A modern take on Huber regression

Po-Ling Loh

University of Cambridge Department of Pure Mathematics and Mathematical Statistics

Data Science Seminar LSE 15 November 2021 • Robust statistics introduced in 1960s (Huber, Tukey, Hampel, et al.)

Introduction

- Robust statistics introduced in 1960s (Huber, Tukey, Hampel, et al.)
- Goals:
 - Develop estimators $T(\cdot)$ that are reliable under deviations from model assumptions
 - Quantify performance with respect to deviations

Introduction

• Robust statistics introduced in 1960s (Huber, Tukey, Hampel, et al.)

Goals:

- Develop estimators $T(\cdot)$ that are reliable under deviations from model assumptions
- Quantify performance with respect to deviations
- Local stability captured by influence function

$$IF(x; T, F) = \lim_{\epsilon \to 0} \frac{T((1 - \epsilon)F + \epsilon \Delta_x) - T(F)}{\epsilon}$$

Introduction

• Robust statistics introduced in 1960s (Huber, Tukey, Hampel, et al.)

Goals:

- Develop estimators $T(\cdot)$ that are reliable under deviations from model assumptions
- Quantify performance with respect to deviations
- Local stability captured by influence function

$$IF(x; T, F) = \lim_{\epsilon \to 0} \frac{T((1 - \epsilon)F + \epsilon \Delta_x) - T(F)}{\epsilon}$$

• Global stability captured by breakdown point

$$\epsilon^*(T; X_1, \ldots, X_n) = \min\left\{\frac{m}{n} : \sup_{X^m} \|T(X^m) - T(X)\| = \infty\right\}$$

• Linear model:

$$y_i = x_i^T \beta^* + \epsilon_i, \qquad i = 1, \dots, n$$

• Assume $\epsilon_i \perp x_i$ and $\mathbb{E}(\epsilon_i) = 0$

• Linear model:

$$y_i = x_i^T \beta^* + \epsilon_i, \qquad i = 1, \dots, n$$

- Assume $\epsilon_i \perp x_i$ and $\mathbb{E}(\epsilon_i) = 0$
- Generalization of OLS suitable for heavy-tailed/contaminated errors:

$$\widehat{eta} \in rgmin_{eta} \left\{ rac{1}{n} \sum_{i=1}^n \ell(x_i^{\mathsf{T}} eta - y_i)
ight\}$$

Regression *M*-estimators

• Bounded ℓ' limits influence of outliers:

$$IF((x,y);T,F_{\beta}) = \lim_{\epsilon \to 0} \frac{T((1-\epsilon)F + \epsilon \Delta_{(x,y)}) - T(F)}{\epsilon} \propto \ell'(x^{T}\beta - y)x$$

Huber regression with scale calibration

High-dimensional linear regression

High-dimensional linear regression

$$y_i = x_i^T \beta^* + \epsilon_i, \qquad i = 1, \dots, n$$

• When $p \gg n$, assume sparsity: $\|\beta^*\|_0 \le k$

• **Natural idea:** For *p* > *n*, use regularized version:

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(x_i^T \beta - y_i) + \lambda \|\beta\|_1 \right\}$$

• **Natural idea:** For *p* > *n*, use regularized version:

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(x_{i}^{\mathsf{T}}\beta - y_{i}) + \lambda \|\beta\|_{1} \right\}$$

Complications:

- Optimization for nonconvex ℓ ?
- Statistical theory? Are certain losses provably better than others?

• Lasso analysis (e.g., van de Geer (2007), Bickel et al. (2008)):

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \underbrace{\frac{1}{n} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}}_{\mathcal{L}_{n}(\beta)} \right\}$$

• Lasso analysis (e.g., van de Geer (2007), Bickel et al. (2008)):

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \underbrace{\frac{1}{n} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}}_{\mathcal{L}_{n}(\beta)} \right\}$$

• Rearranging basic inequality $\mathcal{L}_n(\widehat{\beta}) \leq \mathcal{L}_n(\beta^*)$ and assuming $\lambda \geq 2 \left\| \frac{X^{T_{\epsilon}}}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• Lasso analysis (e.g., van de Geer (2007), Bickel et al. (2008)):

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \underbrace{\frac{1}{n} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}}_{\mathcal{L}_{n}(\beta)} \right\}$$

• Rearranging basic inequality $\mathcal{L}_n(\widehat{\beta}) \leq \mathcal{L}_n(\beta^*)$ and assuming $\lambda \geq 2 \left\| \frac{X^{\tau} \epsilon}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• Sub-Gaussian assumptions on x_i 's and ϵ_i 's provide $\mathcal{O}\left(\sqrt{\frac{k \log p}{n}}\right)$ bounds, minimax optimal

• Key observation: For general loss function, if $\lambda \ge 2 \left\| \frac{X^T \ell'(\epsilon)}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• Key observation: For general loss function, if $\lambda \ge 2 \left\| \frac{X^T \ell'(\epsilon)}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• $\ell'(\epsilon)$ sub-Gaussian whenever ℓ' bounded

• Key observation: For general loss function, if $\lambda \ge 2 \left\| \frac{X^T \ell'(\epsilon)}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• $\ell'(\epsilon)$ sub-Gaussian whenever ℓ' bounded \implies can achieve estimation error

$$\|\widehat{\beta} - \beta^*\|_2 \le c\sqrt{\frac{k\log p}{n}},$$

without assuming ϵ_i is sub-Gaussian

• Key observation: For general loss function, if $\lambda \ge 2 \left\| \frac{X^T \ell'(\epsilon)}{n} \right\|_{\infty}$, obtain

$$\|\widehat{\beta} - \beta^*\|_2 \le c\lambda\sqrt{k}$$

• $\ell'(\epsilon)$ sub-Gaussian whenever ℓ' bounded \implies can achieve estimation error

$$\|\widehat{\beta} - \beta^*\|_2 \le c\sqrt{\frac{k\log p}{n}},$$

without assuming ϵ_i is sub-Gaussian

• Also require verifying RE/RSC condition, derived from local strong convexity of ℓ near 0

 However, hidden condition that Var(ε_i) < cγ², where γ corresponds to radius of robust loss function

- However, hidden condition that Var(ε_i) < cγ², where γ corresponds to radius of robust loss function
- For non-OLS regression, "optimal" loss function should depend on scale of ϵ_i 's

$$\widehat{eta} \in \arg\min_{eta} \left\{ rac{1}{n} \sum_{i=1}^{n} \ell(x_i^T eta - y_i)
ight\}$$

Some proposals

MM-estimator

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell\left(\frac{y_i - x_i^{\mathsf{T}} \beta}{\widehat{\sigma}_0} \right) \right\},\$$

using robust estimate of scale $\widehat{\sigma}_0$ based on preliminary estimate $\widehat{\beta}_0$

Some proposals

MM-estimator

$$\widehat{\beta} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell\left(\frac{y_i - x_i^{\mathsf{T}} \beta}{\widehat{\sigma}_0} \right) \right\},\$$

using robust estimate of scale $\hat{\sigma}_0$ based on preliminary estimate $\hat{\beta}_0$ • How to obtain $(\hat{\beta}_0, \hat{\sigma}_0)$?

• S-estimators/LMS:

$$\widehat{eta}_{\mathsf{0}} \in \arg\min_{eta} \left\{ \widehat{\sigma}(r(eta)) \right\},$$

where $\widehat{\sigma}(r) = r_{(n - \lfloor n\delta \rfloor)}$ • Least trimmed squares:

$$\widehat{eta}_{0} \in rg \min_{eta} \left\{ \sum_{i=1}^{n - \lfloor n lpha
floor} (y_{i} - x_{i}^{T} eta)_{(i)}^{2}
ight\}$$

• Lepski's method originally proposed for adaptive bandwidth selection in nonparametric regression

- Lepski's method originally proposed for adaptive bandwidth selection in nonparametric regression
- Can be used to select σ in location/scale problem:

$$\widehat{\beta}_{\sigma} \in \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell\left(\frac{y_{i} - x_{i}^{T} \beta}{\sigma} \right) + \lambda \sigma \|\beta\|_{1} \right\},\$$

where ℓ is Huber loss with parameter 1

$$\|\widehat{\beta}_{\sigma} - \beta^*\|_2 \le C\sigma \sqrt{\frac{k\log p}{n}},$$

w.h.p., assuming $\sigma \geq \sqrt{\mathsf{Var}(\epsilon_i)} := \sigma^*$

$$\|\widehat{\beta}_{\sigma} - \beta^*\|_2 \le C\sigma \sqrt{\frac{k\log p}{n}},$$

w.h.p., assuming $\sigma \geq \sqrt{\mathsf{Var}(\epsilon_i)} := \sigma^*$

• Basic idea of Lepski's method: Compute $\hat{\beta}_{\sigma}$ on gridding $\{\sigma_1, \ldots, \sigma_M\}$ of interval $[\sigma_{\min}, \sigma_{\max}] \ni \sigma^*$

$$\|\widehat{\beta}_{\sigma} - \beta^*\|_2 \le C\sigma \sqrt{\frac{k\log p}{n}},$$

w.h.p., assuming $\sigma \geq \sqrt{Var(\epsilon_i)} := \sigma^*$

- Basic idea of Lepski's method: Compute $\hat{\beta}_{\sigma}$ on gridding $\{\sigma_1, \ldots, \sigma_M\}$ of interval $[\sigma_{\min}, \sigma_{\max}] \ni \sigma^*$
- For each σ_j , check if $\|\widehat{\beta}_{\sigma_j} \widehat{\beta}_{\sigma_\ell}\|_2 \leq 2C\sigma_\ell \sqrt{\frac{k \log p}{n}}$ for all $\ell > j$, and let $\widehat{\sigma}$ be argmin in this set

$$\sigma_{\min} \sigma_j \sigma^* \sigma_\ell \sigma_{\max}$$

$$\|\widehat{\beta}_{\sigma} - \beta^*\|_2 \le C\sigma \sqrt{\frac{k\log p}{n}},$$

w.h.p., assuming $\sigma \geq \sqrt{\mathsf{Var}(\epsilon_i)} := \sigma^*$

- Basic idea of Lepski's method: Compute $\hat{\beta}_{\sigma}$ on gridding $\{\sigma_1, \ldots, \sigma_M\}$ of interval $[\sigma_{\min}, \sigma_{\max}] \ni \sigma^*$
- For each σ_j , check if $\|\widehat{\beta}_{\sigma_j} \widehat{\beta}_{\sigma_\ell}\|_2 \leq 2C\sigma_\ell \sqrt{\frac{k \log p}{n}}$ for all $\ell > j$, and let $\widehat{\sigma}$ be argmin in this set

$$\sigma_{\min} \sigma_{j} \sigma^{*} \sigma_{\ell} \sigma_{\max}$$

$$\|\widehat{\beta}_{\sigma} - \beta^*\|_2 \le C\sigma \sqrt{\frac{k\log p}{n}},$$

w.h.p., assuming $\sigma \geq \sqrt{Var(\epsilon_i)} := \sigma^*$

- Basic idea of Lepski's method: Compute $\hat{\beta}_{\sigma}$ on gridding $\{\sigma_1, \ldots, \sigma_M\}$ of interval $[\sigma_{\min}, \sigma_{\max}] \ni \sigma^*$
- For each σ_j , check if $\|\widehat{\beta}_{\sigma_j} \widehat{\beta}_{\sigma_\ell}\|_2 \leq 2C\sigma_\ell \sqrt{\frac{k \log p}{n}}$ for all $\ell > j$, and let $\widehat{\sigma}$ be argmin in this set

$$\sigma_{\min} \sigma^* \sigma_j \sigma_\ell \sigma_{\max}$$

$$\|\widehat{\beta}_{\sigma} - \beta^*\|_2 \le C\sigma \sqrt{\frac{k\log p}{n}},$$

w.h.p., assuming $\sigma \geq \sqrt{Var(\epsilon_i)} := \sigma^*$

- Basic idea of Lepski's method: Compute $\hat{\beta}_{\sigma}$ on gridding $\{\sigma_1, \ldots, \sigma_M\}$ of interval $[\sigma_{\min}, \sigma_{\max}] \ni \sigma^*$
- For each σ_j , check if $\|\widehat{\beta}_{\sigma_j} \widehat{\beta}_{\sigma_\ell}\|_2 \leq 2C\sigma_\ell \sqrt{\frac{k \log p}{n}}$ for all $\ell > j$, and let $\widehat{\sigma}$ be argmin in this set

Theorem (L. '18)

With high probability, output of Lepski's method satisfies

$$\|\widehat{eta}_{\widehat{\sigma}} - eta^*\|_2 \leq C' \sigma^* \sqrt{rac{k \log p}{n}},$$

 \bullet Method does ${\bf not}$ require prior knowledge of scale σ^*

Theorem (L. '18)

With high probability, output of Lepski's method satisfies

$$\|\widehat{\beta}_{\widehat{\sigma}} - \beta^*\|_2 \leq C' \sigma^* \sqrt{\frac{k \log p}{n}},$$

- Method does **not** require prior knowledge of scale σ^*
- Constant C' still depends on properties of design matrix (RE constant)
- Choice of λ depends only on $\sqrt{\frac{\log p}{n}}$ and universal constants

- New theory for robust high-dimensional *M*-estimators implies $\mathcal{O}\left(\sqrt{\frac{k\log p}{n}}\right)$ error rates when $\|\ell'\|_{\infty} \leq C$ based on local RSC
- Lepski's method proposed to avoid joint scale parameter estimation

Huber regression with covariate filtering

Joint work with Ankit Pensia (UW-Madison) and Varun Jog (Cambridge)
• Instead of drawing i.i.d. data from an ϵ -contaminated mixture, draw i.i.d. data points $\{z_i\}_{i=1}^n$ and arbitrarily contaminate ϵ -fraction \rightarrow observations $\{x_i\}_{i=1}^n$

- Instead of drawing i.i.d. data from an ε-contaminated mixture, draw i.i.d. data points {z_i}ⁿ_{i=1} and arbitrarily contaminate ε-fraction → observations {x_i}ⁿ_{i=1}
- Seminal papers by Diakonikolas et al. and Lai et al. on mean estimation for adversarially contaminated data (2016) for contaminated Gaussian data with $\tilde{O}(\epsilon)$ error

- Instead of drawing i.i.d. data from an ε-contaminated mixture, draw i.i.d. data points {z_i}ⁿ_{i=1} and arbitrarily contaminate ε-fraction → observations {x_i}ⁿ_{i=1}
- Seminal papers by Diakonikolas et al. and Lai et al. on mean estimation for adversarially contaminated data (2016) for contaminated Gaussian data with $\tilde{O}(\epsilon)$ error
- In our model, assume both covariates and responses may be $\epsilon\text{-contaminated}$

 Algorithm of Diakonikolas et al. iteratively computes weights of (remaining) data points according to projection onto top eigenvector of sample covariance matrix

- Algorithm of Diakonikolas et al. iteratively computes weights of (remaining) data points according to projection onto top eigenvector of sample covariance matrix
- Use weights to probabilistically remove data points at each iteration

Filtering algorithm

• Success of algorithm is based on stability condition

Definition

Observations $\{x_i\}_{i=1}^n$ satisfy (ϵ, δ) -stability w.r.t. (μ, σ) if

$$\left\| \frac{1}{|S'|} \sum_{i \in S'} x_i - \mu \right\|_2 \le \sigma \delta, \quad \text{and} \\ \left\| \frac{1}{|S'|} \sum_{i \in S'} (x_i - \mu) (x_i - \mu)^T - \sigma^2 I \right\|_2 \le \frac{\sigma^2 \delta^2}{\epsilon},$$

whenever $|S'| \ge (1-\epsilon)n$

Filtering algorithm

Success of algorithm is based on stability condition

Definition

Observations $\{x_i\}_{i=1}^n$ satisfy (ϵ, δ) -stability w.r.t. (μ, σ) if

$$\left\| \frac{1}{|S'|} \sum_{i \in S'} x_i - \mu \right\|_2 \le \sigma \delta, \quad \text{and} \\ \left\| \frac{1}{|S'|} \sum_{i \in S'} (x_i - \mu) (x_i - \mu)^T - \sigma^2 I \right\|_2 \le \frac{\sigma^2 \delta^2}{\epsilon},$$

whenever $|S'| \ge (1-\epsilon)n$

• Filtering algorithm identifies large stable set, w.h.p., when data are ϵ -corrupted and/or heavy-tailed

• Linear model:

$$y_i = x_i^T \beta^* + z_i, \qquad i = 1, \dots, n$$

- Distributional assumptions:
 - Covariates: $\mathbb{E}(x_i) = 0$, $\mathbb{E}(x_i x_i^T) = I$, and $\mathbb{E}[(v^T x_i)^4]^{1/4} \le C \mathbb{E}[(v^T x_i)^2]^{1/2}$ for all $||v||_2 = 1$
 - Noise: $z_i \perp \perp x_i$ and $\mathbb{E}(z_i) = 0$ (moment assumptions specified later)

• Linear model:

$$y_i = x_i^T \beta^* + z_i, \qquad i = 1, \dots, n$$

- Distributional assumptions:
 - Covariates: $\mathbb{E}(x_i) = 0$, $\mathbb{E}(x_i x_i^T) = I$, and $\mathbb{E}[(v^T x_i)^4]^{1/4} \leq C \mathbb{E}[(v^T x_i)^2]^{1/2}$ for all $||v||_2 = 1$
 - Noise: $z_i \perp x_i$ and $\mathbb{E}(z_i) = 0$ (moment assumptions specified later)
- Low-dimensional setting, $n \ge p$

• Linear model:

$$y_i = x_i^T \beta^* + z_i, \qquad i = 1, \dots, n$$

- Distributional assumptions:
 - Covariates: $\mathbb{E}(x_i) = 0$, $\mathbb{E}(x_i x_i^T) = I$, and $\mathbb{E}[(v^T x_i)^4]^{1/4} \le C \mathbb{E}[(v^T x_i)^2]^{1/2}$ for all $||v||_2 = 1$
 - Noise: $z_i \perp \perp x_i$ and $\mathbb{E}(z_i) = 0$ (moment assumptions specified later)
- Low-dimensional setting, $n \ge p$
- After seeing i.i.d. samples {(x_i, y_i)}ⁿ_{i=1}, adversary can contaminate εn data points to obtain {(x̃_i, ỹ_i)}ⁿ_{i=1}

Huber loss:

$$\ell_\gamma(x) = egin{cases} rac{x^2}{2}, & |x| \leq \gamma, \ \gamma |x| - rac{\gamma^2}{2}, & |x| > \gamma \end{cases}$$

• Huber estimator: $\widehat{\beta}_{Hub} \in \arg \min_{\beta} \left\{ \sum_{i=1}^{n} \ell_{\gamma}(y_i - x_i^T \beta) \right\}$

• Huber loss:

$$\ell_{\gamma}(x) = egin{cases} rac{x^2}{2}, & |x| \leq \gamma, \ \gamma |x| - rac{\gamma^2}{2}, & |x| > \gamma \end{cases}$$

• Huber estimator: $\widehat{\beta}_{Hub} \in \arg\min_{\beta} \left\{ \sum_{i=1}^{n} \ell_{\gamma}(y_i - x_i^T \beta) \right\}$

- Existing analysis for sub-Gaussian/uncontaminated covariates:
 - Sun et al. (2020) derived theory for $\widehat{\beta}_{Hub}$ for fixed design, heavy-tailed errors
 - Sasai and Fujisawa (2020) derived theory for $\widehat{\beta}_{Hub}$ under adversarially contaminated responses

• Huber loss:

$$\ell_{\gamma}(x) = egin{cases} rac{x^2}{2}, & |x| \leq \gamma, \ \gamma |x| - rac{\gamma^2}{2}, & |x| > \gamma \end{cases}$$

• Huber estimator: $\widehat{\beta}_{Hub} \in \arg \min_{\beta} \left\{ \sum_{i=1}^{n} \ell_{\gamma}(y_i - x_i^T \beta) \right\}$

- Existing analysis for sub-Gaussian/uncontaminated covariates:
 - Sun et al. (2020) derived theory for $\widehat{\beta}_{Hub}$ for fixed design, heavy-tailed errors
 - Sasai and Fujisawa (2020) derived theory for $\widehat{\beta}_{Hub}$ under adversarially contaminated responses
- **Our idea:** Apply filtering algorithm with parameter ϵ' on x_i 's, then run Huber regression on remaining data points

Suppose $\mathbb{E}[z_i^2] = \sigma^2$, and suppose $n = \Omega(p \log p + \log(1/\tau))$. Then the filtered Huber regression algorithm with $\epsilon' = \Theta(\epsilon)$ and $\gamma = \Omega(\sigma)$ satisfies

$$\|\widehat{\beta} - \beta^*\|_2 \precsim \gamma \left(\sqrt{\frac{p\log p}{n}} + \sqrt{\frac{\log(1/\tau)}{n}} + \epsilon^{3/4}\right)$$

with probability at least $1 - \tau$.

Suppose $\mathbb{E}[z_i^2] = \sigma^2$, and suppose $n = \Omega(p \log p + \log(1/\tau))$. Then the filtered Huber regression algorithm with $\epsilon' = \Theta(\epsilon)$ and $\gamma = \Omega(\sigma)$ satisfies

$$\|\widehat{\beta} - \beta^*\|_2 \precsim \gamma \left(\sqrt{\frac{p\log p}{n}} + \sqrt{\frac{\log(1/\tau)}{n}} + \epsilon^{3/4}\right)$$

with probability at least $1 - \tau$.

• Assuming $k^{\rm th}\text{-moment}$ condition on covariates, can improve rate to $O(\epsilon^{1-1/k})$

Suppose $\mathbb{E}[z_i^2] = \sigma^2$, and suppose $n = \Omega(p \log p + \log(1/\tau))$. Then the filtered Huber regression algorithm with $\epsilon' = \Theta(\epsilon)$ and $\gamma = \Omega(\sigma)$ satisfies

$$\|\widehat{\beta} - \beta^*\|_2 \precsim \gamma \left(\sqrt{\frac{p\log p}{n}} + \sqrt{\frac{\log(1/\tau)}{n}} + \epsilon^{3/4}\right)$$

with probability at least $1 - \tau$.

- Assuming k^{th} -moment condition on covariates, can improve rate to $O(\epsilon^{1-1/k})$
- Rate-optimal for linear regression under adversarial contamination

Suppose $\mathbb{E}[z_i^2] = \sigma^2$, and suppose $n = \Omega(p \log p + \log(1/\tau))$. Then the filtered Huber regression algorithm with $\epsilon' = \Theta(\epsilon)$ and $\gamma = \Omega(\sigma)$ satisfies

$$\|\widehat{\beta} - \beta^*\|_2 \precsim \gamma \left(\sqrt{\frac{p\log p}{n}} + \sqrt{\frac{\log(1/\tau)}{n}} + \epsilon^{3/4}\right)$$

with probability at least $1 - \tau$.

- Assuming k^{th} -moment condition on covariates, can improve rate to $O(\epsilon^{1-1/k})$
- Rate-optimal for linear regression under adversarial contamination
- Huber parameter can again be calibrated using Lepski-type procedure

• Filtered covariates satisfy weak stability, w.h.p.:

$$L \leq \lambda_{\min}\left(\frac{1}{n}\sum_{i\in S}\tilde{x}_{i}\tilde{x}_{i}^{T}\right) \leq \lambda_{\max}\left(\frac{1}{n}\sum_{i\in S}\tilde{x}_{i}\tilde{x}_{i}^{T}\right) \leq U,$$

whenever $|S| \ge (1-\epsilon)n$

Filtered covariates satisfy weak stability, w.h.p.:

$$L \leq \lambda_{\min}\left(\frac{1}{n}\sum_{i\in S}\tilde{x}_{i}\tilde{x}_{i}^{T}\right) \leq \lambda_{\max}\left(\frac{1}{n}\sum_{i\in S}\tilde{x}_{i}\tilde{x}_{i}^{T}\right) \leq U,$$

whenever $|S| \ge (1-\epsilon)n$

• Also need to establish deviation bound on gradient of loss:

$$\|\nabla \mathcal{L}_{\gamma}(\beta^{*})\|_{2} \precsim \gamma \left(\sqrt{\frac{p \log p}{n}} + \epsilon^{1-1/k} + \sqrt{\frac{\log(1/\tau)}{n}}\right)$$

and local strong convexity of \mathcal{L}_{γ} around β^{*}

• Relatively little work for adversarial contamination in both covariates and responses

- Relatively little work for adversarial contamination in both covariates and responses
 - General framework for robust ERM by Diakonikolas et al. (2019) and Prasad et al. (2020) does not achieve optimal rates for linear regression
 - Diakonikolas et al. (2019) analyzed contaminated model for Gaussian setting
 - Recent works by Zhu et al. (2020), Bakshi and Prasad (2020), Cherapanamjeri et al. (2020), Depersin (2020) analyzed slightly different assumptions on covariate/noise distributions, but algorithms are somewhat different and sometimes rather complicated (e.g., sum-of-squares procedure)

- Relatively little work for adversarial contamination in both covariates and responses
 - General framework for robust ERM by Diakonikolas et al. (2019) and Prasad et al. (2020) does not achieve optimal rates for linear regression
 - Diakonikolas et al. (2019) analyzed contaminated model for Gaussian setting
 - Recent works by Zhu et al. (2020), Bakshi and Prasad (2020), Cherapanamjeri et al. (2020), Depersin (2020) analyzed slightly different assumptions on covariate/noise distributions, but algorithms are somewhat different and sometimes rather complicated (e.g., sum-of-squares procedure)
- Note: Several connections between optimal estimators for heavy-tailed/adversarially contaminated data have appeared in past few years

LTS regression

• Least trimmed squares (LTS):

$$\widehat{eta}_{LTS} \in \arg\min_{eta} \left\{ \sum_{i=1}^{n-m} (y_i - x_i^T eta)_{(i)}^2 \right\}$$

١

• Least trimmed squares (LTS):

$$\widehat{eta}_{LTS} \in \arg\min_{eta} \left\{ \sum_{i=1}^{n-m} (y_i - x_i^T eta)_{(i)}^2
ight\}$$

 Bhatia et al. (2015) established error bound for LTS with adversarially contaminated responses, when covariates satisfy subset strong convexity/smoothness (SSC/S) condition:

$$\lambda_m \leq \min_{|S|=m} \lambda_{\min} \left(\sum_{i \in S} x_i x_i^T \right) \leq \max_{|S|=m} \lambda_{\max} \left(\sum_{i \in S} x_i x_i^T \right) \leq \Lambda_m,$$

with
$$rac{\Lambda_{2m}}{\lambda_n} < rac{1}{4}$$
 and $\Lambda_n = O(\lambda_n)$

• Condition holds w.h.p. for i.i.d. Gaussian covariates

Alternating minimization algorithm

• Recast LTS problem as

$$\min_{\beta \in \mathbb{R}^p, \|b\|_0 \le m} \|X\beta - (y-b)\|_2^2$$

Alternating minimization algorithm

• Recast LTS problem as

$$\min_{\beta \in \mathbb{R}^p, \|b\|_0 \le m} \|X\beta - (y-b)\|_2^2$$

• Alternately minimize over β and b:

$$\begin{split} \beta^{j} &= (X^{T}X)^{-1}X^{T}(y-b^{j-1}), \\ b^{j} &= HT_{m}(y-X\beta^{j}) \end{split}$$

Alternating minimization algorithm

• Recast LTS problem as

$$\min_{\beta \in \mathbb{R}^p, \|b\|_0 \le m} \|X\beta - (y-b)\|_2^2$$

• Alternately minimize over β and b:

$$\begin{split} \beta^{j} &= (X^{T}X)^{-1}X^{T}(y-b^{j-1}), \\ b^{j} &= HT_{m}(y-X\beta^{j}) \end{split}$$

 May converge to local optimum, but proved statistical error bound on output

Suppose $\mathbb{E}[z_i^2] = \sigma^2$ and $\mathbb{E}[z_i^{k'}]^{1/k'} \leq C$ for $k' \geq 2$, and suppose $n = \Omega(p \log p + \log(1/\tau))$. Then the filtered LTS regression algorithm with $m = \Theta(p \log p + \epsilon n + \log(1/\tau))$ and $\epsilon' = \Theta(\frac{m}{n})$ satisfies

$$\|\widehat{eta} - eta^*\|_2 \precsim \sigma \left(rac{p\log p}{n} + rac{\log(1/ au)}{n} + \epsilon
ight)^{1/2 - 1/k'}$$

with probability at least $1 - \tau$.

• Suboptimal error rate can be improved via postprocessing step (later)

LAD regression

• Least absolute deviation (LAD):

$$\widehat{\beta}_{LAD} \in \arg\min_{\beta} \left\{ \sum_{i=1}^{n} |y_i - x_i^T \beta| \right\}$$

LAD regression

• Least absolute deviation (LAD):

$$\widehat{eta}_{LAD} \in \arg\min_{eta} \left\{ \sum_{i=1}^{n} |y_i - x_i^T eta|
ight\}$$

• Karmalkar and Price (2019) established error bound for LAD when covariates satisfy ℓ_1 -stability:

$$\frac{1}{n}\sum_{i\in S}|x_i^Tv|\geq M, \quad \text{and} \quad \frac{1}{n}\sum_{i\notin S}|x_i^Tv|\leq m,$$

for all $|S| \ge (1-\epsilon)n$ and unit vectors v

LAD regression

• Least absolute deviation (LAD):

$$\widehat{eta}_{LAD} \in \arg\min_{eta} \left\{ \sum_{i=1}^{n} |y_i - x_i^T eta|
ight\}$$

• Karmalkar and Price (2019) established error bound for LAD when covariates satisfy ℓ_1 -stability:

$$\frac{1}{n}\sum_{i\in S}|x_i^Tv|\geq M, \quad \text{and} \quad \frac{1}{n}\sum_{i\notin S}|x_i^Tv|\leq m,$$

for all $|S| \ge (1 - \epsilon)n$ and unit vectors v

- Responses may be adversarially contaminated, but again, covariates are i.i.d. Gaussian
- Focus of that paper was ℓ_1 -penalized LAD

Suppose $\mathbb{E}|z_i| = \kappa$ and $n = \Omega(p \log p + \log(1/\tau))$. Then the filtered LAD regression algorithm with $\epsilon' = \Theta(1)$ satisfies

$$\|\widehat{\beta} - \beta^*\|_2 \precsim \kappa,$$

with probability at least $1 - \tau$.

• Suboptimal error rate can also be improved via postprocessing

Suppose $\mathbb{E}|z_i| = \kappa$ and $n = \Omega(p \log p + \log(1/\tau))$. Then the filtered LAD regression algorithm with $\epsilon' = \Theta(1)$ satisfies

$$\|\widehat{\beta} - \beta^*\|_2 \precsim \kappa,$$

with probability at least $1 - \tau$.

- Suboptimal error rate can also be improved via postprocessing
- Benefits of LAD estimator: no tuning parameter, only requires bounded first moment of error distribution (and does not even require z_i ⊥⊥ x_i or 𝔅(z_i) = 0)

• Suppose $\mathbb{E}[z_i^2] = \sigma^2$ and initial estimator \widehat{eta}_1 satisfies

$$\|\widehat{\beta}_1 - \beta^*\|_2 = O(\sigma)$$

• Suppose $\mathbb{E}[z_i^2] = \sigma^2$ and initial estimator \widehat{eta}_1 satisfies

$$\|\widehat{\beta}_1 - \beta^*\|_2 = O(\sigma)$$

• Apply filtering (mean estimation) to vectors $\left\{\widehat{\beta}_1 + (y_i - x_i^T \widehat{\beta}_1) x_i\right\}_{i=1}^n$

• Suppose $\mathbb{E}[z_i^2] = \sigma^2$ and initial estimator \widehat{eta}_1 satisfies

$$\|\widehat{\beta}_1 - \beta^*\|_2 = O(\sigma)$$

Apply filtering (mean estimation) to vectors {β₁ + (y_i - x_i^Tβ₁)x_i}ⁿ_{i=1}
 Output β has near-optimal error rates:

$$\|\widehat{\beta} - \beta^*\|_2 \precsim \sigma \left(\sqrt{\frac{p\log(pn)}{n}} + \sqrt{\frac{\log(1/\tau)}{n}} + \sqrt{\epsilon}\right)$$
Simulations: Huber + heavy-tailed data

• x_i 's and z_i 's sampled from Pareto distribution, $f(u) \propto \left(\frac{1}{|u|+1}\right)^{1+\alpha}$

- n = 200, p = 40, Huber parameter $\gamma = 0.5$
- Filter removes 10 points

Po-Ling Loh (University of Cambridge)

Simulations: LTS + heavy-tailed data

• LTS parameter $m \in \{10, 20\}$

Simulations: Adversarially contaminated, heavy-tailed data

- 20 points set to deterministic (large) outlying values
- Filter removes 30 points
- Huber parameter $\gamma = 0.5$, LTS parameter m = 30

- Showed that various classical robust regression estimators (Huber, LTS, LAD) can be made robust to heavy tails and adversarial contamination by **simple covariate filtering** step
- Filtered Huber regression leads to near-optimal rates in ϵ, p, τ, n
- Filtered LTS and LAD can be made near-optimal after **additional postprocessing** step

- Extension of filtering method to high-dimensional linear regression
- Unknown covariance Σ_x , relaxing independence assumption $x_i \perp\!\!\!\perp z_i$

- Loh (2021). Scale calibration for high-dimensional robust regression. *To appear in Electronic Journal of Statistics.*
- Pensia, Jog & Loh (2020). Robust regression with covariate filtering: Heavy tails and adversarial contamination. *arXiv preprint*.

Thank you!!