UNIFIED RKHS METHODOLOGY AND ANALYSIS FOR FUNCTIONAL LINEAR AND SINGLE-INDEX MODELS.

KRISHNA BALASUBRAMANIAN

DEPARTMENT OF STATISTICS, UC DAVIS

▷ Joint work with:

▷ Hans-Georg Muller, UC Davis.

▷ Bharath K Sriperumbudur, Penn State.

▷ Paper available in arXiv soon

INTRODUCTION: PROBLEM SETUP

▷ Given:

- \triangleright Domain S = [0, 1].
- ▷ Input/predictor process X(t), $t \in S$.
- \triangleright Output/response $Y \in \mathbb{R}$.
- ▷ Functional linear model:

$$Y = \int_{\mathcal{S}} X(t)\beta^*(t) \, dt + \epsilon = \langle X, \beta^* \rangle_{L^2(\mathcal{S})} + \epsilon,$$

 $\vdash \text{ Here, } \epsilon \text{ is an exogenous additive noise such that } \mathbb{E}[\epsilon|X] = 0 \text{ and } \mathbb{E}[\epsilon^2] = \sigma^2.$

▷ Functional single-index model:

$$Y = g\left(\int_{S} X(t)\beta^{*}(t) dt\right) + \epsilon = g\left(\langle X, \beta^{*} \rangle_{L^{2}(S)}\right) + \epsilon, \quad (1)$$

for some function $g : \mathbb{R} \to \mathbb{R}$.

- \triangleright The parameter β^* is called the index and the function g the link function.
- \triangleright When g(a) = a, the single-index model in (1) becomes the functional linear model.

- ▷ Given *n* observations $\{(X_i, Y_i)\}_{1 \le i \le n}$ that are independent and identically distributed copies of (X, Y), we study how to estimate the index parameter β^* in (1).
- ▷ Estimation procedure is agnostic to the specification of the link function - interaction between the allowed class of link functions and the distribution of the covariate X becomes crucial.
- ▷ Throughout, we assume that X is a zero-mean Gaussian process.

INTRODUCTION: RELATED WORK

- Vuan and Cai (2010), and Cai and Yuan (2012) considered an RKHS approach for linear setting. They assumed the truth lies inside the RKHS. Avoids restrictive eigen-gap assumptions made in prior FPCA-based works.
- Muller and Stadmuller (2005) proposed and analyzed an MLE-based approach for generalized functional linear models (special cases of single-index models) and established consistency results.
- Shang and Cheng (2015) considered an RKHS approach for the generalized functional linear models and established inferential results when the truth is in RKHS.
- \triangleright The above works require knowledge of the link function g to estimate the index parameter.

INTRODUCTION: METHODOLOGICAL CONTRIBUTIONS

- We provide a unified framework for estimating the index for both the linear and single-index models, for a wide class of unknown link functions.
- Specifically, we illustrate that the standard functional linear RKHS least-squares estimator also provides an efficient estimator of the index parameter in the single-index model under the Gaussian process assumption.
- Justification based on *infinite-dimensional* analogues of Gaussian Stein's identity.
- Naturally handles mis-specification with respect to the link function for both the linear and single-index models.

INTRODUCTION: THEORETICAL CONTRIBUTIONS

▷ Rates of estimating the index depends on
 ▷ Integral operator *T* associated to the RKHS

 \triangleright Covariance operator *C* of the Gaussian process *X*.

▷ Compared to previous works, we provide results without:
 ▷ Restrictive commutativity assumptions on T and C.

 $\triangleright \tilde{\beta}^*$ being inside the RKHS under consideration.

▷ Infinite-dimensional extensions of Gaussian Stein's identity:

For a zero-mean Gaussian random element X in a separable Hilbert space with covariance operator C, and for smooth enough real-valued functions f, we have

 $\mathbb{E}[Xf(X)] = C\mathbb{E}[\nabla f(X)],$

where ∇ is the Fréchet derivative.

In our context, by leveraging the version of Stein's identity for Hilbert-valued random vectors, we have

$$\mathbb{E}[YX] = \mathbb{E}[\nabla g(\langle \beta, X \rangle)] = \vartheta_{g,\beta^*} C \beta^*,$$

where ∇ is the Fréchet derivative.

- $\triangleright \ \vartheta_{g,\beta^*} \text{ is a constant depending on the link function } g \text{ and the index } \beta^*.$
- ▷ The exact form of the constant is irrelevant for our purpose as we focus on estimating the direction of the index parameter.
- ▷ We assume that g is such that $\vartheta_{g,\beta^*} \neq 0$ throughout the rest of the paper.
- $\triangleright~$ In particular, when g is the identity function, it is easy to see that we have $\vartheta_{g,\beta^*}=1.$
- $\triangleright \text{ We define } \tilde{\beta}^* := \vartheta_{g,\beta^*}\beta^* \text{, to handle the single-index and linear model in a unified manner.}$

 \triangleright Based on this, note that we have

$$ilde{eta}^* \coloneqq rg\min_{eta \in L^2(\mathcal{S})} \mathbb{E} \left[Y - \langle X, eta
ight]^2.$$

▷ Given (X₁, Y₁),...(X_n, Y_n) be n i.i.d. copies of random variables (X, Y). For some λ > 0, our estimator based on minimizing the penalized least-squares criterion over the RKHS H is given by:

$$\hat{\beta}_{n,\lambda} = \underset{\beta \in \mathcal{H}}{\operatorname{arg\,min}} \quad \frac{1}{n} \sum_{i=1}^{n} \left[Y_i - \langle \beta, X_i \rangle \right]^2 + \lambda \|\beta\|_{\mathcal{H}}^2.$$
(2)

- \triangleright Let \mathcal{H} be an RKHS with the associated kernel $k: S \times S \rightarrow R$.
- ▷ Define $\Im : \mathcal{H} \to L^2(S)$, $f \mapsto f$, to be the inclusion operator mapping functions in the RKHS \mathcal{H} to $L^2(S)$.
- \triangleright We use $\mathfrak{I}^*: L^2(S) \to \mathcal{H}$ to refer to the adjoint of \mathfrak{I} .
- We also define the following two important operators that arise in our analysis:

$$T := \Im \Im^* : L^2(S) \to L^2(S),$$

 $C := \mathbb{E}[X \otimes X] : L^2(S) \to L^2(S),$

where \otimes represents the $L^2(S)$ tensor product.

Note that the solution of the above optimization problem is given by

$$\hat{\beta}_{n,\lambda} = \left[\mathfrak{I}^* \left(\frac{1}{n} \sum_{i=1}^n X_i \otimes X_i \right) \mathfrak{I} + \lambda I \right]^{-1} \mathfrak{I}^* \left[\frac{1}{n} \sum_{i=1}^n Y_i X_i \right].$$

▷ By applying the representer theorem it follows that

$$\hat{eta} \in \operatorname{span}\left\{\int_{S}k(\cdot,t)X_{i}(t)\,dt: i=1,\ldots,n
ight\},$$

i.e., $\exists \alpha := (\alpha_1, \dots, \alpha_n)^\top \in \mathbb{R}^n$ such that $\hat{\beta} = \sum_{i=1}^n \alpha_i \int_S k(\cdot, t) X_i(t) dt.$

 \triangleright Solving for α yields

$$\boldsymbol{\alpha} = (\boldsymbol{K} + n\lambda \boldsymbol{I})^{-1} \boldsymbol{y},$$

where

$$oldsymbol{\mathcal{K}} \in \mathbb{R}^{n imes n}$$
 with $[oldsymbol{\mathcal{K}}]_{ij} := \int_S \int_S k(t,s) X_i(t) X_j(t) \, dt \, ds$

and $\mathbf{y} = (Y_1, \ldots, Y_n)^\top \in \mathbb{R}^n$.

 \triangleright Therefore, $\hat{\beta}$ can be computed by solving a finite dimensional linear system of size *n*, which is not obvious from the previous expression.

Theory

▷ Let
$$||T^{-\alpha}\tilde{\beta}^*|| < \infty$$
, i.e., $\tilde{\beta}^* \in \mathscr{R}(T^{\alpha})$ for $\alpha \in (0, 1/2]$.
▷ Define

$$\varkappa := \mathbb{E}\left[\left(g(\langle X, \tilde{\beta}^* \rangle) - \langle X, \tilde{\beta}^* \rangle\right)^4\right].$$
(3)

▷ Suppose one of the following conditions hold:

(a)
$$Tr(C^{1/2}) < \infty$$
 and $\varkappa \in (0, \infty)$,
(b) $\varkappa = 0$ and $Tr(C) < \infty$.

- ▷ The assumption $\tilde{\beta}^* \in \mathscr{R}(T^{\alpha})$ imposes certain smoothness condition on $\tilde{\beta}^*$. It is well-known that $\tilde{\beta}^* \in \mathcal{H}$ when $\alpha = \frac{1}{2}$, which we refer to as the *well-specified setting*. This assumption is equivalent to the condition that $\tilde{\beta}^*$ lies in an interpolation space between $L^2(S)$ and \mathcal{H} with α being the interpolating index.
- ▷ While $Tr(C) < \infty$ is guaranteed by the well-definedness of the Gaussian process. The following Theorem requires a slightly stronger condition given as $Tr(C^{1/2}) < \infty$, when $\varkappa \neq 0$.
- ▷ The parameter × captures the degree of non-linearity of the model. Indeed, × = 0 implies g(⟨X, β̃*⟩) = ⟨X, β̃*⟩ with probability 1. Conversely, when the model is linear, × = 0.

Theory

\triangleright Define

$$\begin{split} \Theta &\coloneqq T^{\alpha} (CT + \lambda I)^{-1} C (TC + \lambda I)^{-1} T^{\alpha}, \\ d(\lambda) &\coloneqq \frac{Tr(\Theta)}{\|\Theta\|}, \\ &\equiv := T (T^{1/2} C T^{1/2} + \lambda I)^{-2} T, \\ N(\lambda) &\coloneqq Tr \left[(T^{1/2} C T^{1/2} + \lambda I)^{-1} T^{1/2} C T^{1/2} \right]. \\ \triangleright \text{ Let } \delta \in (0, 1/e], \ n \gtrsim (d(\lambda) \lor \log(1/\delta)) \text{ and let} \end{split}$$

$$\frac{Tr(T^{1/2}CT^{1/2})}{n} \lesssim \lambda \lesssim \|T^{1/2}CT^{1/2}\|.$$
 (4)

 \triangleright **Theorem:** With probability at least $1 - 3\delta$, we have

$$\begin{split} \|\hat{\beta} - \tilde{\beta}^*\| &\lesssim bias(\lambda) + \|\Xi\|^{\frac{1}{4}} \sqrt{\frac{(\sigma^2 + \sqrt{\varkappa})N(\lambda)}{n\delta}} + \\ \lambda \|\Xi\|^{\frac{1}{4}} \left(\left\| T^{1/2}CT^{1/2} \right\|^{1/2} + \sqrt{\lambda} \right) \|T\|^{\frac{1}{2} - \alpha} \|T^{-\alpha}\tilde{\beta}^*\| \sqrt{\frac{\|\Theta\|Tr(\Theta)}{n}}, \\ \text{where } \operatorname{BIAS}(\lambda) &\coloneqq \|T(CT + \lambda I)^{-1}C\tilde{\beta}^* - \tilde{\beta}^*\|. \end{split}$$

Commutative Setting

▷ Let $||T^{-\alpha}\tilde{\beta}^*|| < \infty$ for $\alpha \in (0, 1/2]$. Suppose the operators T and C commute and have simple eigenvalues (i.e., of multiplicity one) denoted by μ_i and ξ_i for $i \in \mathbb{N}$, such that,

$$i^{-t} \lesssim \mu_i \lesssim i^{-t}$$
 and $i^{-c} \lesssim \xi_i \lesssim i^{-c}$, (5)

where t > 1. Suppose one of the following conditions hold: (a) $\varkappa \in (0, \infty)$ and c > 2, (b) $\varkappa = 0$ and c > 1.

▷ **Theorem:** We have that

$$\|\hat{\beta} - \tilde{\beta}^*\| \lesssim_p n^{-\frac{\alpha t}{1 + c + 2t(1 - \alpha)}} \tag{6}$$

for

$$\lambda = n^{-\frac{t+c}{1+c+2t(1-\alpha)}}.$$
(7)

 \triangleright When $\alpha=1/2$, i.e., $\tilde{\beta}^*\in \mathcal{H}$ (well-specified case), we obtain

$$\|\hat{\beta}-\tilde{\beta}^*\|\lesssim_p n^{-\frac{t}{2(1+t+c)}}$$

which matches with the minimax optimal rate obtained in Yuan and Cai (2010), when the model is linear.

- ▷ However, the interesting point is that even in the single-index model setting, we obtain the same rate as obtained for the linear model (when c > 2) as long as $\varkappa < \infty$.
- ▷ For the linear model setting, the above result extends the results of Cai and Yuan (2010), to the misspecified setting, i.e., $\tilde{\beta}^* \in L^2(S) \setminus \mathcal{H}$
- ▷ The requirement of c > 2 ensures that $Tr(C^{1/2}) < \infty$.

Non-commutative Setting

FIRST-SETTING

- ▷ Let $(\zeta_i)_{i \in \mathbb{N}}$ denote the eigenvalues of $T^{1/2}CT^{1/2}$ with $i^{-b} \lesssim \zeta_i \lesssim i^{-b}$, for some b > 1. ▷ Suppose $\tilde{\beta}^* \in \mathscr{R}(T^{1/2}(T^{1/2}CT^{1/2})^{\nu})$ for $\nu \in (0, 1]$ and $\varkappa < \infty$.
- > Theorem: For

$$\lambda = n^{-\frac{b}{1+b+2b\nu}},$$

we have

$$\|\hat{\beta} - \tilde{\beta}^*\| \lesssim_p n^{-\frac{b\nu}{1+b+2b\nu}}$$

- ▷ Unlike in the commutative case, the results are presented in terms of the eigen decay behavior of $T^{1/2}CT^{1/2}$. When T and C commute, we obtain b = t + c.
- \triangleright We would like to highlight that to the best of our knowledge, no result is known in the literature for the estimation error, i.e., $\|\hat{\beta} - \tilde{\beta}^*\|$, in the non-commutative setting, even for linear models.

FIRST-SETTING

▷ The assumption $\tilde{\beta}^* \in \mathscr{R}(T^{1/2}(T^{1/2}CT^{1/2})^{\nu})$, implies ∃ $h \in L^2(S)$ such that

$$T^{1/2}(T^{1/2}CT^{1/2})^{\nu}h = \tilde{\beta}^*,$$

which implies $\tilde{\beta}^* \in \mathscr{R}(T^{1/2}) = \mathcal{H}$.

- ▷ Therefore, the assumption $\tilde{\beta}^* \in \mathscr{R}(T^{1/2}(T^{1/2}CT^{1/2})^{\nu})$ is stronger than assuming $\tilde{\beta}^* \in \mathscr{R}(T^{1/2})$.
- ▷ The key reason to make this strong assumption is to control BIAS(λ) in a finer manner and obtain meaningful convergence rates. Indeed, by simply assuming $\tilde{\beta}^* \in \mathscr{R}(T^{1/2})$ ensures BIAS(λ) → 0 as λ → 0, using which consistency of $\hat{\beta}$ can be established, but with no handle on the convergence rate.

SECOND-SETTING

▷ Let (ζ_i, ϕ_i) and (μ_i, ψ_i) for $i \in \mathbb{N}$, denote the eigensystems of $T^{1/2}CT^{1/2}$ and T respectively. Suppose

$$i^{-b} \lesssim \zeta_i \lesssim i^{-b}$$
 and $i^{-t} \lesssim \mu_i \lesssim i^{-t}$

for some b, t > 1. Let the eigenfunctions of $T^{1/2}CT^{1/2}$ and T satisfy

$$\sup_{i,l} \frac{1}{\mu_i \mu_l} \left| \sum_j \mu_j \langle \phi_i, \psi_j \rangle \langle \phi_l, \psi_j \rangle \right|^2 < \infty.$$
 (8)

SECOND-SETTING

▷ **Theorem:** Assuming $\varkappa < \infty$ and $\tilde{\beta}^* \in \mathscr{R}(T^{1/2}(T^{1/2}CT^{1/2})^{\nu})$ for some $\nu \in (0, \frac{1}{2} - \frac{t}{2b}]$, we have

$$\|\hat{\beta} - \tilde{\beta}^*\| \lesssim_p n^{-\frac{b\nu + (t-1)/2}{t+b+2b\nu}}$$

for

$$\lambda = n^{-\frac{b}{t+b+2b\nu}}.$$
(9)

▷ For $\nu \in (0, \frac{1}{2} - \frac{t}{2b}]$, the rate in latter Theorem is clearly faster than that in former Theorem.

Interpreting Range Space Conditions on $\tilde{\beta}^*$

RANGE SPACE CONDITIONS

▷ Proposition: For x, y ∈ [0, 1], suppose that the reproducing kernel k and the covariance function c are given respectively by

$$k(x,y) = \sum_{i\geq 1} a_i \phi_i(x) \phi_i(y), \quad c(x,y) = \sum_{m\geq 1} b_m \psi_m(x) \psi_m(x),$$

where $a_i \ge 0$ for all i, $b_m \ge 0$ for all m, $\sum_{i\ge 1} a_i \le \infty$, $\sum_{m\ge 1} b_m \le \infty$ and $(\phi_i)_i$ and $(\psi_m)_m$ form an orthonormal basis of $L^2([0,1])$. Define $\tau_j := \sum_i a_i \eta_{ij}^2$ where $\eta_{ij} := \sum_{m\ge 1} b_m \theta_{mi} \theta_{mj}$ and $\theta_{mj} := \langle \psi_m, \phi_i \rangle$, and assume $\sup_j \tau_j < \infty$. ▷ Then the following hold:

(i) The RKHS induced by the kernel k is given by

$$\mathcal{H}=\left\{f(x)=\sum_{i\geq 1}f_i\phi_i(x), x\in [0,1]:\sum_irac{f_i^2}{a_i}<\infty
ight\},$$

with the associated inner product defined by $\langle f, g \rangle_{\mathcal{H}} = \sum_{i} a_{i}^{-1} f_{i} g_{i}$.

RANGE SPACE CONDITIONS

(ii) The space $\mathscr{R}(T^{1/2}(T^{1/2}CT^{1/2}))$ satisfies the inclusion

$$\mathscr{R}(T^{1/2}(T^{1/2}CT^{1/2}))\subset \tilde{\mathcal{H}}\subset \mathcal{H},$$

where

$$\tilde{\mathcal{H}} = \left\{ f(x) = \sum_{i} f_{i}\phi_{i}(x), x \in [0,1] : \sum_{i} \frac{f_{i}^{2}}{a_{i}\tau_{i}} < \infty \right\},$$

is an RKHS induced by the kernel $\tilde{k}(x,y) = \sum_{i\geq 1} a_i \tau_i \phi_i(x) \phi_i(y)$ with inner product $\langle f, g \rangle_{\tilde{\mathcal{H}}} = \sum_{i\geq 1} f_i g_i (\tau_i a_i)^{-1}$.

A CONCRETE EXAMPLE

- ▷ Suppose $\phi_i(x) = \cos(i\pi x)$, $x \in [0, 1]$ and $\psi_m(\cdot) = \cos(\omega_m \pi \cdot)$ where $\omega_m = am + b$ for some $a, b \in \mathbb{R}$ such that $\omega_m \notin \mathbb{Z}$ and $m \in \mathbb{N}$. Let $b_m \lesssim m^{-(1+\delta)}$, for some $\delta > 0$.
- ▷ Then, we have

$$\theta_{mi} = \frac{\pi\omega_m}{\pi^2\omega_m^2 - (i\pi)^2}\sin(\pi\omega_m)(-1)^i.$$

Furthermore,

$$\eta_{ij} \lesssim (ij)^{-\min\left(1,\frac{\delta+1}{2}\right)},\tag{10}$$

▷ This implies that $\tau_j \leq j^{-\min(\delta+1,2)}$ and $\sup_j |\tau_j| < \infty$. Hence, the inclusion $\mathscr{R}(T^{1/2}(T^{1/2}CT^{1/2})) \subset \tilde{\mathcal{H}} \subset \mathcal{H}$, follows, where $\tilde{\mathcal{H}}$ consists of functions that are min $(1, \frac{1+\delta}{2})$ more smoother than the functions in \mathcal{H} .

 \triangleright In the paper we also provide:

- \triangleright similar results for prediction.
- \triangleright several other examples.

Thank you!