R (Tα) for α ∈ (0, 1/2].

. Define

κ := E
[(

g(〈X , β̃∗〉)− 〈X , β̃∗〉
)4]

. (3)

. Suppose one of the following conditions hold:

(a) Tr (C 1/2) <∞ and κ ∈ (0,∞),
(b) κ = 0 and Tr (C ) <∞.
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Theory

. The assumption β̃∗ ∈ R (Tα) imposes certain smoothness
condition on β̃∗. It is well-known that β̃∗ ∈ H when α = 1

2 ,
which we refer to as the well-specified setting. This
assumption is equivalent to the condition that β̃∗ lies in an
interpolation space between L2(S) and H with α being the
interpolating index.

. While Tr (C ) <∞ is guaranteed by the well-definedness of the
Gaussian process. The following Theorem requires a slightly
stronger condition given as Tr (C 1/2) <∞, when κ 6= 0.

. The parameter κ captures the degree of non-linearity of the
model. Indeed, κ = 0 implies g(〈X , β̃∗〉) = 〈X , β̃∗〉 with
probability 1. Conversely, when the model is linear, κ = 0.
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Theory

. Define

Θ := Tα(CT + λI )−1C (TC + λI )−1Tα,

d(λ) :=
Tr (Θ)

‖Θ‖
,

Ξ := T (T 1/2CT 1/2 + λI )−2T ,

N(λ) := Tr
[
(T 1/2CT 1/2 + λI )−1T 1/2CT 1/2

]
.

. Let δ ∈ (0, 1/e], n & (d(λ) ∨ log(1/δ)) and let

Tr (T 1/2CT 1/2)

n
. λ . ‖T 1/2CT 1/2‖. (4)
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Theory

. Theorem: With probability at least 1− 3δ, we have

‖β̂ − β̃∗‖ . bias(λ) + ‖Ξ‖
1
4

√
(σ2 +

√
κ)N(λ)

nδ
+

λ‖Ξ‖
1
4

(∥∥∥T 1/2CT 1/2
∥∥∥1/2 +

√
λ

)
‖T‖

1
2
−α‖T−αβ̃∗‖

√
‖Θ‖Tr (Θ)

n
,

where bias(λ) := ‖T (CT + λI )−1C β̃∗ − β̃∗‖.
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Commutative Setting
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Theory

. Let ‖T−αβ̃∗‖ <∞ for α ∈ (0, 1/2]. Suppose the operators T
and C commute and have simple eigenvalues (i.e., of
multiplicity one) denoted by µi and ξi for i ∈ N, such that,

i−t . µi . i−t and i−c . ξi . i−c , (5)

where t > 1. Suppose one of the following conditions hold:
(a) κ ∈ (0,∞) and c > 2, (b) κ = 0 and c > 1.
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Theory

. Theorem: We have that

‖β̂ − β̃∗‖ .p n
− αt

1+c+2t(1−α) (6)

for

λ = n
− t+c

1+c+2t(1−α) . (7)

24 / 39



Theory

. When α = 1/2, i.e., β̃∗ ∈ H (well-specified case), we obtain

‖β̂ − β̃∗‖ .p n
− t

2(1+t+c) ,

which matches with the minimax optimal rate obtained in
Yuan and Cai (2010), when the model is linear.

. However, the interesting point is that even in the single-index
model setting, we obtain the same rate as obtained for the
linear model (when c > 2) as long as κ <∞.

. For the linear model setting, the above result extends the
results of Cai and Yuan (2010), to the misspecified setting,
i.e., β̃∗ ∈ L2(S)\H

. The requirement of c > 2 ensures that Tr (C 1/2) <∞.
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Non-commutative Setting
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first-setting

. Let (ζi )i∈N denote the eigenvalues of T 1/2CT 1/2 with
i−b . ζi . i−b, for some b > 1.

. Suppose β̃∗ ∈ R (T 1/2(T 1/2CT 1/2)ν) for ν ∈ (0, 1] and
κ <∞.

. Theorem: For

λ = n
− b

1+b+2bν ,

we have

‖β̂ − β̃∗‖ .p n
− bν

1+b+2bν .
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first-setting

. Unlike in the commutative case, the results are presented in
terms of the eigen decay behavior of T 1/2CT 1/2. When T
and C commute, we obtain b = t + c .

. We would like to highlight that to the best of our knowledge,
no result is known in the literature for the estimation error,
i.e., ‖β̂ − β̃∗‖, in the non-commutative setting, even for linear
models.
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first-setting

. The assumption β̃∗ ∈ R (T 1/2(T 1/2CT 1/2)ν), implies
∃ h ∈ L2(S) such that

T 1/2(T 1/2CT 1/2)νh = β̃∗,

which implies β̃∗ ∈ R (T 1/2) = H.

. Therefore, the assumption β̃∗ ∈ R (T 1/2(T 1/2CT 1/2)ν) is
stronger than assuming β̃∗ ∈ R (T 1/2).

. The key reason to make this strong assumption is to control
bias(λ) in a finer manner and obtain meaningful convergence
rates. Indeed, by simply assuming β̃∗ ∈ R (T 1/2) ensures
bias(λ)→ 0 as λ→ 0, using which consistency of β̂ can be
established, but with no handle on the convergence rate.
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second-setting

. Let (ζi , φi ) and (µi , ψi ) for i ∈ N, denote the eigensystems of
T 1/2CT 1/2 and T respectively. Suppose

i−b . ζi . i−b and i−t . µi . i−t

for some b, t > 1. Let the eigenfunctions of T 1/2CT 1/2 and
T satisfy

sup
i ,l

1

µiµl

∣∣∣∣∣∣
∑
j

µj〈φi , ψj〉〈φl , ψj〉

∣∣∣∣∣∣
2

<∞. (8)
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second-setting

. Theorem: Assuming κ <∞ and
β̃∗ ∈ R (T 1/2(T 1/2CT 1/2)ν) for some ν ∈

(
0, 12 −

t
2b

]
, we

have

‖β̂ − β̃∗‖ .p n
−bν+(t−1)/2

t+b+2bν

for

λ = n
− b
t+b+2bν . (9)
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Theory

. For ν ∈ (0, 12 −
t
2b ], the rate in latter Theorem is clearly faster

than that in former Theorem.
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Interpreting Range Space Conditions on β̃∗
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Range Space Conditions

. Proposition: For x , y ∈ [0, 1], suppose that the reproducing
kernel k and the covariance function c are given respectively
by

k(x , y) =
∑
i≥1

aiφi (x)φi (y), c(x , y) =
∑
m≥1

bmψm(x)ψm(x),

where ai ≥ 0 for all i , bm ≥ 0 for all m,
∑

i≥1 ai ≤ ∞,∑
m≥1 bm ≤ ∞ and (φi )i and (ψm)m form an orthonormal

basis of L2([0, 1]). Define τj :=
∑

i aiη
2
ij where

ηij :=
∑

m≥1 bmθmiθmj and θmj := 〈ψm, φi 〉, and assume
supj τj <∞.
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Range Space Conditions

. Then the following hold:

(i) The RKHS induced by the kernel k is given by

H =

f (x) =
∑
i≥1

fiφi (x), x ∈ [0, 1] :
∑
i

f 2i
ai
<∞

 ,

with the associated inner product defined by
〈f , g〉H =

∑
i a
−1
i figi .
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Range Space Conditions

(ii) The space R(T 1/2(T 1/2CT 1/2)) satisfies the inclusion

R(T 1/2(T 1/2CT 1/2)) ⊂ H̃ ⊂ H,

where

H̃ =

{
f (x) =

∑
i

fiφi (x), x ∈ [0, 1] :
∑
i

f 2i
aiτi

<∞

}
,

is an RKHS induced by the kernel
k̃(x , y) =

∑
i≥1 aiτiφi (x)φi (y) with inner product

〈f , g〉H̃ =
∑

i≥1 figi (τiai )
−1.
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a concrete example

. Suppose φi (x) = cos(iπx), x ∈ [0, 1] and ψm(·) = cos(ωmπ·)
where ωm = am + b for some a, b ∈ R such that ωm /∈ Z and
m ∈ N. Let bm . m−(1+δ), for some δ > 0.

. Then, we have

θmi =
πωm

π2ω2
m − (iπ)2

sin(πωm)(−1)i .

Furthermore,

ηij.(ij)−min(1, δ+1
2 ), (10)

. This implies that τj . j−min(δ+1,2) and supj |τj | <∞. Hence,

the inclusion R(T 1/2(T 1/2CT 1/2)) ⊂ H̃ ⊂ H, follows, where
H̃ consists of functions that are min

(
1, 1+δ2

)
more smoother

than the functions in H.
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more results

. In the paper we also provide:

. similar results for prediction.

. several other examples.
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Thank you!

39 / 39


