
Recent Developments at the Interface Between

Kernel Embeddings and Gaussian Processes

Dino Sejdinovic

Department of Statistics
University of Oxford

Data Science Seminar, London School of Economics
07/03/2022

Dino Sejdinovic (OxCSML, Oxford) Embeddings, GPs and Applications LSE, 07/03/2022



Outline

1 Background on Kernel Embeddings

2 BayesIMP: Uncertainty Quanti�cation for Causal Data Fusion

3 Deconditional Downscaling with Gaussian Processes

Dino Sejdinovic (OxCSML, Oxford) Embeddings, GPs and Applications LSE, 07/03/2022



Outline

1 Background on Kernel Embeddings

2 BayesIMP: Uncertainty Quanti�cation for Causal Data Fusion

3 Deconditional Downscaling with Gaussian Processes

Dino Sejdinovic (OxCSML, Oxford) Embeddings, GPs and Applications LSE, 07/03/2022



Kernels and Reproducing Kernel Hilbert Spaces

Kernel method is any method that endows a generic abstract domain X with
an inner product structure induced by some feature transformation
ϕ : X → H.

Feature map ϕ and feature space H are not unique, but the inner product
structure (kernel) is.

Kernel function is as an inner product of features: any function
k : X × X → R for which there exists a Hilbert space H and a map
ϕ : X → H s.t. k(x, x′) = 〈ϕ(x), ϕ(x′)〉H for all x, x′ ∈ X .
There exists a special (canonical) feature space Hk, called reproducing kernel
Hilbert space (RKHS), with canonical feature map x 7→ k(·, x), where:

1 ∀x ∈ X , k(·, x) ∈ Hk, and
2 ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉Hk

= f(x).

Thus also k(x, y) = 〈k (·, x) , k (·, y)〉Hk
.

Moore-Aronszajn Theorem: every positive semide�nite k : X × X → R is a
kernel of a unique RKHS Hk.
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available

• nonlinear decision boundaries, nonlinear regression

functions, learning on non-Euclidean/structured

data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk
= EX∼P,Y∼Qk(X,Y )

inner products easy to estimate

• nonparametric two-sample, independence,

conditional independence, interaction testing,

learning on distributions

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015]
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Conditional Mean Embeddings

Consider a joint distribution PXY over the random variables (X,Y ) taking values
in X × Y. The conditional mean embedding (CME) of Y |X = x is de�ned as:

µY |X=x := EY |X=x[ky(·, Y )] =

�
Y
ky(·, y)dP (y|x) ∈ Hky

To model conditional embeddings as functions of x, we associate them with a
conditional mean operator (CMO) CY |X : Hkx → Hky , which satis�es

µY |X=x = CY |Xkx(·, x).

This is essentially feature-to-feature (RKHS-valued) ridge regression.
Dino Sejdinovic (OxCSML, Oxford) Embeddings, GPs and Applications LSE, 07/03/2022



GP Priors on RKHSs

Can we formulate a GP model for RKHS embeddings [Flaxman et al, 2016]? details

Since sample paths of a GP with kernel k lie outside RKHS Hk with probability 1
Kallianpur's 0-1 law, [Kallianpur, 1970; Wahba, 1990], we cannot use kernel k.

A smoother kernel, however, can be used, e.g.

r(x, x′) =
�
k(x, u)k(u, x′)ν(du)

in which case f ∈ Hk with probability 1 by nuclear dominance theory [Lukic and

Beder, 2001; Pillai et al, 2007], for any �nite measure ν.

For some simple cases, kernel r is analytically tractable, e.g. for a Gaussian kernel

k(x, x′) = exp
(
−‖x−x

′‖2
2θ2

)
and ν(du) ∝ exp

(
−‖u‖

2

2η2

)
du:

r(x, x′) ∝ exp

(
−‖x− x

′‖2
4θ2

− ‖(x+ x′)/2‖2
4θ2 + η2

)
.

Has a nonstationary component, but similar to another (smoother) Gaussian
kernel with bandwidth θ

√
2 when η is large.

Dino Sejdinovic (OxCSML, Oxford) Embeddings, GPs and Applications LSE, 07/03/2022



Outline

1 Background on Kernel Embeddings

2 BayesIMP: Uncertainty Quanti�cation for Causal Data Fusion

3 Deconditional Downscaling with Gaussian Processes

Dino Sejdinovic (OxCSML, Oxford) Embeddings, GPs and Applications LSE, 07/03/2022



BayesIMP: Uncertainty Quanti�cation for Causal Data
Fusion

Siu Lun Chau* Jean-Francois Ton* Javier Gonzalez
Yee Whye Teh Dino Sejdinovic

Advances in Neural Information System Processing, 2021



Interventional distribution

We are interested in the e�ect that intervening on a treatment variable X
(independently of all else) has on the response variable Y .

However in most case we have a confounder Z which depends on both X
and Y . Hence, we are not interested in the distribution from which we
observe data, but in the distribution corresponding to a di�erent graph where
dependency between X and Z has been removed, but we have not a�ected
the conditional distribution of Y given X,Z.



Causal Inference and do-Calculus

We are interested in p(Y |do(X) = x): a distribution of Y following an
intervention on X whose value is set to x.

How to estimate such interventional distributions from observational data?

do-calculus
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Backdoor and Frontdoor Adjustment

Backdoor Adjustment Formulae:

p(Y |do(X) = x) =

�
Z
p(Y |x, z) dP (z)

Frontdoor Adjustment Formulae:

p(Y |do(X) = x) =

�
Z

�
X
p(Y |X ′, Z)dP (Z|x)dP (X ′)

key idea: obtain a model for the do-density by appropriately combining
observational conditional densities, according to a given (known) DAG

Can we represent interventional distributions p(Y |do(X) = x) in RKHSs?

YES: IME (Interventional Mean Embeddings (IME) by Singh et al. (2020)
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Motivating Example

Figure: Causal Graphs corresponding to data collected in two separate medical studies.
Left: Data describing the causal relationships between statin level and Prostate Speci�c
Antigen (PSA). Right: Data from a prostate cancer study for patients about to receive a
radical prostatectomy.

Goal is to estimate E[Cancer Volume|do(Statin)] while also quantifying
uncertainty arising from both datasets.

Principled uncertainty quanti�cation would allow Causal Bayesian

Optimisation (Aglietti et al, 2020): �nd a statin dosage such that intervening
on statin would minimize the expected cancer volume.



Challenges

1 Unmatched data.
Observed Cancer volume is not paired with Statin in observations. We thus
need to perform Causal Data Fusion via the mediating variable PSA.

2 Uncertainty quanti�cation.
Datasets come from di�erent studies and might have di�erent
quantity and/or quality.

We propose a method termed Bayesian Interventional Mean Process (BayesIMP)
to model average treatment e�ects which combines ideas from Gaussian Processes
(GPs), conditional mean embeddings (CMEs) and do-calculus.
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Causal Data Fusion Problem

We are given two causal graphs and two corresponding datasets D1,D2.

X: treatment, Y : mediator, Z: confounder, T : response

The goal is to infer E[T |do(X) = x] from these two datasets.

We make the following assumptions:

A1 Treatment only a�ects the target through the mediating variable, i.e
T ⊥⊥ do(X)|Y

A2 Function f given by f(y) = E[T |Y = y] belongs to an RKHS Hky .



Causal Data Fusion Problem

Using these assumptions and standard RKHS properties, we have:

E[T |do(X) = x] =

�
Y

E[T |do(x), y]︸ ︷︷ ︸
=E[T |y], since T⊥⊥do(X)|Y

dP (y|do(x))

=

�
Y
f(y)dP (y|do(x))

=

�
Y
〈f, ky(·, y)〉Hky

dP (y|do(x))

= 〈f,
�
Y
ky(·, y)dP (y|do(x))〉Hky

= 〈f, µY |do(X)=x︸ ︷︷ ︸
IME

〉Hky
.



Proposed Methods Summary

Function of interest is

g(x) = E[T |do(X) = x] = 〈f, µY |do(X)=x〉Hky
.

Both f and µY |do(X)=x need to be estimated.

METHODS µY |do(X) f

IME KRR KRR
IMP∗ KRR GP
BayesIME∗ GP KRR
BayesIMP∗ GP GP

Estimate µY |do(X) from D1 = {xi, zi, yi}Ni=1

Estimate f from D2 = {ỹj , tj}Mj=1



Interventional Mean Process (IMP)

Frequentist 
Models

Bayesian 
Models

Stage 2Stage 1

IMP models f as a GP with sample paths in Hky
, and uses a vector-valued

KRR estimate of IME µ̂Y |do(X).

Then g(x) = 〈f, µ̂Y |do(X)=x〉Hky
is by linearity also a GP and we can

compute its mean and covariance directly from the posterior mean and
covariance of f .

But only uncertainty in D2 is taken into account!
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Bayesian Interventional Mean Embedding (BayesIME)

Frequentist 
Models

Bayesian 
Models

Stage 2Stage 1

Idea: replace vv-KRR in CMEs with vv-GPs, corresponding to a Bayesian

model for CMEs, and obtain the corresponding Bayesian model for IMEs via
do-calculus.

Challenge: need to ensure that GP posterior draws of h(x, y) = µY |X=x(y)
give a.s. an RKHS function of y, ∀x ∈ X .
We show that it is su�cient to take prior h ∼ GP(0, kx ⊗ ry) for a kernel ry
nuclearly dominant over ky.

Now if f̂ comes from KRR, g(x) = 〈f̂ , µY |do(X)=x〉Hky
is again a GP by

linearity.



Bayesian Interventional Mean Process (BayesIMP)

Frequentist 
Models

Bayesian 
Models

Stage 2Stage 1

g(x) = E[T |do(X) = x] = 〈f, µY |do(X)=x〉Hky
.

Finally, place GPs on both f and µY |do(X) to quantify uncertainties in both
datasets.

Problem: inner product of Gaussians are not Gaussians so need to resort to
moment matching to obtain a GP model for g to be used for e.g. Bayesian
optimisation.



Ablation Study: Result

Simple causal graph: X −→ Y and Y −→ T

GOAL: E[T |do(X)]

5 0 5
x

3

2

1

0

1

2

3

[T
|do

(X
)=

x]

(a) Sampling

5 0 5
x

(b) IME

5 0 5
x

(c) IMP*
Extrapolation

5 0 5
x

(d) BayesIME*
Unobvserved region

5 0 5
x

(e) BayesIMP*
Groundtruth

Figure: Ablation studies of various methods in estimating uncertainties for an illustrative
experiment. IME does not come with uncertainty estimates. We see IMP and BayesIME
covering di�erent regions of uncertainty while BayesIMP takes the best of both worlds.



Ablation Study: Calibration
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Figure: Calibration plots of Sampling method as well as our 3 proposed methods. We
clearly see that BayesIMP is the best calibrated method amongst all other methods.



Causal Bayesian Optimisation (CBO)

Figure: (Left) Backdoor adjustment and multimodal mediator Y , Frontdoor adjustment
and multimodal mediator Y , (Right) Healthcare example, optimizing
E[CancerV olume|do(Statin)]. CBO is the sampling-based approach from Aglietti et al
(2020).



Summary

BayesIMP: a Bayesian method to estimate average treatment e�ect from
unmatched observational data

GP model for representing interventional distributions in RKHSs
Can capture uncertainty arising from multiple datasets and combine them
e�ectively
Leads to faster causal Bayesian optimisation

Future directions:

Assumes full knowledge of the underlying causal graphs � can this be relaxed?
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Deconditional Downscaling with Gaussian Processes

Siu Lun Chau* Shahine Bouabid* Dino Sejdinovic
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Motivation



Problem Setup

Data

We have a dataset of N bags of high-resolution

(HR) covariates bxj :=
{
x
(1)
j , . . . , x

(nj)
j

}
each

paired with a mediating low-resolution (LR)
variable yj

D1 =
{
bxj , yj

}N
j=1

.

We have a separate dataset of M mediating LR
variables ỹj paired with a LR response of
interest z̃j .

D2 =
{
ỹj , z̃j

}M
j=1

.

x(i)

bx

ỹy

z̃

Figure: Illustration of HR and
LR observations � indirect
pairing



Problem Setup

Objective

Downscale response z to the HR granularity

level of x
(i)
j covariates

i.e. �nd a function f : X → R which maps
between HR covariates and HR responses.

x(i)

bx

f
ỹy

z̃

Figure: We wish to learn a
map from HR covariates to an
HR estimate of the response



Deconditional Formulation

Observation Model

We assume that the HR responses f(x) aggregate into the LR response z̃j as

z̃j = EX [f(X)|Y = ỹj ] + εj

with noise εj ∼ N (0, σ2).

This is similar to the deconditioning problem studied by Hsu & Ramos (2019):

Given an RKHS function g : Y → R, infer an RKHS function f : X → R such
that

g(y) = EX [f(X)|Y = y].

f is called the deconditional mean of g w.r.t. PX|Y .

Hsu & Ramos (2019) develop a deconditioning procedure based on estimating so
called deconditional mean operators and complex chained inference derivations.



Bayesian formulation for f and g

Conditional Mean Process

By placing a GP prior on f ∼ GP(m, k), we can represent the LR �eld of
responses as

g(y) = EX [f(X)|Y = y] =

�
X
f(x)dPX|Y=y(x) ∼ GP(ν, q).

By linearity of expectation, g is also a GP where

ν(y) = EX [m(X)|Y = y]

q(y, y′) = EX,X′ [k(X,X ′)|Y = y, Y ′ = y′] = 〈µX|Y=y, µX|Y=y′〉

Estimation of ν and q via conditional mean operators CX|Y using D1.



Deconditional Posterior

Joint normality between LR and HR �eld:

The latent HR �eld f(x) and the observed noisy LR �eld z̃ = g(ỹ) + ε are jointly
normal:
[
f(x)
z̃

]
| ỹ ∼ N

([
m(x)
ν(ỹ)

]
,

[
k(x, x) 〈k(x, ·), CX|Y `(ỹ, ·)〉Hk

〈CX|Y `(ỹ, ·), k(x, ·)〉Hk q(y, y) + σ2

])

Allows to directly obtain deconditional posterior f |z̃ ∼ GP(md, kd) from D2

with:

m̂d(x) = m(x) + k(x,x)A(Q̂+ σ2IM )−1(z̃− ν(ỹ))
k̂d(x, x

′) = k(x, x′)− k(x,x)A(Q̂+ σ2IM )−1A>k(x, x′)

where A := (`(y,y) +NλIN )−1`(y, ỹ) with λ > 0, Q̂ := q̂(ỹ, ỹ).

Posterior mean has a form essentially identical to the estimator by Hsu & Ramos
(2019).



Mediated Downscaling of Atmospheric Temperature

Model RMSE ↓ MAE ↓ Corr. ↑ SSIM ↑
Kriging 8.02±0.28 5.55±0.17 0.831±0.012 0.212±0.011
VBAgg 8.25±0.15 5.82±0.11 0.821±0.006 0.182±0.004

Our method 7.40±0.25 5.34±0.22 0.848±0.011 0.212±0.013

Table: Downscaling similarity scores of posterior mean against HR groundtruth; reports 1
s.d. VBAgg approach from Law et al (2018) also operates on aggregate likelihoods but
cannot handle unmatched data and thus requires to �rst estimate LR response for each
bag of HR covariates. It can be thought of as a special case of the proposed method
where mediating LR covariate is simply one-hot encoding of the bag.



Summary

A scalable Bayesian solution to the mediated statistical downscaling problem,
which handles unmatched multi-resolution data.

Combines Gaussian Processes with the framework of deconditioning using
RKHSs and recovers previous approaches as its special cases.

Future challenges: what if the mediating variable undergoes covariate shift
between the two datasets?
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GPs and RKHSs: shared mathematical foundations

The same notion of a (positive de�nite) kernel, but conceptual gaps between
communities.

Orthogonal projection in RKHS ⇔ Conditioning in GPs

0/1 laws: GP sample paths with (in�nite-dimensional) covariance kernel k
almost surely fall outside of Hk.
• The space of sample paths can be thought of as an �outer shell� of Hk.

Worst-case in RKHS ⇔ Average-case in GPs

MMD2(P,Q;Hk) = sup
‖f‖Hk

≤1
(Pf −Qf)2 = Ef∼GP(0,k)

[
(P f −Qf)2

]
.

Gaussian Processes and Kernel Methods: A Review on Connections and
Equivalences
M. Kanagawa, P. Hennig, DS, and B. K. Sriperumbudur
ArXiv e-prints:1807.02582 https://arxiv.org/abs/1807.02582
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A Bayesian model of RKHS embeddings

In MMD and other applications of embeddings, we estimate
µ =

�
k(·, x)P (dx) with a simple empirical mean µ̂ = 1

n

∑n
i=1 k(·, xi).

Empirical mean over an in�nite-dimensional space? Due to Stein's
phenomenon, shrinkage estimators are better behaved [Muandet et al, 2013] and
are reported to improve performance in testing power [Ramdas & Wehbe, 2015].

Can we formulate a Bayesian inference procedure for kernel embeddings?

Challenges:
• How to construct a valid prior over the RKHS?
• What is the likelihood of our observations given the kernel embedding?
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