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Contact information

e Email:
zoltan (dot) szabo (at) polytechnique (dot) edu
o Web:
http://www.cmap.polytechnique.fr/~zoltan.szabo/
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Software (Python, Matlab)

@ Dependency measures (KCCA, HSIC), divergences (MMD), etc.;
several demos:

https://bitbucket.org/szzoli/ite-in-python
https://bitbucket.org/szzoli/ite/
@ 2-sample, independence & goodness-of-fit tests (quadratic —
linear-time methods):

https://github.com/wittawatj/interpretable-test
https://github.com/wittawatj/fsic-test
https://github.com/wittawatj/kernel-gof
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@ Motivation:

o Objective functions: from dependency measures.
o Testing.
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Motivation:

o Objective functions: from dependency measures.
o Testing.

Kernel, RKHS.

Kernel canonical correlation analysis.

Mean embedding:

o Characteristic property,
o Universality.

Maximum mean discrepancy.

Cross-covariance operator, HSIC.

Hypothesis testing.
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Dependency Measures as Objective Functions
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Outlier-robust image registration

[Kybic, 2004, Neemuchwala et al., 2007]

Given two images:

N

Goal: find the transformation which takes the right one to the left.
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Outlier-robust image registration

[Kybic, 2004, Neemuchwala et al., 2007]

Given two images:

N

Goal: find the transformation which takes the right one to the left.
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Outlier-robust image registration: equations

@ Reference image: Yief,

@ test image: Yiest,

@ possible transformations: ©.
Objective:

J(Q) = I(Yrefa)’test(e)) g rge%(,

similarity

In the example: |=KCCA.
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Independent Subspace Analysis [Cardoso, 1998]

Cocktail party problem:
e independent groups of people / music bands,

@ observation = mixed sources.
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ISA equations

Observation:
x; = Asy, s=[sl;...;sM].

Goal: § from {xi,...,x7}. Assumptions:
o independent groups: / (s!,...,sM) =0,
@ s™-s: non-Gaussian,

@ A: invertible.
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ISA solution

Find W which makes the estimated components independent:
y =Wx= [yl;...;yM]7

J(W):l(yl,...,yM>—>n\1Ailn.
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Distribution regression

[Péczos et al., 2013, Szabd et al., 2016]. Sustainability

@ Goal: aerosol prediction = air pollution — climate.

| S

@ Prediction using labelled bags:
e bag := multi-spectral satellite measurements over an area,

o label := local aerosol value.
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Objects in the bags

L, (e Series ot
WA A

@ Examples:
o time-series modelling: user = set of time-series,
e computer vision: image = collection of patch vectors,
o NLP: corpus = bag of documents,
o network analysis: group of people = bag of friendship graphs, ...
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Objects in the bags

L, (e Series ot
WA A

@ Examples:

o time-series modelling: user = set of time-series,

e computer vision: image = collection of patch vectors,

o NLP: corpus = bag of documents,

o network analysis: group of people = bag of friendship graphs, ...

e Wider context (statistics): point estimation tasks.
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Regression on

o Given:
o labelled bags: z = {(ﬁ’,-,y,-)}
o test bag: P.

14

oy p;: bag from P;, N := \IS,|
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Regression on

@ Given:

o labelled bags: z = {(ﬁ’,-,y,-)} P:: bag from P;, N := \P|

i=1'
o test bag: P.
@ Estimator:
A . 2
£ :arger}n{lnzzl 1[ y,] +AJFIZ

featu re of P,
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Regression on

o Given:
o labelled bags: z = {(P”y,)} , P;: bag from P;, N := |P;].
o test bag: P.

@ Estimator:

2
f = arg min — [ Hp. —y,-] + M| FI3 .
g s 1713

@ Prediction:

7(P) =gT(G+ oAl
g= [K(/J;S,/iﬁ,)]uG = [K(1p 1p)]sy = Lyil-
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Regression on

o Given:
o labelled bags: z = {(P”y,)} , P;: bag from P;, N := |P;].
o test bag: P.

@ Estimator:

2
f = arg min — [ Hp. —y,-] + M| FI3 .
g s 1713

@ Prediction:

7(P) =gT(G+ oAl
g= [K(uﬁ,uﬁ,)]aG = [K(1p 1p)]sy = Lyil-

Challenge

Inner product of distributions: K(,u,a,,,u,a.) =7
i J
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Feature selection

@ Goal: find

o the feature subset (# of rooms, criminal rate, local taxes)
e most relevant for house price prediction (y).
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Feature selection: equations

o Features: x!,...,x". Subset: S {1,...,F}.

e MaxRelevance - MinRedundancy principle [Peng et al., 2005]:

J(S) = |;Zl(xi,y) - |51|2 Z I(xi,xj) —  max

ijes Sc{1,...,F}

Zoltan Szabé Structured Data: Dependency, Testing



Testing
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Motivation: detecting differences in AM signals

o Amplitude modulation:
e simple technique to transmit voice over radio.
e in the example: 2 songs.

i A
i R
e ———
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Motivation: detecting differences in AM signals

o Amplitude modulation:
e simple technique to transmit voice over radio.
e in the example: 2 songs.

e Fragments from song; ~ P, song, ~ P,,.
Question: P, =P, 7 )




Motivation:

domain - 2-sample testing

@ How do we compare distributions?

e Given: 2 sets of text fragments (fisheries, agriculture).

x1: Now disturbing reports out of
Newfoundland show that the fragile snow
crab industry is in serious decline. First the
west coast salmon, the east coast salmon
and the cod, and now the snow crabs off
Newfoundland.

x2: To my pleasant surprise he responded
that he had personally visited those
wharves and that he had already
announced money to fix them. What
wharves did the minister visit in my riding
and how much additional funding is he
going to provide for Delaps Cove,
Hampton, Port Lorne, ...

y1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

y2: On the grain transportation system we
have had the Estey report and the Kroeger
report. We could go on and on. Recently
programs have been announced over and
over by the government such as money for
the disaster in agriculture on the prairies
and across Canada.
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Motivation:

domain - 2-sample testing

@ How do we compare distributions?

e Given: 2 sets of text fragments (fisheries, agriculture).

x1: Now disturbing reports out of
Newfoundland show that the fragile snow
crab industry is in serious decline. First the
west coast salmon, the east coast salmon
and the cod, and now the snow crabs off
Newfoundland.

x2: To my pleasant surprise he responded
that he had personally visited those
wharves and that he had already
announced money to fix them. What
wharves did the minister visit in my riding
and how much additional funding is he
going to provide for Delaps Cove,
Hampton, Port Lorne, ...

y1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

y2: On the grain transportation system we
have had the Estey report and the Kroeger
report. We could go on and on. Recently
programs have been announced over and
over by the government such as money for
the disaster in agriculture on the prairies
and across Canada.

Do {x;} and {y;} come from the same distribution, i.e. P, =P,? |
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Motivation:

domain - independence testing

@ How do we detect dependency? (paired samples)

x1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

x2: No doubt there is great pressure on
provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal
government to the provinces. In fact, we
have increased federal investments for early
childhood development.

y1: Honorables sénateurs, ma question
s'adresse au leader du gouvernement au
Sénat et concerne I'aide financiére qu'on a
annoncée pour les agriculteurs. La plupart
des agriculteurs n’ont encore rien reu de
cet argent.

y2: Il est évident que les ordres de
gouvernements provinciaux et municipaux
subissent de fortes pressions en ce qui
concerne les services de garde, mais le
gouvernement n'a pas réduit le
financement qu'il verse aux provinces pour
les services de garde. Au contraire, nous
avons augmenté le financement fédéral
pour le développement des jeunes enfants.
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Motivation:

domain - independence testing

@ How do we detect dependency? (paired samples)

x1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

x2: No doubt there is great pressure on
provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal
government to the provinces. In fact, we
have increased federal investments for early
childhood development.

y1: Honorables sénateurs, ma question
s'adresse au leader du gouvernement au
Sénat et concerne I'aide financiére qu'on a
annoncée pour les agriculteurs. La plupart
des agriculteurs n’ont encore rien reu de
cet argent.

y2: Il est évident que les ordres de
gouvernements provinciaux et municipaux
subissent de fortes pressions en ce qui
concerne les services de garde, mais le
gouvernement n'a pas réduit le
financement qu'il verse aux provinces pour
les services de garde. Au contraire, nous
avons augmenté le financement fédéral
pour le développement des jeunes enfants.

nothing to do with it, i.e. Pxy = Px ® Py?

Are the French paragraphs translations of the English ones, or haveJ
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We will use to tackle these problems

They exist essentially on any data type )
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We will use to tackle these problems

They exist essentially on any data type J

trees [Collins and Duffy, 2001, Kashima and Koyanagi, 2002], time

series [Cuturi, 2011], [Lodhi et al., 2002], mixture models,

hidden Markov models or linear dynamical systems

[Jebara et al., 2004], sets [Haussler, 1999, Gartner et al., 2002],
[Guevara et al., 2017],

[Hein and Bousquet, 2005, Martins et al., 2009,

Muandet et al., 2011], groups [Cuturi et al., 2005] with specific

constructions on [Jiao and Vert, 2016], graphs

[Vishwanathan et al., 2010, Kondor and Pan, 2016], . ..
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Kernel Canonical Correlation Analysis

(KCCA)
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Independence measures

e Given: random variable (x,y) € X x Y, (x,y) ~ Pyy.

@ Goal: measure the dependence of x and y.

Zoltan Szabé Structured Data: Dependency, Testing



Independence measures

@ Given: random variable (x,y) € X x ), (x,y) ~ Py,

@ Goal: measure the dependence of x and y.
@ Desiderata for a Q(Py,) independence measure [Rényi, 1959]:
1. Q(Pyy) is well-defined,
2. Q(Py) €[0,1],
3. (Xy)—OlffXJ_y
4. Q(Py) =1iff. y = f(x) or x = g(y).
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Independence measures

@ He showed:

QPxy) = sup  corr(f(x),g(y)),
f,g: measurable
satisfies 1-4.
@ Too ambitious:

e computationally intractable.
e many measurable functions.
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Independence measures: measurable — continuous

o Cp(X) ={f: X metric > R, bounded continuous} would
also work.

o Still too large!
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Independence measures: measurable — continuous

o Cp(X) ={f: X metric > R, bounded continuous} would
also work.
o Still too large!

o ldea:
o certain RKHS-s are dense in Cp(X).
e computionally tractable.
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KCCA: definition

@ Given: k : X xX >R, /:YxY—->R.
@ Associated:

o feature maps ¢(x) = k(-,x), ¥(y) = £(-,y),
e RKHS-s ﬂ'fk, j‘f[.

Zoltan Szabé Structured Data: Dependency, Testing



KCCA: definition

@ Given: k : X xX >R, /:YxY—->R.
@ Associated:

o feature maps ¢(x) = k(-,x), ¥(y) = £(-,y),
e RKHS-s ﬂ'fk, j‘f[.

o KCCA measure of (x,y) e X x Y
preca(x, y; Hi, Hg) = sup  corr(f(x),g(y)),
feHy,geH,
_covy(f(x),8(y))
\/varx f(x) varyg(y)'

corr(f(x), g(y))

Zoltan Szabé Structured Data: Dependency, Testing



KCCA: notes

Optimization domain: H, x H,; > (f, g).
By reproducing property: we will get a finite-D task.
k¢ linear: traditional CCA.

In practice: we have {(xn,yn)}N_; samples from (x, y).
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KCCA: notes

Optimization domain: H, x H,; > (f, g).
By reproducing property: we will get a finite-D task.
k¢ linear: traditional CCA.

In practice: we have {(xp, yn)}V

neq samples from (x,y).

Recall the reproducing property

f(X) = <fa k('7x)>j{k Vi e Hy,xe X.
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KCCA: empirical estimate

[f<xn>—A1Vi=§N]1f<x,-> I[ &tvm) - i ) |

oV (F(x), &) = &

H
L0=

n=
J

v

(f,so(Xn)*%Z,'-\LlsO(XiDHk (g4 (vn)—5 2Ly ()>M
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KCCA: empirical estimate

==

3

J

N 1 N N
6OV (F(x). (1)) = 2[ (a) =7 D, Fx) || glm) = Z ) |
i=1 i=1

v

(,so(Xn)f%Z,'-\LlsO(X;DHk (g0 ()= Lita ¥ (0))

I
=~
1=

(F, (%)) 3¢, (8 D (Vi) g,

3
Il
_

Zoltan Szabé Structured Data: Dependency, Testing



KCCA: empirical estimate

COVxy (F (),

= \

3

N 1 N
2[ COREDNI®)
i=1

J

I[ -3 260 |

(,so(Xn)f%Z,'-\LlsO(X;DHk (g0 ()= Lita ¥ (0))

Hp <g7 7/;(Yn)>g{£a
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KCCA: empirical estimate

v v v
&V (F(x), Ng[ n)—,i,i;f(x;) || &0m - ; ) |
(s ,@(Xn)*%glf\lzlv(xi»;k (0 0m—4 S 0l >>;£
_ % nzl_v]l (F, 30)) 3q, (8D (¥n) ) g,
Similarly _
T (x) = ,1& ()~ & ﬁ )| = ,ﬁ (7, B0,
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KCCA: empirical estimate

N ;N N
it s~ S - 0 | stoa-4 35 |
n=1 i=1 i=1
(,so(Xn)*%i'-\LlsO(XiDHk (g:0(yn)— EIN_ Vi) g,
N
Z 30, (& D () ) g,
Similarly:
N N 2 1N
NZ[ Zlax,)] = 2 (Bl
- - -
Varyg NZ g, Uyn
=1
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KCCA: empirical estimate

o f: appears only as (f, 3(xn))g, [similarly: g in <g7/@(yn)>w]. =
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KCCA: empirical estimate

o f: appears only as (f, 3(xn))g, [similarly: g in <g7/@(yn)>w]. =
@ V component of f |

N
Span <{S5(Xn)}rl)l:1) = {Z cnp(xn), € = [cn] € ]RN}
n=1

has no affect in the objective.
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KCCA: empirical estimate

o f: appears only as (f, $(xn))q, [similarly: g in <g71/3(y,,)>w]. =
@ V component of f |

N
Span <{95(Xn)}rl)l:1) = {Z cnp(xn), € = [cn] € ]RN}
n=1

has no affect in the objective.

Key idea

Enough to consider f = Z,N:l cip(xi), g = vazl didb(yi).
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KCCA: empirical estimate

Using that £ = S, (), & = I didb(v):

N

(f, &(xa))a, = 2, €i (P(xi), Bxn))g,
i=1
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KCCA: empirical estimate

Usmgthatf—Z, 1GP(xi), g = Z, 14 i(yi):

N N
(F, B0n))ge, = D, G {B(xi), Bxn))aq, = 2, Gik(xi, Xn)
i=1

i=1
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KCCA: empirical estimate

Usmgthatf—Z, 1GP(xi), g = Z, 14 i(yi):

N
<f795(xn>>:}{k = Z Ci <S5(Xi)’85(xn)>}ck = Z Ci/;(xiaxn) = (CTGX),,,

i=1
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KCCA: empirical estimate

Usmgthatf—Z, 1GP(xi), g = Z, 14 i(yi):

< Z ZC/ X,,Xn = cTéx)na

<g7 Yn >9'fe ( )

with the centered kernels (k, 7) and Gram matrices (G, G,).

All the objective terms can be expressed by c, d, G,, Gy.
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KCCA: empirical estimate

OV (F(X), =5 2 B0xn) )3, (€5 D (¥n)) g,
n=1
N 1 N .
varyf =N Z Varyg(y) N Z <g,'l/)(yn)>3{ 2

and we have

<f7¢7(Xn)>9{k = (CTGx)m <g7/4;()/n)>g{ = (dTéy)n-

Zoltan Szabdé Structured Data: Dependency, Testing



KCCA: empirical estimate

COVy (f(x), =N 2 P(xn)) 3, (g, U(yn)> 5,
n=1
N 1 N B
Varx N Z Varyg(y) N Z:l<g7,l/)(yn)>j{£27
n=1 n=
and we have
(F. 2(xn)) 5, = (€7 Gl (g8, 0(yn))ge, = (AT Gy,
Thus
]. T~ ~
COVX}/(f(X)’g(y)) = Nc GxGyda
1 ~ 1 o
varyf(x) = NCT(GX)QC, var,g(y) = NdT(Gy)2d.
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KCCA: finite-D form

Empirical estimate of KCCA:

Preca P (x, v Hi, He) = sup = = :
ceRN deRN \/CT(GX)2C\/dT(Gy)2d
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KCCA: finite-D form

Empirical estimate of KCCA:

Preca P (x, v Hi, He) = sup = = :
ceRN deRN \/CT(GX)2C\/dT(Gy)2d

In practice (k > 0):

@(va) = pK/éC\A(Xay;:H:kv}cfvﬁ’)

= sup :
ceRN deRV \/CT(GX + H'N)2C\/dT(éy + ’ilN)zd
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KCCA: finite-D form

Empirical estimate of KCCA:

Preca P (x, v Hi, He) = sup = = :
ceRN deRN \/CT(GX)26\/dT(Gy)2d

In practice (k > 0):

@(va) = @(Xay;}fkv}cfvﬁ’)

= sup :
ceRN deRV \/CT(GX + H'N)2C\/dT(éy + ’ilN)zd

How do we solve it?
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KCCA: solution

Stationary points of pkcca(x,y):

0 = 9Preca(x:y) 0 = JPreca(x,y)
oc ’ od ’
which simplifies to

g &q_ GGG +rne & o  (d7G,6x)(G, + rln)*d
g cT(Gy +rly)2c 7
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KCCA: solution

Stationary points of pkcca(x,y):

0 = 9Preca(x:y) 0 = JPreca(x,y)
oc ’ od ’
which simplifies to

g &q_ GGG +rne & o  (d7G,6x)(G, + rln)*d
g cT(Gy +rly)2c 7

Normalization:
@ (c,d): solution = (ac, bd): solution a, b e R, # 0.

@ denominators := 1.
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KCCA: final task

Find the maximal eigenvalue, A\ := cTéxéyd, of the generalized
eigenvalue problem:

[Gyoéx éxoéy] [z] _(TE,&,d {(éx +0/€|N)2 " +0m,\,)2] [z]

Az = \Bz.
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KCCA as an independence measure

If x Ly, then pkcea(x,y; Hi, He, k) = 0. Opposite direction:
@ For 'rich” Hy, H,
[Bach and Jordan, 2002, Gretton et al., 2005b].
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KCCA as an independence measure

If x Ly, then pkcea(x,y; Hi, He, k) = 0. Opposite direction:
@ For 'rich” Hy, H,
[Bach and Jordan, 2002, Gretton et al., 2005b].

@ Enough: universal kernel on a compact metric domain (later).
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KCCA as an independence measure

If x Ly, then pkcea(x,y; Hi, He, k) = 0. Opposite direction:
@ For 'rich” Hy, H,
[Bach and Jordan, 2002, Gretton et al., 2005b].
@ Enough: universal kernel on a compact metric domain (later).
e Example (y > 0):
o Gaussian: k(x,x') = e =1,

o Laplacian kernel: k(x,x’) = e‘”HX—X/||2_
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KCCA: regularization

In fact, we estimated

prcca(X, Y Hi, He, k) = sup  corr(f(x),g(y); k),
fE}fk,ng'fg

covyy (f(x),8(y))
corr((x), gy); k) = - :
\Jvare £00) + 5 [ vary g(y) + 5 el
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KCCA: regularization

In fact, we estimated

prcca(X, Y Hi, He, k) = sup  corr(f(x),g(y); k),
fE}fk,ng'fg

covyy (f(x),8(y))
corr((x), gy); k) = - :
\Jvare £00) + 5 [ vary g(y) + 5 el

@ Regularization is important: With k =0, A€ {0, £1} =
preca (X, y; Hi, He, k) =1

would be data-independently [Gretton et al., 2005b],
[Bach and Jordan, 2002].
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KCCA: regularization

In fact, we estimated

prcca(X, Y Hi, He, k) = sup  corr(f(x),g(y); k),
fE}fk,ng'fg

covyy (f(x),8(y))
corr((x), gy); k) = - :
\Jvare £00) + 5 [ vary g(y) + 5 el

@ For consistent KCCA estimate:

o ry — 0 [Leurgans et al., 1993](spline-RKHS),
[Fukumizu et al., 2007] (general RKHS).
e analysis: covariance operators (later).
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KCCA: symmetry, other form

For

([c,d], A) solution = ([—c;d], —A): solution. Thus, eigenvalues:

(A, =ALs - A, —An
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KCCA: symmetry, other form

For

([c,d], A) solution = ([—c;d], —A): solution. Thus, eigenvalues:
{A17 _)\17 ey AN7 _)\N}

Adding the r.h.s. to both sides:

“aa” el e[S 6 ]l

with eigenvalues {1 + A1,1— Aq,..., 14+ Ay, 1 — Ay}
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KCCA: M-variables

2-variables [(x,y)]:

[(Cxétglmz <Gyc+xifm2] HEER [(GX PR I
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KCCA: M-variables

2-variables [(x,y)]:

[(Cxétglmz <Gyc+€fm2] HEER [(GX PR I

For M-variables (pairwise dependence):

(élj‘ ﬁlN)z . éléz 919/\// C1
G>G; (G2 + I<L|N)2 - GGy C2
GMél G[\/]é2 ces (GM + Iil/\/)2 Cm
(Gy + Kly)? 0 0 c
0 (G2 + H'N)z 0 C>
Y .
0 0 (GM+"3IN)2 Cm
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Centered Gram matrix

Gx = HG H with H = Iy — & H; Ey e RVXV,

(Gx)u = /;(Xi’xj) = <95(XI)795(XJ)>9{

k
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Centered Gram matrix

Gx = HG H with H = Iy — & H; Ey e RVXV,
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Centered Gram matrix

Gx = HG H with H = Iy — & H; Ey e RVXV,

(Gx)j = k(xi, %) =

A
—~
X
Ay
—~
X
N~—
~——
S

1o Y
= (p(x) = 3 2 @), 0() = 15 D 9lxm) ),
n=1 m=1
1o 1Y 1 Y
= (GX)IJ - N Z (Gx)lm - N Z (G )ni + > 2 (Gx)nm
m=1 n=1 n,m=1
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Centered Gram matrix

Gx = HG H with H = Iy — & H; Ey e RVXV,

(Gx)j = k(xi, %) =

A
—~
X
Ay
—~
X
N~—
~——
S

1Y 1
= <90(X/) - N Z SO(Xn)7 SO(XJ) - N Z @(Xm)>j{k
n=1 m=1
1 1 1
= (GX)IJ Y Z (Gx)lm v Z (G )ni + 2 2 (Gx)nm
N m=1 N n=1 n,m=1
B Ev En Ev . En
B <GX N A A Y GXN)U’
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Centered Gram matrix

Gx = HG H with H = Iy — & H; Ey e RVXV,

(Gx)j = k(xi, %) =

A
—~
X
Ay
—~
X
N~—
~——
S

1Y 1
= <90(X/) - N Z SO(Xn)ﬂO(XJ) - N Z @(Xm)>j{k
n=1 m=1
1 1 1
= (GX)IJ Y Z (Gx)lm v Z (G )ni + 2 2 (Gx)nm
N m=1 N n=1 n,m=1
Env Ep Ev . En
“(o-e 5o Te i)

H: symmetric (H = HT), idempotent (H? = H).



KCCA: finished.
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Mean embedding
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Mean embedding: pioneers

@ Nonparametric probability distribution representation.

@ Late 70s-; survey in [Berlinet and Thomas-Agnan, 2004].
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Mean embedding: pioneers

@ Nonparametric probability distribution representation.
@ Late 70s-; survey in [Berlinet and Thomas-Agnan, 2004].

@ Pioneers in ML: Bharath Sriperumbudur, Arthur Gretton,
Kenji Fukumizu, Alex Smola, Bernhard Scholkopf, Le Song.
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Mean embedding: further pointers

@ Names+: Ingo Steinwart, Francis Bach, Dino Sejdinovic,
Wittawat Jitkrittum, Krikamol Maundet, Kacper P.
Chwialkowski, llya Tolstikhin, Carl Johann Simon-Gabriel,
David Lopez-Paz, Dougal Sutherland, Aaditya Ramdas,
Karsten Borgwardt, Me;)
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Mean embedding: further pointers

@ Names+: Ingo Steinwart, Francis Bach, Dino Sejdinovic,
Wittawat Jitkrittum, Krikamol Maundet, Kacper P.
Chwialkowski, llya Tolstikhin, Carl Johann Simon-Gabriel,
David Lopez-Paz, Dougal Sutherland, Aaditya Ramdas,
Karsten Borgwardt, Me;)

e Wiki: https://en.wikipedia.org/wiki/Kernel_
embedding_of_distributions.
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https://en.wikipedia.org/wiki/Kernel_embedding_of_distributions
https://en.wikipedia.org/wiki/Kernel_embedding_of_distributions

Mean embedding: further pointers

@ Names+: Ingo Steinwart, Francis Bach, Dino Sejdinovic,
Wittawat Jitkrittum, Krikamol Maundet, Kacper P.
Chwialkowski, llya Tolstikhin, Carl Johann Simon-Gabriel,
David Lopez-Paz, Dougal Sutherland, Aaditya Ramdas,
Karsten Borgwardt, Me;)

e Wiki: https://en.wikipedia.org/wiki/Kernel_
embedding_of_distributions.

@ Recent review: [Muandet et al., 2017].
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Towards representations of distributions:

@ Given: 2 Gaussians with different means.

@ Solution: t-test.

Two Gaussian variables: different means
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Towards representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.
@ ldea: look at the 2nd-order features of RVs.

Two Gaussian variables: different variances

0.4

0.3}

0.1
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Towards representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.
@ ldea: look at the 2nd-order features of RVs.

o ¢, = x? = difference in EX2.

Two Gaussian variables: different variances Pdf-s of X2
0.4 " 1.4 .

03 Ui H H
o 08 : :
3502 8 . .
= 0.6/ : :
0.4 E :
0.1t ' H
0.2 h '

0 -1 : 0 1 2

-6 -4 -2 0 2 4 6 10 10 10 10
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Towards representations of distributions:

@ Setup: a Gaussian and a Laplacian distribution.
@ Challenge: their means and variances are the same.

o ldea: look at higher-order features.

Gaussian & Laplacian variables
0.7

0.5¢

0.4f

pdf

0.3f
0.2f

0.1

Let us consider feature representations! J
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From to

@ Recall:
o ¢(x) € Hy: feature of x € X.
o Kernel: k(x,x") = (p(x), (X)), -
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From to

@ Recall:

o ¢(x) € Hy: feature of x € X.

o Kernel: k(x,x") = (p(x), (X)), -
@ Mean embedding:

o Feature of IP:

e = Exp[p(x)] € Hy.

o Inner product: (up, no)q, = Exop~ok(x,x).
Hpy HQ/ g, Q
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From to

@ Recall:

o ¢(x) € Hy: feature of x € X.

o Kernel: k(x,x") = (p(x), (X)), -
@ Mean embedding:

o Feature of IP:

e = Exp[p(x)] € Hy.

o Inner product: (up, no)q, = Exop~ok(x,x).
Hpy HQ/ g, Q

o up: well-defined for all distributions (bounded k).
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From to

@ Recall:

o ¢(x) € Hy: feature of x € X.

o Kernel: k(x,x") = (p(x), (X)), -
@ Mean embedding:

o Feature of IP:

pp = Ex~p[o(x)] € Hi.
o Inner product: </1,P,/1/Q>:Hk = Exp x~0k(x, x).

o up: well-defined for all distributions (bounded k).

Commonly used construction

pup = Exp[p(x)]. Indeed. ..
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Distribution Representation via Functions

@ Cumulative density function:

P— F(z) =P(x < 2)
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Distribution Representation via Functions

@ Cumulative density function:

P— F(z) = P(x < z) = Ex<pX(—o0,2)(X)-
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Distribution Representation via Functions

@ Cumulative density function:
P— F(z) = P(x < z) = Ex<pX(—o0,2)(X)-

@ Characteristic function:

P gf)p(z) = fei<z’x>dP(X).
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Distribution Representation via Functions

@ Cumulative density function:
P— F(z) = P(x < z) = Ex<pX(—o0,2)(X)-

@ Characteristic function:
P gf)p(z) = fei<z’x>dP(X).
@ Moment generating function:

P Mp(z) = f e dP ().
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Distribution Representation via Functions

@ Cumulative density function:
P— F(z) = P(x < z) = Ex<pX(—o0,2)(X)-

@ Characteristic function:
P gf)p(z) = fei<z’x>dP(X).
@ Moment generating function:

P Mp(z) = f e dP ().

P g = § 0(x)dP(x)
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Distribution Representation via Functions

@ Cumulative density function:
P— F(z) = P(x < z) = Ex<pX(—o0,2)(X)-
o Characteristic function:
P ¢p(z) = f e FX dP(x).
@ Moment generating function:

P Mp(z) = f e dP ().

P — pup = {1 o(x)dP(x), in our case: ¢(x) = k(-, x).
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Bochner integral: quick summary [Diestel and Uhl, 1977,

Dinculeanu, 2000, Steinwart and Christmann, 2008|

(X,.A, u): o-finite measure space,
f: (X, A) — B(anach space)-valued measurable function.
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Bochner integral: quick summary [Diestel and Uhl, 1977,

Dinculeanu, 2000, Steinwart and Christmann, 2008|

o Given:
o (X, A, u): o-finite measure space,
o f: (X, A) — B(anach space)-valued measurable function.

e For f =", cixa, (Ai € A, ¢ € B) measurable step functions

J fdu:= Y ciu(A) € B.
x i=1
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Bochner integral: quick summary [Diestel and Uhl, 1977,

Dinculeanu, 2000, Steinwart and Christmann, 2008|

o Given:
o (X, A, u): o-finite measure space,
o f: (X, A) — B(anach space)-valued measurable function.

e For f =", cixa, (Ai € A, ¢ € B) measurable step functions

J fdu:= Y ciu(A) € B.
x i=1

@ f measurable function is Bochner p-integrable if

e 3 (f,) measurable step functions: lim,_,q SX |f —fo]gdp = 0.
o In this case lim,_,o §, fodpu exists, =: §, fdu.
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Bochner integral: properties

o f: X — B is Bochner integrable < .. |[f]|gdu < .
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Bochner integral: properties

o f: X — B is Bochner integrable < .. |[f]|gdu < .
o In this case [, fdu|z < S |fllgdu. ('Jensen inequality’)
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Bochner integral: properties

o f: X — B is Bochner integrable < .. |[f]|gdu < .

o In this case [, fdu|z < S |fllgdu. ('Jensen inequality’)
o If

e S: B — By: bounded linear operator,
e f : X — B: Bochner integrable, then

Sof : X — By is Bochner integrable and

([ an) - [ s
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Bochner integral: properties

o f: X — B is Bochner integrable < .. |[f]|gdu < .

o In this case [, fdu|z < S |fllgdu. ('Jensen inequality’)
o If

e S: B — By: bounded linear operator,
e f : X — B: Bochner integrable, then

Sof : X — By is Bochner integrable and

([ an) - [ s

|§ fdp| < §|f|dp and c§ fdp = § cfdp generalize nicely.
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Mean embedding: 4,

Given:
e (X, A) measurable space,
@ k: X xX — R kernel.

pp = § 3 k(-, x)dP(x) exists, up € Hy, and

Pf := Expf(x) = (f, up)g, VF € Hi

under mild conditions:
o E, .py/k(x,x) < o0, and

e y — k(y,x) is measurable for any x € X.
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Existence of up: proof

o 3§, k(-,x)dP(x) (& € Hy)

w0 > L{ Ik (-, %) [lg¢, dP(x) = Ex~pr/k(x, ).

Zoltan Szabé Structured Data: Dependency, Testing



Existence of up: proof

o 3§, k(-,x)dP(x) (& € Hy)

w0 > L{ Ik (-, %) [lg¢, dP(x) = Ex~pr/k(x, ).

® Eupf(x) = Exnp (F, k(- x))gq, = (F, Exnpk (- x))gq, =
(f, 1p)gq, by
e reproducing property of k,
o g€ Hy— (f,g) € R: bounded linear (S « §).
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Existence of up: proof

o 3§, k(-,x)dP(x) (& € Hy)

w0 > L{ Ik (-, %) [lg¢, dP(x) = Ex~pr/k(x, ).

® Eupf(x) = Exnp (F, k(- x))gq, = (F, Exnpk (- x))gq, =
(f, pp)ge, by
e reproducing property of k,
o g€ Hy— (f,g) € R: bounded linear (S « §).

@ Measurability of x € X — k(-,x) € Hy: < y — k(y,x) is
measurable Vx [Berlinet and Thomas-Agnan, 2004].
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Mean embedding: specific cases

For
o k(x,x') = e**): p = moment generating function of P.
o k(x,y) = e/™¥): up = characteristic function of P.
o Only formally: k(x,y) = k(y,x)* fails.
o P =0y, up = k(- x).
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Mean embedding: conditions

Condition:
@ y — k(y,x) is measurable Vx: super-mild.

o £, py/k(x,x) < oo: holds for bounded kernels, i.e. when

sup k(x,x") < Bx < 0.
x,x'eX
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Mean embedding: empirical estimate

o up: typically analytically not available.

- . j.i.d.
o Empirical estimate: from {x;}7_, "< P

1
fp = — ;k(-,xi) = up, € Hy,

where P,, = %27:1 dx; is the empirical measure.
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Empirical mean embedding: finite-sample guarantees

Theorem ([Altun and Smola, 2006])

For a k bounded kernel [sup, ,cx k(x,y) < Bx], with probability
=N

[1 + 4/log (%)] v2By
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Finite-sample guarantee: proof idea

® g(x1,...,%n) = |ltp — pip, [ 4¢,: bounded difference property =
@ McDiarmid inequality: concentration around Eg.

o Eg < expected kernel values (B appears).
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Finite-sample guarantee: note

Alternative of

|1+ /108 (3)| V2B
]P) H/’L]P - /’LPan‘fk < \/E 2 1 - 6

Directly by the Bernstein inequality [Caponnetto and De Vito, 2007]:

P(!up—uwnllm 2\/7[ +|og<§>]>>l—5

would give a bit worse dependence.
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MMD: preview

@ Mean embeddings define a semi-metric (MMD):

di(P, Q) := llpp — pally, -
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MMD: preview

@ Mean embeddings define a semi-metric (MMD):

di(P, Q) := llpp — pally, -

@ dy is metric & P — pup is injective.
o Characteristic kernel [Fukumizu et al., 2004, Fukumizu et al., 2008]:

e characteristic function analogy.
o L-order polynomial kernel: encodes moments < L. (not)
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Mean embedding: universality (k)
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Universal kernel

Let C(X) = {f : X — R continuous}.

Definition

Assume:
e X': compact metric space.
@ k: continuous kernel on X.

k is called (c)-universal [Steinwart, 2001] if Fx is dense in
(C(X), ] - lloo)-

.
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Universal kernel

Let C(X) = {f : X — R continuous}.

Assume:

e X': compact metric space.
@ k: continuous kernel on X.

k is called (c)-universal [Steinwart, 2001] if Fx is dense in
(C(X), ] - lloo)-

X assumption =
C(X) = Cp(&X) = {f : X — R continuous bounded}
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Universal kernel

Hyx < C(X)? Non-compact spaces?

Notes:

@ k: continuous, X: compact = k: bounded.

@ k: continuous, bounded = H; < C(X)
[Steinwart and Christmann, 2008].
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Universal kernel

Hyx < C(X)? Non-compact spaces? J

Notes:

@ Extensions of c-universality to non-compact spaces:

e cp-universality, cc-universality,
... [Carmeli et al., 2010, Sriperumbudur et al., 2010a,
Simon-Gabriel and Schdlkopf, 2018].
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k: universal = k: characteristic

> 3 different proof options:

@ [Micchelli et al., 2006]: k is c-universal < 1 is injective on
Mp(X), the set of finite signed Borel measures on X'.
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k: universal = k: characteristic

> 3 different proof options:

@ [Micchelli et al., 2006]: k is c-universal < 1 is injective on
Mp(X), the set of finite signed Borel measures on X'.

@ Direct reasoning [Gretton et al., 2012].
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k: universal = k: characteristic

> 3 different proof options:

@ [Micchelli et al., 2006]: k is c-universal < 1 is injective on
Mp(X), the set of finite signed Borel measures on X'.

@ Direct reasoning [Gretton et al., 2012].

© Denseness of Hy + R in L2(P)
[Fukumizu et al., 2008, Fukumizu et al., 2009a].
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k: universal = k: characteristic

> 3 different proof options:

@ [Micchelli et al., 2006]: k is c-universal < 1 is injective on
Mp(X), the set of finite signed Borel measures on X'.

@ Direct reasoning [Gretton et al., 2012].

© Denseness of Hy + R in L2(P)
[Fukumizu et al., 2008, Fukumizu et al., 2009a].

Let us construct some examples first! (then prove 1-2) J
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Properties of universal kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

If k is universal, then

@ k(x,x) >0 forall xe X.
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Properties of universal kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

If k is universal, then
@ k(x,x) >0 forall xe X.

@ Every restriction of k to an X’ € X compact set is universal.
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Properties of universal kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

If k is universal, then
@ k(x,x) >0 forall xe X.

@ Every restriction of k to an X’ € X compact set is universal
e o(x) = k(-,x) is injective, i.e.

pk(x,y) = |o(x) = @(¥)lla,

is a metric.
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Properties of universal kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

If k is universal, then
@ k(x,x) >0 forall xe X.
@ Every restriction of k to an X’ € X compact set is universal.

e o(x) = k(-,x) is injective, i.e.

pk(x,y) = |o(x) = @(¥)lla,

is a metric.

@ The normalized kernel (recall: corr)

T L k(va)
Koor) = e k)

is universal.
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Universal Taylor kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

@ Foran C®sf :(—r,r) >R
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Universal Taylor kernels
[Steinwart, 2001, Steinwart and Christmann, 2008]

@ Foran C®sf :(—r,r) >R

f(t) = i ant" te(—r,r), re(0,00].
n=0

o If a, > 0 Vn, then

k(x,y) = f({(x,y))

is universal on X := {x e RY : |x||, < 4/r}.
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Universal kernels on compact subsets of R?, o > 0

o k(x,y) = e*>¥): previous result with f(t) = et = a, = %?
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Universal kernels on compact subsets of R?, o > 0

a’

o k(x,y) = e*>¥): previous result with f(t) = et = a, = o

2
o k(x,y) = e ?*=¥l2: exp. kernel & normalization.
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Universal kernels on compact subsets of R?, o > 0

@ k(x,y) = (1—(x,y))~® binomial kernel
e on X compact = {x e R? : | x|, < 1}.

o (0= (-0 = Sy ()2 (e <1)
0

where (1) = Y7y 2=
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Universal = characteristic: proof-1

Injectivity on finite signed measures (proof):

@ k: universal = H is dense in C(X).
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Universal = characteristic: proof-1

Injectivity on finite signed measures (proof):
@ k: universal = H is dense in C(X).

e Hahn-Banach theorem [Rudin, 1991]: Let H be a subspace of
a normed space C. H is dense in C iff.

{0} = H- .= {Fe C':VfeH, }.
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Universal = characteristic: proof-1

Injectivity on finite signed measures (proof):
@ k: universal = H is dense in C(X).

e Hahn-Banach theorem [Rudin, 1991]: Let H be a subspace of
a normed space C. H is dense in C iff.

{0} = H- .= {Fe C':VfeH, }.

@ Denseness <

{0} = Hi = {Fe C(X) :VFf € Hy, =L de}
=M, (X) ~——
<fnU‘]F>J-Ck
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Universal = characteristic: proof-1

Injectivity on finite signed measures (proof):
@ k: universal = H is dense in C(X).

e Hahn-Banach theorem [Rudin, 1991]: Let H be a subspace of
a normed space C. H is dense in C iff.

{0} = H- .= {Fe C':VfeH,

—~—

@ Denseness <

{0} = Hi = {Fe C(X) :VFf € Hy, =L de}
=M, (X) ~——
<fnU‘]F>9-Ck

Z{FEM/J(X):MFZO}.
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Universal = characteristic: proof-2

Direct reasoning: We have already 'mentioned’ [Dudley, 2004]:
o Let X: metric space, P,Q € M (X).
@ Then P = Q (Borel probability measures) <

Pf = Qf (= | f(x)dQ(x)) VFfe Co(X).
X

We have a characterization of P = QQ in terms of expectations. J
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Universal = characteristic: proof-2

e Goal: up = pgp = P =Q [« Pf =Qf, Vf € Cp(X)].
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Universal = characteristic: proof-2

e Goal: up = pgp = P =Q [« Pf =Qf, Vf € Cp(X)].
?
e We want: for any f € Cp(X') and € > 0, |[Pf — Qf| < e.
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Universal = characteristic: proof-2

e Goal: up = pgp = P =Q [« Pf =Qf, Vf € Cp(X)].

?
e We want: for any f € Cp(X') and € > 0, |[Pf — Qf| < e.
e Universality of k = Jy is dense in Cp(X).
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Universal = characteristic: proof-2

e Goal: up = pgp = P =Q [« Pf =Qf, Vf € Cp(X)].

?

e We want: for any f € Cp(X') and € > 0, |[Pf — Qf| < e.
e Universality of k = Jy is dense in Cp(X).

o Hy > g:= e-approximation of f,

[Pf — Qf| < |Pf —Pg| +|Pg — Qg| + |Qg — Qf|,
— — —

——
<P|f—g|<e <e
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Universal = characteristic: proof-2

e Goal: up = pgp = P =Q [« Pf =Qf, Vf € Cp(X)].

?

e We want: for any f € Cp(X') and € > 0, |[Pf — Qf| < e.
e Universality of k = Jy is dense in Cp(X).

o Hy > g:= e-approximation of f,

[Pf — Qf| < |Pf —Pg| +|Pg — Qg| + |Qg — Qf|,
— — —

<P|f—g|<e __;/E__
Pg — Qg| = [ (g, up)g, — (& 1Q)g, |= 0. Thus [Pf — Qf| < 2e.

(gpp = 1o ),

=0
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Universality: finished. Now: characteristic
property.
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

2

BP.Q) = e — = | [ k(00070 - | Kpae)

Hy
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

2

BP.Q) = e — = | [ k(00070 - | Kpae)

=(a—b,a—b)y,

Hy
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

2

(B, Q) = |z — polly, = ' [ ka6 = [ ki
=(a—b,a—b)y,
= (up, pip)gq, + (HQ: HQ)ge, — 2 (1P, HQ) g, »

Hy
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

2

(B, Q) = |z — polly, = ' [ ka6 = [ ki
=(a—b,a— b)%k
= (pp, 1), + (HQ, BQ)g, — 2 (1P, BQ) g, >

L{J (x, x")dP(x)dP(x JJ (y,y)dQ(y)dQ(y")
—2JJ (x, y)dP(x)dQ(y

Hy
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

2

(B, Q) = |z — polly, = ' [ ka6 = [ ki
=(a—b,a— b)%k
= (pp, 1), + (HQ, BQ)g, — 2 (1P, BQ) g, >

jf (x, x")dP(x)dP(x JJ (y,y)dQ(y)dQ(y")
—2JJ (x, y)dP(x)dQ(y

:LL (x,Y)d(P — Q)(x)d(P — Q)(y).

Hy
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= Polynomial kernels are not characteristic

[Sriperumbudur et al., 2010b]:
@ k(x,y) = (x,y): linear kernel (L =1).

Z(B,Q) = |mp — mgl2,  mp= L xdP(x).

Zoltan Szabdé Structured Data: Dependency, Testing



= Polynomial kernels are not characteristic

[Sriperumbudur et al., 2010b]:
@ k(x,y) = (x,y): linear kernel (L =1).

Z(B,Q) = |mp — mgl2,  mp= L xdP(x).

o k(x,y) = ({x,y) + 1)? (L = 2):
2
(P, Q) = 2|me — mol} + |To — Tq + memd — mm{| .

where |-|z: Frobenious norm; Xp: cov. matrix w.r.t. IP.
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Characteristic property

Well-understood for

@ Continuous bounded shift-invariant kernels on R¢:

k(x,y) = ko(x —y), ko € Cb(Rd).
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Characteristic property

Well-understood for

@ Continuous bounded shift-invariant kernels on RY:
k(x,y) = ko(x — y), ko € Cp(RY).
@ Continuous bounded radial kernels on RY:
k(x,y) = ko([x = yl), ko € Co(RY),

ko(z) = f e du(t)
[0.%0)

v e M} [0,00), i.e. it is a finite measure on [0, %0).
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Bochner's theorem

We focus on continuous bounded shift-invariant kernels: )

Theorem (Bochner's theorem [Wendland, 2005], k < A)

fo(2) = | e7ieldnw),
Rd

where N is a finite Borel measure (w.l.0.g. probability).
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MMD in terms of characteristic functions

Using Bochner's theorem:

BP0 = [ | Kxyd®-QxaE-2))
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MMD in terms of characteristic functions

Using Bochner's theorem:

BP0 = [ | Kxyd®-QxaE-2))
- L L eraneiate - 9y - o))
Re JRd JRd
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MMD in terms of characteristic functions

Using Bochner's theorem:

BP0 = [ | Kxyd®-QxaE-2))
- L L eraneiate - 9y - o))
Re JRd JRd

JRd URd TP - Q)(x )} URd e (P — @)(y)] dA(w)

_

v~ N~

ép(w)—pg(w) dp(w)—dg(w)
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MMD in terms of characteristic functions

Using Bochner's theorem:

d(P,Q) = JRdf k(x, y)d(P — Q)(x)d(P — Q)(y)
J]Rd J]Rd fRd S ANw)A(P - Q)()A(P ~ Q)(y)

). UR e - Qb >] UR "<y"“">d<P—@><y>] AA(w)

_

v~ N~

)90 62() =)

- [ 163() ~ do()P ane)

Zoltan Szabdé Structured Data: Dependency, Testing



MMD in terms of characteristic functions

Using Bochner's theorem:

d(P,Q) = JRdf k(x, y)d(P — Q)(x)d(P — Q)(y)
J]Rd J]Rd fRd S ANw)A(P - Q)()A(P ~ Q)(y)

). UR e - Qb >] UR "<y"“">d<P—@><y>] AA(w)

_

v~ ~

#p(w)—do(w) ¢p(w)—g ()
f |ép(w w)[? dAw) = g2 — dalf2(n)-
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Continuous bounded translation-invariant kernels

Theorem ([Sriperumbudur et al., 2010b])

They are characteristic iff. supp(\) = R9.
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Continuous bounded translation-invariant kernels

Theorem ([Sriperumbudur et al., 2010b])

They are characteristic iff. supp(\) = R9.

supp(N) := {x € X for any open set U such that x € U, A(U) > 0}.
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Continuous bounded translation-invariant kernels

Theorem ([Sriperumbudur et al., 2010b])

They are characteristic iff. supp(\) = R9.

supp(N) := {x € X for any open set U such that x € U, A(U) > 0}.

@ Example: Gaussian, Laplacian, Matérn kernel, B-spline kernel.
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Continuous bounded translation-invariant kernels

Theorem ([Sriperumbudur et al., 2010b])

They are characteristic iff. supp(\) = R9.

supp(N) := {x € X for any open set U such that x € U, A(U) > 0}.

@ Example: Gaussian, Laplacian, Matérn kernel, B-spline kernel.
e Similar characterization 3 on 'Bochner domains’ (LCA groups
[Berg et al., 1984], orthogonal matrices, Ri)
[Fukumizu et al., 2009b].
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Matérn kernel

1-v vllx — v lx —
k(x,y)zko(x—y):i(v) (\/TJ )’“2) K, (\/M>7

where K,: modified Bessel function of the second kind of order v
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Matérn kernel

217‘/ '\/Z X — Y \/Z X —
k(x,y) = ko(x —y) = Tl ( | y”2> K, (|Y|2>7
V) o o
~ 2d+"7r%r(v +d/2)vV [2v —(v+d/2)
k = <V 2, 112 d
o(w) M(v)o2v <02 + A |W2) >0 VYweRY

where K,: modified Bessel function of the second kind of order v, I':
Gamma function.
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Matérn kernel

217‘/ '\/Z X — Y \/Z X —
k(x,y) = ko(x —y) = Tl ( | y”2> K, (|Y|2>7
V) o o
~ 2d+"7r%r(v +d/2)vV [2v —(v+d/2)
k = <V 2, 112 d
o(w) M(v)o2v <02 + A |W2) >0 VYweRY

where K,: modified Bessel function of the second kind of order v, I':

Gamma function.
[x=yl2
1. —
e For v =3: onegets k(x,y) =e -
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Matérn kernel

217‘/ '\/Z X — Y \/Z X —
k(x,y) = ko(x —y) = Tl ( | y”2> K, (|Y|2>7
V) o o
~ 2d+"7r%r(v +d/2)vV [2v —(v+d/2)
k = <V 2, 112 d
o(w) M(v)o2v <02 + A |W2) >0 VYweRY

where K,: modified Bessel function of the second kind of order v, I':

Gamma function.
[x=yl2
1. —
e For v =3: onegets k(x,y) =e -

@ Gaussian kernel: v — o0.
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Shift-invariant kernels on R [Sriperumbudur et al., 2010b]

For Poisson kernel: o € (0,1).

kernel name kg ko(w) supp(ko)
X2 oW
Gaussian e 2.7 oe” e R
Laplacian eIl \/g(,ziwz R
B line %2112 ( ) 41 Si"2n+2<%) R
2n+1-Spliné . X[_%é] X N
Sinc s VX001 (@) [0, 0]
Poisson W V 2w ij:_oo o’lJ‘(s(w —_/) 7
Dirichlet % V2r Y E 8w — ) {0,41,42,...,+n}
(2
., n2 (n1)x n .
Fejér n_}_l sz(g) Vemy o, (1 — n‘ill) o(w —J) {0, 2,...,tn}
Cosine cos(ox) Fow—=0)+6d(w+0)] {—0o }
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Shift-invariant kernels on R [Sriperumbudur et al., 2010b]

For Poisson kernel: o € (0,1).

kernel name kg ko(w) supp(ko)

X2 oW
Gaussian e 272 ge~E R
Laplacian eIl \/g(,ziwz R

. in2nt2(w
Bany1-spline *2"+2X[_%7%](X) f/%suﬂ# R
Sinc s VX001 (@) [0, 0]
Poisson Tarenrrt V2r Xl oU6(w —)) Z
sin (2n+1)x .

Dirichlet % V2r P 5w —J) {0,+£1,42,...,£n}

"2

. sin2 {n£1x n j .

Fejér n_}_l Sinz(g) vemyi_ o, (1 - n‘ill) O(w—4){0,+1,4£2,...,+n}
Cosine cos(ox) Fow—=0)+6d(w+0)] {—0,0}

For x € R: ko(x) = 1_[7:1 ko(x;), kAO(W) = 1_[;'1:1 kAO(Wj)-
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B-spline kernel type kernels

@ Still k: continuous, bounded, shift-invariant.
@ B-spline kernel: supp(kp) is compact < practically relevant.
e Note: supp(f) := {x e R : f(x) # 0}.
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B-spline kernel type kernels

Still k: continuous, bounded, shift-invariant.

B-spline kernel: supp(ko) is compact < practically relevant.
Note: supp(f) := {x e R9: f(x) # 0}.

More generally

Theorem ([Sriperumbudur et al., 2010b])

supp(ko): compact = k is characteristic.

Zoltan Szabé Structured Data: Dependency, Testing



Construction of new characteristic kernels: +, x

Theorem ([Sriperumbudur et al., 2010b])

If k, ki, ko: continuous, bounded, shift-invariant; k: characteristic,
ko # 0. Then k + kq, kko is also characteristic.
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Construction of new characteristic kernels: +, x

Theorem ([Sriperumbudur et al., 2010b])

If k, ki, ko: continuous, bounded, shift-invariant; k: characteristic,
ko # 0. Then k + kq, kko is also characteristic.

We focus on k + ki (product: similarly):
(k+ ki)(x,y) = k(x,y) + ki(x,y) = ko(x —y) + (ki)o(x — )
J —i=y ) q(A + Ay)(w).

Ol
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Construction of new characteristic kernels: +, x

Theorem ([Sriperumbudur et al., 2010b])

If k, ki, ko: continuous, bounded, shift-invariant; k: characteristic,
ko # 0. Then k + kq, kko is also characteristic.

We focus on k + ki (product: similarly):
(k+ ki)(x,y) = k(x,y) + ki(x,y) = ko(x —y) + (ki)o(x — )
- J eIV LIA(A + Ap)(w).
Rd

o k: characteristic = supp(A) = RY.

Ol
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Construction of new characteristic kernels: +, x

Theorem ([Sriperumbudur et al., 2010b])

If k, ki, ko: continuous, bounded, shift-invariant; k: characteristic,
ko # 0. Then k + kq, kko is also characteristic.

We focus on k + ki (product: similarly):
(k+ ki)(x,y) = k(x,y) + ki(x,y) = ko(x —y) + (ki)o(x — )
- J eIV LIA(A + Ap)(w).
Rd

o k: characteristic = supp(A) = RY.

o Since supp(N) < supp(A + A1), we get supp(A + A1) = R;

hence k + kq is characteristic.

Ol

Zoltan Szabdé Structured Data: Dependency, Testing




Radial, bounded, continuous kernels on R?

Recall (radial kernel):

Kooy) = kollx —vlo),  kolz) = j[o e o)
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Radial, bounded, continuous kernels on R?

Recall (radial kernel):

Kooy) = kollx —vlo),  kolz) = j[o e o)

Theorem ([Sriperumbudur et al., 2010b])

k is characteristic iff. supp(v) # {0}.
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More general spaces

@ Mp(X): set of all finite signed (Radon) measures on X
(Radon = Jsupp).
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More general spaces

@ Mp(X): set of all finite signed (Radon) measures on X
(Radon = Jsupp).

e Ulam's Theorem [Dudley, 2004]: On an X" Polish space ¥
Borel measure is Radon.
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More general spaces

@ Mp(X): set of all finite signed (Radon) measures on X
(Radon = Jsupp).

e Ulam's Theorem [Dudley, 2004]: On an X" Polish space ¥
Borel measure is Radon.

Definition

A k: X x X — R bounded, measurable kernel is called integrally
strictly positive definite (ispd) if

J f k(x,y)dF(x)F(y) >0 V0 #F e Mp(X).
X JXx

Zoltan Szabé Structured Data: Dependency, Testing



Sufficient condition: ispd

Theorem ([Sriperumbudur et al., 2010b])

Ispd kernels are characteristic on an X topological space.

e ispd on RY: Gaussian, Laplacian, inverse multiquadrics,
Matérn kernels, B-splines.
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Sufficient condition: ispd

Theorem ([Sriperumbudur et al., 2010b])

Ispd kernels are characteristic on an X topological space.

e ispd on RY: Gaussian, Laplacian, inverse multiquadrics,
Matérn kernels, B-splines.

@ Dirichlet kernel: characteristic, though not ispd.
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Sufficient condition: ispd

Theorem ([Sriperumbudur et al., 2010b])

Ispd kernels are characteristic on an X topological space.

e ispd on RY: Gaussian, Laplacian, inverse multiquadrics,
Matérn kernels, B-splines.

@ Dirichlet kernel: characteristic, though not ispd.

@ ispd property: checking might not be easy.
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Ispd: constructions

Shift-variant ispd from shift-invariant ispd kernel:

ko(x,y) = FO)k(x,y)f(y), fe Cp(X).
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Ispd: constructions

Shift-variant ispd from shift-invariant ispd kernel:
ko(x,y) = f(x)k(x,y)f(y), fe Cp(X).

Example (exponential < Gaussian): ko(x,y) = e”*¥) X < RY
compact

2
lx=yl Ixl

k(x,y)=e7 2, f(x)=1¢€% 2.
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Denseness in L'

Theorem ([Fukumizu et al., 2008, Fukumizu et al., 2009a])
Let r > 1.
e Sufficient condition: A k : (X, A) x (X, A) - R bounded

measurable kernel is characteristic if Hy + R is dense in
L"(x, A,P) for all P € M (X).
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Denseness in L'

Theorem ([Fukumizu et al., 2008, Fukumizu et al., 2009a])
Let r > 1.
e Sufficient condition: A k : (X, A) x (X, A) - R bounded
measurable kernel is characteristic if Hy + R is dense in
L"(x, A,P) for all P € M (X).

e With r =2, it is also a necessary condition.
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Denseness in L'

Theorem ([Fukumizu et al., 2008, Fukumizu et al., 2009a])
Let r > 1.
e Sufficient condition: A k : (X, A) x (X, A) - R bounded
measurable kernel is characteristic if Hy + R is dense in
L"(x, A,P) for all P € M (X).

e With r =2, it is also a necessary condition.

Note:

@ For a c-universal kernel k: sufficient condition holds with r = 2.
@ This gives the 3rd 'universal = characteristic’ proof.

Zoltan Szabé Structured Data: Dependency, Testing



Denseness in L'

Theorem ([Fukumizu et al., 2008, Fukumizu et al., 2009a])
Let r > 1.
e Sufficient condition: A k : (X, A) x (X, A) - R bounded
measurable kernel is characteristic if Hy + R is dense in
L"(x, A,P) for all P € M (X).

e With r =2, it is also a necessary condition.

Note:

@ For a c-universal kernel k: sufficient condition holds with r = 2.
@ This gives the 3rd 'universal = characteristic’ proof.

Let us prove this theorem. .. J
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Denseness is sufficient: idea

e Goal: in this case, up = ug = P(A) = Q(A) for any A€ A.
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Denseness is sufficient: idea

e Goal: in this case, up = ug = P(A) = Q(A) for any A€ A.
e Enough: |P(A) — Q(A)| = [Pxa — Qxal <¢ VAe A, Ve > 0.
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Denseness is sufficient: idea

e Enough: |P(A) — Q(A)| = [Pxa — Qxal <¢ VAe A, Ve > 0.
o ldea:
@ using the max. difference of P and Q = TV of P — Q,

P —Q[(X) = 2sup [P(A) — Q(A)].
Ae A
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Denseness is sufficient: idea

e Enough: |P(A) — Q(A)| = [Pxa — Qxal <¢ VAe A, Ve > 0.
o ldea:
@ using the max. difference of P and Q = TV of P — Q,

P —Q[(X) = 2sup [P(A) — Q(A)].
Ae A

@ exploit denseness for ya € L"(X, A, |P — Q).
—_
=:Lr([P-Ql)
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Total variation: quick summary

ldea: f=ft—f —|f|=Ff"+F".

Zoltan Szabé Structured Data: Dependency, Testing



Total variation: quick summary

Idea: f=f" —f~ —|f| =f" + . Analogously:

e (X, A): measurable space. p: signed measure on it.
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Total variation: quick summary

Idea: f=f" —f~ —|f| =f" + . Analogously:
e (X, A): measurable space. p: signed measure on it.
@ Hahn-Jordan decomposition of p: X =P U N.
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Total variation: quick summary

Idea: f=f" —f~ —|f| =f" + . Analogously:
e (X, A): measurable space. p: signed measure on it.
@ Hahn-Jordan decomposition of p: X =P U N.

e Positive & negative part of p (= p™ — p7):

pt(A)=u(An?P), ut(A)=u(AnN) VAe A
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Total variation: quick summary

Idea: f=f" —f~ —|f| =f" + . Analogously:
e (X, A): measurable space. p: signed measure on it.

@ Hahn-Jordan decomposition of y: X' = P U N.
e Positive & negative part of p (= p™ — p7):
WA = w(ANT),  pT(A) = m(AnN) VAe A

o TVof p: || :=pu" +p .
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Total variation: quick summary

Idea: f=f" —f~ —|f| =f" + . Analogously:
e (X, A): measurable space. p: signed measure on it.
@ Hahn-Jordan decomposition of p: X =P U N.

e Positive & negative part of p (= p™ — p7):

pt(A)=u(An?P), ut(A)=u(AnN) VAe A

TV of p: || :==p™ +p.
w: finite = pt, p=: finite.
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Denseness is sufficient: proof

o Take: Ae A, ¢ > 0.
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Denseness is sufficient: proof

o Take: Ac A, e>0.
o Hy+Risdensein L'([P—-Q|) = Ife Hx +R

I = xalrgp-qp <€
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Denseness is sufficient: proof

o Take: Ac A, e>0.
o Hy+Risdensein L'([P—-Q|) = Ife Hx +R

I = xalrgp-qp <€

@ Some lower bounding

r=1
e=|f — xalrge—qp = £ = x4l1gp_qp
7
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Denseness is sufficient: proof

o Take: Ac A, e>0.
o Hy+Risdensein L'([P—-Q|) = Ife Hx +R

If = xalir(p—qp <€

@ Some lower bounding

r=1
EZHf - XAHL’(UP’—@D z H f—xa HL1(|IP’7@\) = “P - @|(|g|)

=g
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Denseness is sufficient: proof

o Take: Ac A, e>0.
o Hy+Risdensein L'([P—-Q|) = Ife Hx +R

If = xalir(p—qp <€

@ Some lower bounding

r=1
6>Hf - XAHL’(UP’—@D z H f— XA HL1(|IP’7@\) = “P - @|(|g|)
=g

> [P —Ql(g)
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Denseness is sufficient: proof

o Take: Ac A, e>0.
o Hy+Risdensein L'([P—-Q|) = Ife Hx +R

If = xalir(p—qp <€

@ Some lower bounding

r=1
6>Hf - XAHL’(UP’—@D z H f— XA HL1(|IP’7@\) = “P - @|(|g|)
=g

> [P-Ql(g) = |(P—Q)(g)l
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Denseness is sufficient: proof

o Take: Ac A, e>0.
o Hy+Risdensein L'([P—-Q|) = Ife Hx +R

If = xalir(p—qp <€

@ Some lower bounding

r=1
6>Hf - XAHL’(UP’—@D z H f— XA HL1(|IP’7@\) = “P - @|(|g|)
=g

> [P—Ql(g) = [(P-Q)(g)l = [P(f — xa) — Qf — xa)|
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Denseness is sufficient: proof

o Take: Ac A, e>0.
o Hy+Risdensein L'([P—-Q|) = Ife Hx +R

If = xalrgp-gy <€

@ Some lower bounding

6>Hf_XAHLr(Up_@| H f— XA HLI (IP—Q)) |P_@|(|g|)
—g
= |P—-Ql(g) = [(P—Q)(g)| = [P(f — xa) = Q(f = xa)|
“ 1Pya — Qxal-

(*): Pf = Qf for any f € Hy since pp = 0.
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Denseness in L? is necessary: proof

If Hy + R is not dense in L?(P) := L2(X, A, P), then
@ goal: ?Ql # Qo e MT(X) s.t. puQ, = HQ,-

~
1 is not injective
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Denseness in L? is necessary: proof

If Hy + R is not dense in L?(P) := L2(X, A, P), then
@ goal: ?Ql # Qo e MT(X) s.t. puQ, = HQ,-

~
1 is not injective

o Hahn-Banach: 0 # f € L2(P) s.t. f 11,3y, thus
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Denseness in L? is necessary: proof

If Hy + R is not dense in L?(P) := L2(X, A, P), then
@ goal: ?Ql # Qo e MT(X) s.t. puQ, = HQ,-

~
1 is not injective

o Hahn-Banach: 0 # f € L2(P) s.t. f 11,3y, thus

o We define Qq, Q2 € M; (X) from f (f # 0= Q1 # Qo):

1

Qi(4) = CL IFdP, Qo(A) = ch O =

=0

=

Zoltan Szabé Structured Data: Dependency, Testing



Denseness in L? is necessary: proof continued

We arrive at

10, — figy = Lk(-,xm@l(x) - f k(- x)dQa(x)

X
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Denseness in L? is necessary: proof continued

We arrive at

— B, = L{ k(- x)dQq(x . k(- x)dQ2(x)
-]k

k(-,x)d —Q2)(x)
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Denseness in L? is necessary: proof continued

We arrive at
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Denseness in L? is necessary: proof continued

We arrive at

HQ, — HQy = k(-,x)dQ1(x) — k(-, x)dQa(x)

= ’
=

(s =) y) = € | FOOK(yx)dP(0)
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Denseness in L? is necessary: proof continued

We arrive at

oy e = | Kx)AQu06) = [ K(:0)dQa(x)
= J k(-,x)d(Q1 — Q2)(x) = cf f(x)k(-, x)dP(x),
X x

:C<f7k(y7) >L2(IP’):O (VyEX)
Ef}fk
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Denseness in L? is necessary: proof continued

We arrive at
poy — pg, = | k(5 x)dQi(x) — | k(- x)dQ2(x)

_ f k<-7x>d<@1—@2><x>=cf F(x) k(- X)dP(x),
X

= ’
=

:C<f7k(y7) >L2(IP’):O (VyEX)
Ef}fk

Thus pg, — pg, = 0 despite Q1 # Q.
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Infinitely divisible distributions: quick summary

U: random variable.

Can it be decomposed to the sum of 2 i.i.d. random variables?
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Infinitely divisible distributions: quick summary

U: random variable.

Can it be decomposed to the sum of 2 i.i.d. random variables?
Can it be decomposed to the sum of 3 i.i.d. random variables?
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Infinitely divisible distributions: quick summary

U: random variable.

Can it be decomposed to the sum of 2 i.i.d. random variables?
Can it be decomposed to the sum of 3 i.i.d. random variables?
Can it be decomposed to the sum of 4 i.i.d. random variables?
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Infinitely divisible distributions: quick summary

U: random variable.

Can it be decomposed to the sum of 2 i.i.d. random variables?
Can it be decomposed to the sum of 3 i.i.d. random variables?
Can it be decomposed to the sum of 4 i.i.d. random variables?

Can it be decomposed to the sum of n i.i.d. random variables for
any ne Z*?
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Infinitely divisible distributions: quick summary

Examples:

@ Poisson, negative binomial, Gamma distribution, student t.
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Infinitely divisible distributions: quick summary

Examples:
@ Poisson, negative binomial, Gamma distribution, student t.

@ normal, Cauchy distribution
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Infinitely divisible distributions: quick summary

Examples:
@ Poisson, negative binomial, Gamma distribution, student t.

e normal (o = 2), Cauchy distribution (o = 1) <= V a-stable.
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Infinitely divisible distributions: quick summary

Examples:

@ Poisson, negative binomial, Gamma distribution, student t.

e normal (o = 2), Cauchy distribution (o = 1) <= V a-stable.
Counterexamples:

@ uniform, binomial distribution
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Infinitely divisible distributions: quick summary

Examples:

@ Poisson, negative binomial, Gamma distribution, student t.

e normal (o = 2), Cauchy distribution (o = 1) <= V a-stable.
Counterexamples:

e uniform, binomial distribution <= Vv any distribution with
bounded (finite) support.
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Symmetric infinitely divisible on RY = characteristic

Theorem ([Nishiyama and Fukumizu, 2016])

Assume
o k(x,y) = ko(x —y), ko € Co(RY), ko is the pdf of
@ an infinitely divisible, symmetric distribution.

Then k is characteristic.
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Symmetric infinitely divisible on RY = characteristic

Theorem ([Nishiyama and Fukumizu, 2016])

Assume
o k(x,y) = ko(x —y), ko € Co(RY), ko is the pdf of
@ an infinitely divisible, symmetric distribution.

Then k is characteristic.

Examples: Gaussian, Matérn kernel, a-stable kernels, student
t-kernels, ...
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Characteristic kernels: finished.
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Local summary

@ Dependency measure applications.
o KCCA. Mean embedding: pp = §, k(-,x)dP(x) € Hy.
@ Injectivity of © on
e probability distributions: characteristic property.
o finite signed measures: universality (X: compact metric).
@ By definition: injectivity of y <

dk(P, Q) := [up — ngllg,

is a metric.
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Maximum mean discrepancy (MMD)
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MMD is a specific integral probability metric (IPM)

o J= {f & H: || Fly, = 1}: unit ball in (.

di(P, Q) = [lup — ngls,
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MMD is a specific integral probability metric (IPM)

o J= {f & H: || Fly, = 1}: unit ball in (.

dk(Pv Q)

e — 1ol
= sup (f, up — pQ)qq,
feg
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MMD is a specific integral probability metric (IPM)

o J= {f & H: || Fly, = 1}: unit ball in (.

di(P,Q) = [lp — pgllg,
= sup (f, up — pQ)qq,
feg

= sup(Pf — Qf).
fedJ
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MMD is a specific integral probability metric (IPM)

o J= {f & H: || Fly, = 1}: unit ball in (.

di(P,Q) = [lp — pgllg,
= sup (f, up — pQ)qq,
feg

= sup(Pf — Qf).
fedJ

e |IPMs [Zolotarev, 1983, Miiller, 1997].
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IPM: other I examples giving metric

o F = Cp(X) with X metric space.
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IPM: other I examples giving metric

o F = Cp(X) with X metric space.

o I ={f:|fl, :=supex|f(x)] <1}
e bounded functions.
e total variation distance.
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IPM: other I examples giving metric

o F = Cp(X) with X metric space.
o F={f:|fly = supsen [F(x)| <1}:

e bounded functions.
e total variation distance.
_ . . [F () —=f (¥l .
° F= {f Fl 1= supy L < 9
. LA bl i L
o Kantorovich metric -~ =P2rable Metie_\n /- sserstein distance.
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IPM: other I examples giving metric

o I ={f:|fl, :=supex|f(x)] <1}
e bounded functions.
e total variation distance.

TV upper bounds MMD [Sriperumbudur et al., 2010b]:

dk(]P)a Q) < sup k(X,X) TV(]P)a@)
xeX
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IPM: other I examples giving metric — continued

o F={f:|flg :=Iflp+ Il <1}
e bounded Lipschitz functions,
e Dudley metric.
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IPM: other I examples giving metric — continued

o F={f:|flg :=Iflp+ Il <1}
e bounded Lipschitz functions,
e Dudley metric.

°© F={X_wy:teR}:
e indicator functions of half-intervals.
o Kolmogorov distance.

Zoltan Szabé Structured Data: Dependency, Testing



Empirical estimation of IPMs

[Sriperumbudur et al., 2012]:
@ Kantorovich, Dudley metric: linear programming task.
e MMD (dy): easier.
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MMD estimators
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MMD estimator: intuition

L i
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MMD estimator: intuition
”“" " »@

D

g.g

k(dogl dog ;)
|
W=

k(fish;, dog; ) k(fishy, fish ;

22, S it
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MMD estimator: intuition
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MMD estimator: intuition
- )

1\@1520?, Q) = Gpp + Goo —2Gp o (without diagonals in Gpp, Gy )

TMMD & HSIC illustration credit: Arthur Gretton
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MMD estimator-1

Recall: MMD = squared difference between feature means:

MMD2(P, Q) = d2(P,Q) = |lur — pol%, =
= EX~]P’,X’~Pk(X7 X/) + Ey~Q,y’~Qk(yu y/)
— 2Expy~0k(x,y).
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MMD estimator-1

Recall: MMD = squared difference between feature means:

MMD2(P, Q) = d2(P,Q) = |lur — pol%, =
= EX~]P’,X’~Pk(X7 X/) + Ey~Q,y’~Qk(yu y/)
— 2Expy~0k(x,y).

Unbiased empirical estimator using {x;}[Z; ~ P, {y;}]_; ~ Q:

MMD?(P,Q) = Gpp + Ggo — 2Gp o
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MMD estimator-1

Recall: MMD = squared difference between feature means:

MMD2(P, Q) = d2(P,Q) = |lur — pol%, =
= EX~]P’,X’~Pk(X7 X/) + Ey~@,y’~Qk(yu y/)
— 2Expy~0k(x,y).

Unbiased empirical estimator using {x;}[Z; ~ P, {y;}]_; ~ Q:
MMD} (P, Q) = % + G@@ - QGIPQ

ZZ/(X,,XJ ZZkYHYJ

i=1j#i i=1j#i
U-statistic-1 U—statistic—2
L*ZZ“m

i=1j=1

sample average
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MMD estimator-2

We plug in the empirical measures (P, Qp):

MMD?(P,Q) = | — pgl3, »
MMDZ (P, Q) = | pp,, — 1,3,
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MMD estimator-2

We plug in the empirical measures (P, Qp):

MMD?(P, Q) = |lup — pglZ, .
MMD2(P, Q) = |, — g, |2,
2 2
= H/’L[PmHg‘fk + HNQnHﬂ{k - 2<llj“]Pm7/’LQn>fHk'
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MMD estimator-2

We plug in the empirical measures (P, Qp):

MMD?(P, Q) = |lup — pglZ, .
MMD2(P, Q) = |, — g, |2,
2 2
= H/’L[PmHg‘fk + HNQnHﬂ{k - 2<lu“]Pm7/’LQn>fHk

Enough:

(B> Q0 ) 3¢ <

3=

S zk<',yj>>
i=1 H
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MMD estimator-2

We plug in the empirical measures (P, Qp):

MMD?(P, Q) = |lup — pglZ, .
MMD2(P, Q) = |, — g, |2,
2 2
= H/’L[PmHg‘fk + HNQnHﬂ{k - 2<llj“]Pm7/’LQn>fHk'

Enough:

(P s HQa) 3¢, = <
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MMD estimator-2: continued

2 1 m m 1 n n
MMD3 (P, Q) = —ZZZk(XhXJ 722 (i, %)
i=1j=1 i=1j=1

> >
V- statistic—l V—statistic—2
— Z 3] k(i)
i=1j=1
>

sample average

Zoltan Szabdé Structured Data: Dependency, Testing



MMD estimator-2: continued

2 1 m m 1 n n
MMD3 (P, Q) = —ZZZk(XhXJ 722 (i, %)
i=1j=1 i=1j=1

_ _

V- statistic—l V—statistic—2

—*ZZ (xi: ) -

i=1j=1

sample average

Notes:
o MMD?(P,Q): unbiased; it might be negative.
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MMD estimator-2: continued

2 1 m m 1 n n
MMD3 (P, Q) = —ZZZk(XhXJ 722 (i, %)
i=1j=1 i=1j=1

_ _

V—statistic—l V—statistic—2
5 m
mn Z Z XI’ .)/J
- _ _ >

sample average

Notes:
o MMD?(P,Q): unbiased; it might be negative.

o MMD}(P,Q) = |, — g, l3, >0
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MMD estimator-2: continued

2 1 m m 1 n n
MMD3 (P, Q) = —ZZZk(XhXJ 722 (i, %)
i=1j=1 i=1j=1

_ _

V—statistic—l V—statistic—2
5 m
mn Z Z XI’ .)/J
- _ _ >

sample average

Notes:
o MMD?(P,Q): unbiased; it might be negative.

o MMD3 (P, Q) = |, — 1, |5, =0
o Computational complexity: O ((m + n)2), quadratic.
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@ Set kernel, convolution kernel.

Zoltan Szabé Structured Data: Dependency, Testing



@ Set kernel, convolution kernel.

@ Other valid K(up, pg) examples — distribution classification
[Pdczos et al., 2012, Muandet et al., 2011] / distribution
regression [Szabd et al., 2016].
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@ Set kernel, convolution kernel.

@ Other valid K(up, pg) examples — distribution classification
[Pdczos et al., 2012, Muandet et al., 2011] / distribution
regression [Szabd et al., 2016].

@ Few analytic expressions exist for MMD.
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@ Set kernel, convolution kernel.

@ Other valid K(up, pg) examples — distribution classification
[Pdczos et al., 2012, Muandet et al., 2011] / distribution
regression [Szabd et al., 2016].

@ Few analytic expressions exist for MMD.
e Embedding to RKBS.

Zoltan Szabé Structured Data: Dependency, Testing



@ Set kernel, convolution kernel.

@ Other valid K(up, pg) examples — distribution classification
[Pdczos et al., 2012, Muandet et al., 2011] / distribution
regression [Szabd et al., 2016].

@ Few analytic expressions exist for MMD.
e Embedding to RKBS.

Let us see the details. J
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Set kernel

Convolution kernels [Haussler, 1999] 5 set kernel [Gartner et al., 2002]:

K(Pm, Qp) := (MIPm’NQn 72 2 k( le.yj

i=1j=1
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Other valid K examples [Christmann and Steinwart, 2010],

[Szabd et al., 2015] — distribution regression

Recall: K(P,Q) = {up, ), linear kernel.

Kg Ke Kc
_ HP—HQ %ck PP R[5, -1
e e (14 | — gl /%)
K Ki

N|=

1 _
(14 le = naldy)  (lue — ol +2)
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Other valid K examples [Christmann and Steinwart, 2010],

[Szabd et al., 2015] — distribution regression

Recall: K(P,Q) = {up, ), linear kernel.

Ke K. Kc

2
HPTHQ || 3¢, HP—HQ

K -1
e~ 202 e 262 “ (1 + HM]P - HQH%{,(/éﬂ)

K: Ki

1 _%
(14 le = naldy)  (lue — ol +2)

Functions of |up — 1194, = computation: similar to set kernel.
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Few analytic expressions exist: examples

[Gretton et al., 2007, Muandet et al., 2011]

Assume: P = N(m1,X;), Q = N(mp, X2).

k(x,y) K(up, pg) = (1p, 1@y,

1 T —1
e—%Hx—yHﬁ = 3 (m—mp) " (T1+Tp+~1)" " (my—mp)

i
[yZ1+yXa+1]2
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Few analytic expressions exist: examples

[Gretton et al., 2007, Muandet et al., 2011]

Assume: P = N(m1,X;), Q = N(mp, X2).

k(x,y) K(up, pg) = (1p, 1@y,

1 T —1
e—%Hx—yHﬁ = 3 (m—mp) " (T1+Tp+~1)" " (my—mp)

) |’Y>:1+“/§2+”%
(T4 (Gy))7 (T4 (my,m))” +tr (X1X2) + miZomy + maXimo
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Few analytic expressions exist: examples

[Gretton et al., 2007, Muandet et al., 2011]

Assume: P = N(m1,X;), Q = N(mp, X2).

k(x,y) K(up, pg) = (1p, 1@y,

1 T —1
e—%Hx—yHﬁ = 3 (m—mp) " (T1+Tp+~1)" " (my—mp)

|’Y>:1+“/Z2+’\%
X, y))° (L4 (m1,m))? + tr (T152) + mTamy + myTimy
. y))> (L4 (my,mo))® +6m] Tiomy + 3 (1 + (my, my)) x
[tr (2122) + myXomy + m221m2]

—~

(1+
(1+

—~

Zoltan Szabé Structured Data: Dependency, Testing



RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
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RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
e B’ is isometric to a Banach space of functions on X, and
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RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
e B’ is isometric to a Banach space of functions on X, and

o the evaluation functional is continuous on both B and B'.
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RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
e B’ is isometric to a Banach space of functions on X, and

o the evaluation functional is continuous on both B and B'.

Notes:
e Generally, B < B”.

Zoltan Szabé Structured Data: Dependency, Testing



RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
e B’ is isometric to a Banach space of functions on X, and

o the evaluation functional is continuous on both B and B'.

Notes:

e Generally, B < B”.
e For B = H Hilbert: (H')" = 3 (Riesz representation theorem).
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RKBS properties

Using the

<f7g/>,3 = g/(f)a (fG‘B,g/EB/)

notation
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RKBS properties

Using the
(f.g'), =g'(f), (feB,g'eB)
notation
k(,x)e B (¥xe X), f(x)=(f,k(-,x))y VfeB,
An RKBS has exactly one reproducing kernel, but. .. J
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RKBS properties

Using the
<f,g/>3 =g'(f), (feB,g eB)
notation
k(,x)e B (¥xe X), f(x)=(f,k(-,x))y VfeB,
k(x,-)eB (¥xeX), f'(x) = (k(x,-),f' 5 Vi eB,
An RKBS has exactly one reproducing kernel, but. .. J
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RKBS properties

Using the
(f.g'), =g'(f), (feB,g'eB)
notation
k(,x)e B (¥xe X), f(x)=(f,k(-,x))y VfeB,
k(x,-)eB (¥xeX), f'(x) = (k(x,), f/>B V' e B,
B = span{k(x,-), x € X}, B' = span{k(-,x), x € X},
An RKBS has exactly one reproducing kernel, but. .. J
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RKBS properties

Using the
(f.g'), =g'(f), (feB,g'eB)
notation
k(,x)e B (¥xe X), f(x)=(f,k(-,x))y VfeB,
k(x,-)eB (¥xeX), f'(x) = (k(x,), f/>B V' e B,
B = span{k(x,-), x € X}, B' = span{k(-,x), x € X},

An RKBS has exactly one reproducing kernel, but. .. J
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.

@ No inner product on B = an r.k. can be an arbitrary function.
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.

@ No inner product on B = an r.k. can be an arbitrary function.
e For specific RKBSs':

TUniformly Fréchet differentiable and uniformly convex, e.g. LP(X, A, u), p € (1,0).
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.

@ No inner product on B = an r.k. can be an arbitrary function.
e For specific RKBSs':
e 'Riesz representation theorem’ exists, ...

TUniformly Fréchet differentiable and uniformly convex, e.g. LP(X, A, u), p € (1,0).
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.

@ No inner product on B = an r.k. can be an arbitrary function.
e For specific RKBSs':

e 'Riesz representation theorem’ exists, ...
o pup = §, k(-,x) dP(x) € B [Sriperumbudur et al., 2011].
—

€B’, see Bochner integral

TUniformly Fréchet differentiable and uniformly convex, e.g. LP(X, A, u), p € (1,0).
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RKBS: computational intractability

Key for RKHS H:

d3(B,Q) = L L k(x, y)d(P — Q)(x)d(E — Q)(y).
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RKBS: computational intractability

Key for RKHS H:

d3(B,Q) = L L k(x, y)d(P — Q)(x)d(E — Q)(y).

For RKBS B:

@ di: not expressible in terms of k(x,y),
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RKBS: computational intractability

Key for RKHS H:

d3(B,Q) = L L k(x, y)d(P — Q)(x)d(E — Q)(y).

For RKBS B:
@ di: not expressible in terms of k(x,y),

@ associated distances and estimators: no closed form
expressions.
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MMD: finished
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Covariance operator
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Idea: (un)centered cross-covariance

;jy =Ey [XYT] )

u: uncentered, c: centered.
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Idea: (un)centered cross-covariance

5 =Ex 7], 5 =By [(x—Ex) (y —Ey)7],

u: uncentered, c: centered.
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Idea: (un)centered cross-covariance

Cly =By |7 ] 5 =By [(x—Ex) (y —Ey)7],
Cly = Exy [(x) @¥(y)].

u: uncentered, c: centered.
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Idea: (un)centered cross-covariance

Cy = Ex [xyT] , Co

En [(x—Ex) (v —Ex)7]
Chy = Exy [0() ®0(y)], G —F

o [(P(x) = Exp(x)) ® (¥(y) — By (y))]

u: uncentered, c: centered.
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Idea: (un)centered cross-covariance

Cy = Ex [xyT] , Co

En [(x—Ex) (v —Ex)7]
Chy = Exy [0() ®0(y)], G —F

o [(P(x) = Exp(x)) ® (¥(y) — By (y))]

u: uncentered, c: centered. In short, xy " — ©(x) @ ¥(y).
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Preview

Co = Exy [(p(x) = Exp(x)) ® ((y) — Eyib(y))]

encodes the dependency of x and y.
o (g, =0« x Ly for 'rich" Hy, 3.
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Preview

Co = Exy [(p(x) = Exp(x)) ® ((y) — Eyib(y))]

encodes the dependency of x and y.
o (g, =0« x Ly for 'rich" Hy, 3.

e HSIC(x,y) = | C§

XyHHS. || 4s: extension of Frobenius norm.
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Preview

Co = Exy [(p(x) = Exp(x)) ® ((y) — Eyib(y))]

encodes the dependency of x and y.
o (g, =0« x Ly for 'rich" Hy, 3.
e HSIC(x,y) = HC)fyHHS.
e HSIC(x,y): It will be easy to estimate. KCCA alternative.

|| 4s: extension of Frobenius norm.
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Preview

Co = Exy [(p(x) = Exp(x)) ® ((y) — Eyib(y))]

encodes the dependency of x and y.
o (g, =0« x Ly for 'rich" Hy, 3.
e HSIC(x,y) = HC)fyHHS.
e HSIC(x,y): It will be easy to estimate. KCCA alternative.

|| 4s: extension of Frobenius norm.

What is ¢(x) ® ¢ (y) and |- 4s?

Zoltan Szabé Structured Data: Dependency, Testing



Intuition of a® b, goal: a:= p(x) e Hy, b:

o If aeR%, be R%, then ab” € R%*%,
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Intuition of a® b, goal: a:= ¢(x) € H,

o If aeR%, be R%, then ab” € R%*%,

o For g e R®
(57)5=5 ()
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Intuition of a® b, goal: a:= p(x) e Hy, b:

o If aeR%, be R%, then ab” € R%*%,

e For ge R®
(abT) g=a (ng) — a(b,g) e R4,

ab” : R®% — R linear mapping.
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Intuition of a® b, goal: a:= p(x) e Hy, b:

o If aeR%, be R%, then ab” € R%*%,

e For ge R®
(abT) g=a (ng) — a(b,g) e R4,

ab” : R®% — R linear mapping.

o Alternatively

R>fT (abT) g = (fTa) (ng>

ab” : R% x R% — R bilinear form.
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Intuition of a® b, goal: a:= p(x) e Hy, b:

o If aeR%, be R%, then ab” € R%*%,

e For ge R®
(abT) g=a (ng) — a(b,g) e R4,

ab” : R®% — R linear mapping.

o Alternatively
R>fT (ab7)g = (fTa) (b7g) = (F.a) (g, b)

ab” : R% x R% — R bilinear form.
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Definition of a® b, H; ® H>,

o Given: Hy, H, Hilbert spaces.
@ a®b: (f,g) € Hy x Hy — R is the bilinear form:

(a®@b)(f,g) := (f,a)y, (8, by, -
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Definition of a® b, H; ® H>,

o Given: Hy, H, Hilbert spaces.
@ a®b: (f,g) € Hy x Hy — R is the bilinear form:

(a®@b)(f,g) := (f,a)y, (8, by, -

@ Finite linear combinations of a ® b-s:

n
L= {Z ci(aj®@bj),ci e R, a; € Hy, b € i]-fg,neZ+}.
i=1

Zoltan Szabé Structured Data: Dependency, Testing



Definition of a® b, H; ® H>,

o Given: Hy, H, Hilbert spaces.
@ a®b: (f,g) € Hy x Hy — R is the bilinear form:

(a®@b)(f,g) := (f,a)y, (8, by, -

@ Finite linear combinations of a ® b-s:

n
L= {Z ci(aj®@bj),ci e R, a; € Hy, b € i]-fg,neZ+}.
i—1

@ Define inner product on £, and extend by linearity

(a1 ® b1, a2 ® bp) := (a1, a2)qq, (b1, b2)g, -
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Definition of a® b, H; ® H>,

o Given: Hy, H, Hilbert spaces.
@ a®b: (f,g) € Hy x Hy — R is the bilinear form:

(a®@b)(f,g) := (f,a)y, (8, by, -

@ Finite linear combinations of a ® b-s:

n
L= {Z ci(aj®@bj),ci e R, a; € Hy, b € i]-fg,neZ+}.
i=1

@ Define inner product on £, and extend by linearity
(a1 ® b1, a2 ® bp) := (a1, a2)qq, (b1, b2)g, -

o H; ® Hy: completion of L.
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a®...Qay, Hi® ... Hpy would work similarly

Tensor product of M Hilbert spaces:

M
(21®...®@an) (1, o) = [ | (ams b,

m=1
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a®...Qay, Hi® ... Hpy would work similarly

Tensor product of M Hilbert spaces:

M
(21®...®@an) (1, o) = [ | (ams b,

<®f\n/’:13m7®f\n”=1hm> = 1M[ (@ms Am)g,, -

= HSIC for M-variables: v
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(-,-): well-defined & pos. definite [Reed and Simon, 1980]

Well-definedness: (A, \) is expansion-independent, i.e.
ni n
)\1 = Zc,-a,-@b,- = )\2 = 2 cfaj-@bj'-,
i=1 j=1

(M) £ (O, X)
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(-,-): well-defined & pos. definite [Reed and Simon, 1980]

Well-definedness: (A, \) is expansion-independent, i.e.

ni n
)\1 = Zc,-a,-@b,- = )\2 = ECJ/aJ/@bJI,
i=1 j=1
AL X)L 0 X) & (M =2, XY 20 (VN eL).
=0
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(-,-): well-defined & pos. definite [Reed and Simon, 1980]

Well-definedness: (A, \) is expansion-independent, i.e.

ni n
)\1 = Zc,-a,-@b,- = )\2 = ECJ/aJ/@bJI,
i=1 j=1
AL X)L 0 X) & (M =2, XY 20 (VN eL).
=0

o In other words: v = 0 = (v,\) =0, VXN eL.
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(-,-): well-defined & pos. definite [Reed and Simon, 1980]

Well-definedness: (A, \) is expansion-independent, i.e.

ni n
)\1 = Zc,-a,-@b,- = )\2 = ECJ/aJ/@bJI,
i=1 j=1
AL X)L 0 X) & (M =2, XY 20 (VN eL).
=0

o In other words: v = 0 = (v,\) =0, VXN eL.

o )\ = Zln/:l die; ® fi,

(0,\') = <0,2 diei ® fi> = Z di (0,e®f;) =0.
i=1

20 (eny=0

~

|

e

0 form
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(-,-) is positive definite

@ Goal: (\,\)=0=X=0.
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(-,-) is positive definite

@ Goal: (\,\)=0=X=0.
o \:=3",¢a®b;, A:=span{(aj)} < Hq, B := span{(b;)} < Hs.
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(-,-) is positive definite

@ Goal: (\,\)=0=X=0.
o )\ = Z, 1 Ciai ® bj, A:=span{(aj)} < Hy, B := span{(bi)} < H>.
e (c;) := ONB for A, (53;) := ONB for B.
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(-,-) is positive definite

@ Goal: (\,A\)=0=X=0.

o \:=3",ca®b;, A:=span{(a;)} = H1, B := span{(b;)} < Ho.
@ () := ONB for A, (8j) := ONB for B.

@ a; € A, bj € B hence

A=) cjoi ® B,

i

<)‘7 )‘> = <Z Cijaxj ®/8jazcuvau ®Bv>

iJ u,v
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(-,-) is positive definite

@ Goal: (\,A\)=0=X=0.

o \:=3",ca®b;, A:=span{(a;)} = H1, B := span{(b;)} < Ho.
@ () := ONB for A, (8j) := ONB for B.

@ a; € A, bj € B hence

A=) cjoi ® B,

iJ
<)‘7 )‘> = <Z Cjj&i ®/8J72 CuvQy ®Bv>

— Z Cl_[CuV a,®6_1705U)®/BV>

ij,uv
(U/ ”u)j—fl <6jvﬁv>9{2 5Iué‘/v
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(-,-) is positive definite

@ Goal: (\,A\)=0=X=0.

o \:=3",ca®b;, A:=span{(a;)} = H1, B := span{(b;)} < Ho.
@ () := ONB for A, (8j) := ONB for B.

@ a; € A, bj € B hence

A=) cjoi ® B,

iJ
<)‘7 )‘> = <Z Cjj&i ®/8J72 CuvQy ®Bv>

= Z CijCuv al®ﬂj7au’®’8" ZC”J

ij,uv
(U/ ”u)j—fl <6jvﬁv>9{2 5Iué‘/v
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(-,-) is positive definite

@ Goal: (\,A\)=0=X=0.

o \:=3",ca®b;, A:=span{(a;)} = H1, B := span{(b;)} < Ho.
@ () := ONB for A, (8j) := ONB for B.

@ a; € A, bj € B hence

A=) cjoi ® B,

iJ
<)‘7 )‘> = <Z Cjj&i ®/8J72 CuvQy ®Bv>

= Z CijCuv al®ﬂj7au’®’8" ZC”J

ij,uv
(U/ ”u)j—fl <6jvﬁv>9{2 5Iué‘/v

o Inshort, (\,A\) =0=¢; =0 (Vi,j), i.e. A\=0.
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Tensor product of RKHSs

Theorem ([Berlinet and Thomas-Agnan, 2004])
o Given: Hy1 = Hy, Ho = Hy RKHSs with kernel k and £.
o Then Hi ® Ho is RKHS with kernel

k@L: (X xY)x (X x)Y) >R,
(k®£) ((X17y1)7 (X27y2)) = k(X17X2)£(YI7Y2)’

.
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Tensor product of RKHSs

Theorem ([Berlinet and Thomas-Agnan, 2004])
o Given: Hy1 = Hy, Ho = Hy RKHSs with kernel k and £.
o Then Hi ® Ho is RKHS with kernel

k@L: (X xY)x (X x)Y) >R,
(k®£) ((X17y1)7 (X27y2)) = k(X17X2)£(YI7Y2)’

.

Intuition:
@ inner product on X and ) — inner product on X x ).

@ X = animal images, ) = descriptions of animals.
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@ a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
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@ a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
o It will descend to its expectation (C;,, = HSIC).
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a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
It will descend to its expectation (Cy, = HSIC).

(€), (f;): canonical basis in R%, R%,

HS operators: extensions of L € R%2*% with

ILE =21 e I3

ti

ith column of L
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a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
It will descend to its expectation (Cy, = HSIC).

(€), (f;): canonical basis in R%, R%,

HS operators: extensions of L € R%2*% with

L|2F=ZH Lei H§=Z§<Le;ﬁ

ti

ith column of L
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a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
It will descend to its expectation (Cy, = HSIC).

(€), (f;): canonical basis in R%, R%,

HS operators: extensions of L € R%2*% with

Wr=21 Lo, [o=2020ke = 2,5

ti

ith column of L
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Hilbert-Schmidt operators: quick summary

@ An L : H; — Hoy bounded linear operator is called Hilbert-Schmidt if

2 2
ILIFs =) ILeil3, < oo

Z <Le,,J> 56
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Hilbert-Schmidt operators: quick summary

® J{1,H5: separable Hilbert spaces. (€)ics, (f;)jes: ONB in Hy, Ho.
@ An L : H; — Hoy bounded linear operator is called Hilbert-Schmidt if

2 2
ILIFs =) ILeil3, < oo

Z <Le,,J> 56
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Hilbert-Schmidt operators: quick summary

® J{1,H5: separable Hilbert spaces. (€)ics, (f;)jes: ONB in Hy, Ho.
@ An L : H; — Hoy bounded linear operator is called Hilbert-Schmidt if

2 2
ILlEs =D, ILeild, < oo
i ~—
=2 <Lew> 3y

@ Inner product on Ly, Ly € HS(H1, Ho)

(L1, L) s = D (Laei, Laey)y, -

i
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Hilbert-Schmidt operators: quick summary

® J{1,H5: separable Hilbert spaces. (€)ics, (f;)jes: ONB in Hy, Ho.
@ An L : H; — Hoy bounded linear operator is called Hilbert-Schmidt if

2 2
ILIfs =D, ILeils, < oo
F —
Z <Le,,J> 56

@ Inner product on Ly, Ly € HS(H1, Ho)

(L1, L) s = D (Laei, Laey)y, -

i

e HS(Hiy,Hy): Hilbert space.
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Hilbert-Schmidt operators: notes

o Hq,Ho: separable = I, J: countable, i.e. 'sums’.
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Hilbert-Schmidt operators: notes

o Hq,Ho: separable = I, J: countable, i.e. 'sums’.

o (L1, Lo)ys: well-defined (independent of the chosen basis).
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Hilbert-Schmidt operators: notes

o Hq,Ho: separable = I, J: countable, i.e. 'sums’.
o (L1, Lo)ys: well-defined (independent of the chosen basis).

@ For RKHSs (3{;): X separable, k: continuous = Hj:
separable [Steinwart and Christmann, 2008].
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a® b is Hilbert-Schmidt: linear & bounded

For a® b with ae€ Hy, be Ho:
@ linearity: v/

@ boundedness (c € H»):

[(@® b)cs, = [a (b, c)ag, |,
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a® b is Hilbert-Schmidt: linear & bounded

For a® b with ae€ Hy, be Ho:
@ linearity: v/

@ boundedness (c € H»):

[(@® b)clge, = [a(b, ), [lg, = (b C)aey lalag,

Zoltan Szabé Structured Data: Dependency, Testing



a® b is Hilbert-Schmidt: linear & bounded

For a® b with ae€ Hy, be Ho:
@ linearity: v/

@ boundedness (c € H»):
[(a®b)clly, = Ha b, )ag, e, = (b, )ag, | lally,

< [Bllg¢, [ €lac, [l 3¢, -
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a® b is Hilbert-Schmidt: linear & bounded

For a® b with ae€ Hy, be Ho:
@ linearity: v/

@ boundedness (c € H»):
[(a®b)clly, = Ha b, )ag, e, = (b, )ag, | lally,

< [Bllg¢, [ €lac, [l 3¢, -

Thus la® b]| < [afls, [bls, < .
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a® b is a Hilbert-Schmidt operator

Let (e,-),-e/ c H> ONB,

2

Hy

la@bls = Y| (z@b)e
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a® b is a Hilbert-Schmidt operator

Let (e,-),-e/ c H> ONB,

2
Hy

la@bls = Y| (z@b)e

PRI
22Ol

JalBe, [ (5 escy|
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a® b is a Hilbert-Schmidt operator

Let (e,-),-e/ c H> ONB,

la@blis = Y| @@ bl = |atb e, |
, 7 g

JalBe, [ (5 escy|

2 2
= lal3, Db eds,|” <oo
i

—_—
Hngcz(Parseval equality)
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a® b is a Hilbert-Schmidt operator

Let (e,-),-e/ c H> ONB,

la@blis = Y| @@ bl = |atb e, |
, 7 g

JalBe, [ (5 escy|

= JalZ, Y [(bes,? <o
i

—_—
Hszgcz(Parseval equality)

2 2 2
la® blhs = llallac, b5,
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Uncentered cross-covariance operator

C)?y = Exy[SO(X) ®@Z)(Y)] € HS (He, Hi) -
€HS (Hy,31)
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Uncentered cross-covariance operator

C)?y = Exy[SO(X) ®@Z)(Y)] € HS (He, Hi) -
€HS (Hy,31)

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
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Uncentered cross-covariance operator

C)?y = Exy[SO(X) ®@Z)(Y)] € HS (He, Hi) -
€HS (Hy,31)

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
o Bochner integral: 3Cy), < Eyy[lo(x) @ 1(y)|ys < 0.
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Uncentered cross-covariance operator

C)?y = Exy[SO(X) ®@Z)(Y)] € HS (He, Hi) -
€HS (Hy,31)

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
o Bochner integral: 3Cy), < Eyy[lo(x) @ 1(y)|ys < 0.

° ()@Y (y)lns = leGlse, [¥(¥)llae,
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Uncentered cross-covariance operator

Cu = [ (x) ®Y(y )]EHS(J‘C@,J’C/().
€HS (3,3

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
o Bochner integral: 3Cy), < Eyy[lo(x) @ 1(y)|ys < 0.

o () @v¥)lns = le(¥)lag, [ W)lse, = v/ ke )2/ Uy, y)-
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Uncentered cross-covariance operator

Cu = [ (x) ®Y(y )]EHS(J‘C@,J’C/().
€HS (3,3

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
o Bochner integral: 3Cy), < Eyy[lo(x) @ 1(y)|ys < 0.

o () @v¥)lns = le(¥)lag, [ W)lse, = v/ ke )2/ Uy, y)-

o Sufficient condition: k and ¢ are bounded.
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Centered covariance operator [Baker, 1973]

Let px := pp,, py := pp,. Px,Py : marginals of Py, .

G5 = Euy| (#0) ~ Bxpl)) ® (0(0) - (1) )|
Hx Hy
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Centered covariance operator [Baker, 1973]

Let px := pp,, py := pp,. Px,Py : marginals of Py, .

€5 = By | (9(x) — Exp(x)) ® (4(y) — Eyv(y))|

—— N
Hex Iy
=Ey [e(x) @U(y)] — px®puy € HS(Hy, Hy).
~ ——
C;’YEHS(U‘Q,J{;() EHS(CH[,CH,()
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Hilbert-Schmidt independence criterion (HSIC)

HSIC [Fukumizu et al., 2004, Gretton et al., 2005a]:

HSIC(x, y; Hi, Ho) = | G5 | s -
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Hilbert-Schmidt independence criterion (HSIC)

HSIC [Fukumizu et al., 2004, Gretton et al., 2005a]:

HSIC(x, y; Hi, Ho) = | G5 | s -

When does HSIC characterize independence?
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Hilbert-Schmidt independence criterion (HSIC)

HSIC [Fukumizu et al., 2004, Gretton et al., 2005a]:

HSIC(x, y; Hi, Ho) = | G5 | s -

When does HSIC characterize independence?
We will discuss it later (after HSIC < distance covariance).
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How do covariance operators encode covariance?

Let ge Hy, f e Hyg, HS = HS(U‘C(,}C;().

(f, Cxuyg>f}{k: (Co f®E)ps

Cheating:
@ next slide.
@ Enough f e Hq, g€ Hp, Le HS (Hy, Hy)

<f’ Lg>j-f1 = <L, f®g>H5(5f2,g‘fl)
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How do covariance operators encode covariance?

Let ge Hy, f e Hyg, HS = HS(U‘C(,}C;().

(f, Co8)ge, = (Co @ 8) s = (Exy[p(x) @U(¥)], f ® &) pys

Cheating:
@ next slide.
@ Enough f € Hq, g€ Hp, Le HS (Hy, Hy)

<f’ Lg>j-f1 = <L, f®g>H5(5f2,g‘fl)
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How do covariance operators encode covariance?

Let ge Hy, f e Hyg, HS = HS(U‘C(,}C;().

(f, Co8)ge, = (Co @ 8) s = (Exy[p(x) @U(¥)], f ® &) pys
=Ey (p(x) ®@¥(y), f @ g)ys

=f(x)g(y)

Cheating:
@ next slide.
@ Enough f € Hq, g€ Hp, Le HS (Hy, Hy)

<f’ Lg>j-f1 = <L, f®g>H5(5f2,g‘fl)
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How do covariance operators encode covariance?

Let ge Hy, f e Hyg, HS = HS(U‘C(,}C;().

(f, Co8)ge, = (Co @ 8) s = (Exy[p(x) @U(¥)], f ® &) pys
=By (p(x) @Y(y), f ® &) ps = Exy [F(x)g(y)].

=f(x)g(y)

Cheating:
@ next slide.
@ Enough f € Hq, g€ Hp, Le HS (Hy, Hy)

<f’ Lg>j-f1 = <L, f®g>H5(5f2,g‘fl)
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Statement: with f € Hy, g € Ha, L e HS (Ho, H;y)

(f,Lg)g, = (L. f @ &) hs(36, 50
Proof: (bj)ic; ONB in Hy,

(fiLg)g, = <fa LZ (g, bi)g, bi>g{1
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Statement: with f € Hy, g € Ha, L e HS (Ho, H;y)

(f,Lg)g, = (L. f @ &) hs(36, 50
Proof: (bj)ic; ONB in Hy,

1

(F, Ledag, = (£ L (6 b, br), = D3 (8 bide, (F Lbig
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Statement: with f € Hy, g € Ha, L e HS (Ho, H;y)
(f,Lg)g, = (L. f @ &) hs(36, 50

Proof: (bj)ic; ONB in Hy,

(fiLedse, = (L] 6B i), = 3 (b, (i,

i

= 2 (Lbi. (F @ )by,
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Statement: with f € Hy, g € Ha, L e HS (Ho, H;y)
(f,Lg)g, = (L. f @ &) hs(36, 50
Proof: (bj)ic; ONB in Hy,

(fiLedse, = (L] 6B i), = 3 (b, (i,

i

<'7iHS

= 2 (Lbi. (F @ )by, (Lf®8)us

Zoltan Szabé Structured Data: Dependency, Testing



Statement: with f € Hy, g € Ha, L e HS (Ho, H;y)

(f Lgdy, = (L. @ &)ps(oc, 00,

With L:=a®b

<a X b, f X g>H5(f}‘f2,ﬂ’(1) = <f7 (a & b)g>}(1
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Statement: with f € Hy, g € Ha, L e HS (Ho, H;y)

(f Lgdy, = (L. @ &)ps(oc, 00,

With L:=a®b
(@@ b, F &) s, = (F. (2@ b)ghy, 2 (a,F)g, (b.8)s,

Remember: we have seen this for a = f, b = g (when proving
a® b is HS).
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Effect of the centered cross-covariance operator

Using that C5, = C — ux ® py

<f’ C)fyg>j.(k = <f7 C)?yg>g.(k - <f7 (:U’X ® Hy)g>g{k
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Effect of the centered cross-covariance operator

Using that C5, = C — ux ® py

<f’ C)fyg>j.(k = <f7 C)?yg>g.(k - <f7 (:U’X ® Hy)g>g{k

2y 1008 0] = (Fong, (€10,

Exf(x) Eyg(y)
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Effect of the centered cross-covariance operator

Using that C5, = C — ux ® py

<f’ C)fyg>j.(k = <f7 C)?yg>g.(k - <f7 (:U’X ® Hy)g>g{k

2y 1008 0] = (Fong, (€10,

Exf(x) Eyg(y)
= cov(f(x),g(y))-
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o KCCA formulation: using Cg,, Cg., Cj.
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o KCCA formulation: using Cg,, Cg., Cj.

@ HSIC: captures P,, 2 Py ®P, in H) @ H,.
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o KCCA formulation: using C)fy, Cs, C}fy.
@ HSIC: captures P,, 2 Py ®P, in H) @ H,.

@ Link to distance covariance, energy distance.

In other words, ... )
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KCCA formulation with cross-covariance operators

prcea(x,y) = sup  corr(f(x),g(y)) <
feﬂ{k,geﬂ-fg
f,CEf —1,
sup  (f, nyg>j{ s.t. < = )26
feH,geH, k <ga nyg>g{e =1
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KCCA: with k-regularization

prcca(x,y,k) = sup  corr(f(x),g(y); k),
ng‘fk,gEf]‘(:g

covyy (f(x),8(y)) .
\vare F(x) + [ Fg o var, g(v) + gl

corr(f(x), g(y); k) =

Zoltan Szabé Structured Data: Dependency, Testing



KCCA: with k-regularization

prcca(x,y,k) = sup  corr(f(x),g(y); k),
ng‘fk,gEf]‘(:g

covyy (f(x),8(y)) .
\vare F(x) + [ Fg o var, g(v) + gl

corr(f(x), g(y); k) =

Empirically,

sup <f,EC\g> s.t. <
Festogett \ 0/ M <
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KCCA: with k-regularization

prcca(x,y,k) = sup  corr(f(x),g(y); k),
ng‘fk,gEf]‘(:g

covyy (f(x),8(y)) .
\vare F(x) + [ Fg o var, g(v) + gl

corr(f(x), g(y); k) =

Empirically,
. (F(Carnl)f) =1,
sup <f, C)fyg> s.t. — He
FeH g€, <g, (C;y + IQI) g>% =1
£

KCCA consistency analysis [Fukumizu et al., 2007]

using this formulation & the convergence of Cg,, Cg, Cy, .
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HSIC: P,y = P, ®P, in 3 ® 3,

We saw h((x,y), (X', y")) = k(x,x")l(y,y’) is the kernel of H; ® H,. Let

HMPXV - HPX®P}/ HU{,,
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HSIC: P,y = P, ®P, in 3 ® 3,

We saw h((x,y), (X', y")) = k(x,x")l(y,y’) is the kernel of H; ® H,. Let

|y, — pep, |5, = H B, [k (1,x) €(2,y)] = Ep.gp, [k (1,x) £(2,)] Hg{h
Exy [ ()@ )] Eck()@E ()
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HSIC: P,y = P, ®P, in 3 ® 3,

We saw h((x,y), (X', y")) = k(x,x")l(y,y’) is the kernel of H; ® H,. Let

|y, — pep, |5, = H B, [k (1,x) €(2,y)] = Ep.gp, [k (1,x) £(2,)] Hg{h
By [ ()@ (y)] Exk(-x)®Ey£(-y)
= [Exy [0(x) @ ¥(y)] — px ® ,uyH:}{h
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HSIC: P,y = P, ®P, in 3 ® 3,

We saw h((x,y), (X', y")) = k(x,x")l(y,y’) is the kernel of H; ® H,. Let

|y, — pep, |5, = H B, [k (1,x) €(2,y)] = Ep.gp, [k (1,x) £(2,)] Hg{h
By [ ()@ (y)] Exk(-,x)®Ey£(-y)
= |Exy [¢(x) @ %(y)] — p1x ® py g, = HSIC(x, y)

using j‘fl ®j'62 ~ HS(J‘Cg,j’Cl).
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢, .

Zoltan Szabé Structured Data: Dependency, Testing



Distance covariance

o Characteristic functions: ¢y, ¢x, ¢, .
o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:

x Ly e ¢y = o¢xpy, (xeR%yeR®R).
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢, .

o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:
xLye oy =0y, (xeRM yeR®).

° 2

 norm of ¢, and ¢, :

dCOV(X,}/) = Hgbxy - ¢X¢yHLa,
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢, .
o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:

x Ly e ¢y = o¢xpy, (xeR%yeR®R).

oLa,

norm of ¢, and ¢, ¢,, a € (0,2):

dCov(x,y) = [¢dxy — ¢x¢yH/_a/
1

w (a, b) = o o
c(di, a)c(da, ) a3+ | b]5
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢, .
o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:

x Ly e ¢y = o¢xpy, (xeR%yeR®R).

oLa,

norm of ¢, and ¢, ¢,, a € (0,2):

dCov(x,y) = [¢dxy — ¢x¢yH/_a/
1

 c(dy, @)c(da, @) a| S b2
2m3 (1 %)
20T (442)

w (a, b)

c(d,a) =
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢, .
o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:

x Ly e ¢y = o¢xpy, (xeR%yeR®R).

oLa,

norm of ¢, and ¢, ¢,, a € (0,2):

dCov(x,y) = [¢dxy — ¢x¢yH/_a/
1

 c(dy, @)c(da, @) a| S b2
2m3 (1 %)
20T (442)

w (a, b)

c(d,a) =

e x Ly iff. dCov(x,y) =0.
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Distance covariance: o =1

Alternative form in terms of pairwise distances:

dCov?(x,y) = By By ‘X - X/HzHy - y'H2 + B
— 2B,y [Ex y—=Y|,]-

X_X/H2EW’ |y—y'“2

X — X/HQEy’
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Distance covariance: o =1

Alternative form in terms of pairwise distances:

dCov?(x,y) = By By ‘X - X/HzHy - y'H2 + B
— 2B,y [Ex y—=Y|,]-

X = Xl”z Eyy/

y =],

X — X/HQEy’

Extension [Lyons, 2013]:

dCov®(x,y) = ExyBryipr (x, X ) p2 (v,y') + B (%, X) Eyyr (v, ')
- 2IExy [Ex’pl (Xaxl) ]E’y’p2 (yay/)] )
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Distance covariance: o =1

Alternative form in terms of pairwise distances:

y =],

X = Xl”z Eyy/

x =Xy = ¥'], + Exe
y =Y.l

dCOV2(X,y) = ExyEx’y’
— 2B,y [Ex

X — x’H2 E,.
Extension [Lyons, 2013]:

dCov®(x,y) = ExyBryipr (x, X ) p2 (v,y') + B (%, X) Eyyr (v, ')
- 2IExy [Ex’pl (Xaxl) ]E’y’p2 (yay/)] )

(X, p1), (¥, p2): metric spaces of negative type (def & examples: in a
moment).
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Distance covariance vs. HSIC

dCov®(x,y) = ExyBryipr (x,X) p2 (y,y') + Exep1 (x,X) Eyyrpa (v, ')
- 2Exy [Ex'pl (X7X/) IE:y',02 (yay/)] .
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Distance covariance vs. HSIC

dCov®(x,y) = ExyBryipr (x,X) p2 (y,y') + Exep1 (x,X) Eyyrpa (v, ')
- 2Exy [Ex'pl (X7X/) IE:y',02 (yay/)] .

Similarly to MMD (see later at ﬁ/SI\C)

HSIC?(x,y) = By Eyry k(x, X' V0(y,y') + B k(x, X" )Ey l(y, y')
— 2B, [Exk(x,x")E, £(y,y")] .
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HSIC < distance covariance

~+extension to semi-metric spaces of negative type:

Theorem ([Sejdinovic et al., 2013b])

dCov?(x,y; p1, p2) = 4HSIC?(x, y; Iy, Hy), where

p1(x,x') = k(x,x) + k(x', x") — 2k(x, x'),
p2(y,y') = Uy, y) + Ly, y') = 2Ly, y').
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Metric space

p: X x X —[0,+00) is a metric on X if
° p(x,y) =0 x=y.

A

Zoltan Szabé Structured Data: Dependency, Testing



Metric space

p: X x X —[0,+00) is a metric on X if
e p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.

A
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Metric space

p: X x X —[0,+00) is a metric on X if
e p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.

e Triangle inequality: p(x,z) < p(x,y) + p(y, z) for
Vx,y,ze X.

A
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Metric space

p: X x X —[0,+00) is a metric on X if
e p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.

e Triangle inequality: p(x,z) < p(x,y) + p(y, z) for
Vx,y,ze X.

A

Examples:
1

J 1
o X =R p(x,y) = HX—YHP = (Zi:l ‘Xi—yi|p>pv p=1
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Metric space

p: X x X —[0,+00) is a metric on X if
e p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.

e Triangle inequality: p(x,z) < p(x,y) + p(y, z) for
Vx,y,ze X.

A

Examples:
1

o X =R, plx,y) = x—yll, = (ZLi b —ilP) " p> 1.
o X = C[a, b, p(x,y) = maxee[s sy IX(2) = ¥(2)].
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Metric space

p: X x X —[0,+00) is a metric on X if
e p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.

e Triangle inequality: p(x,z) < p(x,y) + p(y, z) for
Vx,y,ze X.

A

Examples:
1

J 1
o X =R p(x,y) = HX—YHP = (Zi:l ‘Xi—yi|p>pv p=1

o X = Cla, b], p(x,y) = maxe[ap] [X(2) — y(2)|-
® X any set. p(x,y) = Ox—y.
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Semi-metric space:

Definition

p: X xX —[0,400) is a semi-metric on X if

° p(x,y) =0ex=y.
e symmetry: p(x,y) = p(y,x), for Vx,y € X.
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Semi-metric space:

Definition

p: X xX —[0,400) is a semi-metric on X if
° p(x,y) =0 x=y.
e symmetry: p(x,y) = p(y,x), for Vx,y € X.
It is called negative type if in addition

Z Z ajajp(xi,xj) <0

i=1j=1

for Vn =2, Vx1,...,x, € X and Vay,...,a, € Rwith 7 ; a; = 0.
v
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
@ < description: dm : X — H (ilbert) injective mapping such
that

p(x,y) = [m(x) — m(y)|3.
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
@ < description: dm : X — H (ilbert) injective mapping such
that

p(x,y) = [m(x) — m(y)|3.

Thus,
@ 2nd part = (Rd, HHS) v
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
@ < description: dm : X — H (ilbert) injective mapping such
that

p(x,y) = [m(x) — m(y)|3.
Thus,

@ 2nd part = (Rd, HHS) v
e +1st part = p(x,y) = [|x — y[] v with g € (0,2).
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
@ < description: dm : X — H (ilbert) injective mapping such

that

p(x,y) = [m(x) — m(y)|3.

Thus,
@ 2nd part = (Rd, HHS) v
e +1st part = p(x,y) = [|x — y[] v with g € (0,2).
e Specifically: p(x,y) =[x — y|, is OK.
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Energy distance [Székely and Rizzo, 2004,

Baringhaus and Franz, 2004, Székely and Rizzo, 2005]

x, X' ~P,y,y ~Q:

EnDist(P,Q) = 2E,, [x — y|, — Exe

X_X/Hz_Eyy’ y—y’|2,
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Energy distance [Székely and Rizzo, 2004,

Baringhaus and Franz, 2004, Székely and Rizzo, 2005]

x, X' ~P,y,y ~Q:

EnDist(P,Q) = 2E,, [x — y|, — Exe y — y’!
EnDist(P,Q) = 2E,yp (x,y) — Exep (x, x’) —E,p (y,y’) .

X_X/Hz_Eyy’ 2
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Energy distance [Székely and Rizzo, 2004,

Baringhaus and Franz, 2004, Székely and Rizzo, 2005]

x, X' ~P,y,y ~Q:

EnDist(P,Q) = 2E,, [x — y|, — Exe y — y’!
EnDist(P,Q) = 2E,yp (x,y) — Exep (x, x’) —E,p (y,y’) .

X_X/Hz_Eyy’ 2

Properties:

e EnDist(P,Q) = 0 with p metric of negative-type.
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Energy distance [Székely and Rizzo, 2004,

Baringhaus and Franz, 2004, Székely and Rizzo, 2005]

x, X' ~P,y,y ~Q:

EnDist(P, Q) = 2E,, |x — y|l, — Exe y—y
EnDist(P,Q) = 2B« p (x,y) — Exep (x,X") —=Eyyp (v,¥') .

X_X/Hz_Eyy’ 2

Properties:
e EnDist(P,Q) = 0 with p metric of negative-type.

e EnDist(P,Q) =0 < P = Q for (X, p) strictly negative
spaces; example: (R?,||-],).
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Strict negativity

In addition:

n n
2 Z a,-ajp(x,-,xJ-) <0

i=1j=1

if x;-s are distinct and Ja; # 0.
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Energy distance vs. MMD

Energy distance: also called N-distance
[Zinger et al., 1992, Klebanov, 2005],

EnDist(P, Q) = 2Eyyp (x,y) — Exep (x,x") = Eyyp (v, ') -
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Energy distance vs. MMD

Energy distance: also called N-distance
[Zinger et al., 1992, Klebanov, 2005],

EnDist(P, Q) = 2Eyyp (x,y) — Exep (x,x") = Eyyp (v, ') -
MMD (recall):

MMD?(P,Q) = E, k(x,x) + E, k(y,y’) — 2B k(x, y).
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MMD < energy distance

Theorem ([Sejdinovic et al., 2013b])

EnDist(P,Q; p) = 2MMD?(P, Q; Hy),

where

p(x,y) = k(x,x) + k(y,y) — 2k(x, y).
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Central in applications: characteristic property

o HSIC, k = ®M_ km, x = (xm)M_,:

M
HSIC, (P) := MMDj (P,@,ﬂ,{:lpm), i (Xms Xl ) -

m=1
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Central in applications: characteristic property

e HSIC, k = ®M:1km, X = (Xm):\nﬂzli
M
HSIC, (P) := MMDj (P,@,ﬂnﬂzlpm) , i (Xms Xl ) -
m=1

k = ®Y_ kn, will be called Z-characteristic if

HSIC,(P)=0 < P = @"_,P,,.
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Central in applications: characteristic property

o HSIC, k = ®M_ km, x = (xm)M_,:
M

HSIC, (P) := MMDj (P,@,ﬂnﬂzlpm), i (Xms Xl ) -

m=1
k = ®Y_ kn, will be called Z-characteristic if
HSIC,(P)=0 < P = @"_,P,,.
Recall (MMD): k is called characteristic if

MMD(P,Q)=0 < P = Q.
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Central in applications: characteristic property

e HSIC, k = ®M:1km, X = (Xm):\nﬂzli
M
HSIC, (P) := MMDj (P,@,ﬂ,{:lpm), = T b (xms X -
m=1

k = ®Y_ kn, will be called Z-characteristic if
HSIC,(P)=0 < P = @"_,P,,.
Recall (MMD): k is called characteristic if

MMD(P,Q)=0 < P = Q.

®M_ ky: universal = characteristic = Z-characteristic.
Relation? Conditions in terms of k,,-s?
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QM _ km : Z-char char universal

~
~

=/

[Sriperumbudur et al., 29111

(km)M_, char — -universal
[Sriperumbudur et al., 2011]
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Existing Results, M = 2

° [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
k1&ky: universal = ki ® kp: universal (= Z-characteristic).
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Existing Results, M = 2

° [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
k1&ky: universal = ki ® kp: universal (= Z-characteristic).
e Distance covariance [Lyons, 2013, Sejdinovic et al., 2013b]:
ki&ko: characteristic & ki ® k»: Z-characteristic.
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Existing Results, M = 2

° [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
k1&ky: universal = ki ® kp: universal (= Z-characteristic).
e Distance covariance [Lyons, 2013, Sejdinovic et al., 2013b]:
ki&ko: characteristic & ki ® k»: Z-characteristic.

Extension to M > 2.
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Existing Results, M = 2

° [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
k1&ky: universal = ki ® kp: universal (= Z-characteristic).
e Distance covariance [Lyons, 2013, Sejdinovic et al., 2013b]:
ki&ko: characteristic & ki ® k»: Z-characteristic.

Extension to M > 2.

Main Challenge
'®km: Z-characteristic < kp,: characteristic (Ym)' does NOT hold.
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Results [Szabé and Sriperumbudur, 2017]

Proposition (characteristic property)

° ®9n/’:1km.‘ characteristic = (k,,,),’\,/,’:1 are characteristic.
° - AX’"| =2, km(val) = 25x,x’ - 1]
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Results [Szabé and Sriperumbudur, 2017]

° A 1km' characteristic = (km)M_, are characteristic.
° = [[Xm| = 2, km(x,x") = 205 50 — 1]
o

Proposition (Z-characteristic property)

@ ki, ko: characteristic = ki ® ko: Z-characteristic.
° <=: for VM =2

Zoltan Szabdé Structured Data: Dependency, Testing



Results [Szabé and Sriperumbudur, 2017]

° A 1km' characteristic = (km)M_, are characteristic.
° = [[Xm| = 2, km(x,x") = 205 50 — 1]
o

Proposition (Z-characteristic property)

@ ki, ko: characteristic = ki ® ko: Z-characteristic.
° <=: for VM =2

o ki, ko, k3: characteristic = ®?n:1km: Z-characteristic [Ex].
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Results [Szabé and Sriperumbudur, 2017]

° A 1km' characteristic = (km)M_, are characteristic.
° = [[Xm| = 2, km(x,x") = 205 50 — 1]
o

Proposition (Z-characteristic property)

@ ki, ko: characteristic = ki ® ko: Z-characteristic.
° <=: for VM =2

o ki, ko, k3: characteristic = ®?n:1km: Z-characteristic [Ex].

o ki, ko: universal, ks: characteristic = ®3 _ km: I-char [Ex].
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Results: continued

Proposition (X, = Rm km: continuous, shift-invariant, bounded)

(km)M_,-s are characteristic < ®Y_, ky,: T-characteristic <
®M_ k: characteristic.
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Results: continued

Proposition (X, = Rm km: continuous, shift-invariant, bounded)

(km)M_,-s are characteristic < ®Y_, ky,: T-characteristic <
®M_ k: characteristic.

Proposition (Universality)

®M_ km: universal < (km)M_, are universal.
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Example

char <———universal

®f‘n/’:1 km : Z-char

Prop. (M=2)
U U
Example (M=3) é g
ﬂ [Sriperumbudur et al., 2011]
universal

(km)M_, : char
[Sriperumbudur et al., 2011]
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Covariance operator: finished.
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Recall

@ KCCA: independence measure,

preealx,y) = sup  corr(f(x), g(y))-
ij‘Ck,gEJ’fg
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Recall

@ KCCA: independence measure,

preealx,y) = sup  corr(f(x), g(y))-
fEJ‘Ck,gEJ’fg

@ Mean embedding: distribution representation,

pp = J:Y k(-, x)dP(x).
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Recall

@ KCCA: independence measure,

preealx,y) = sup  corr(f(x), g(y))-
fEJ‘Ck,gEJ’fg

@ Mean embedding: distribution representation,
pp = f k(-, x)dP(x).
x

@ MMD: (semi)-metric defined by mean embedding,

MMD(P, Q) = [pp — pals, -
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Recall

@ KCCA: independence measure,

preealx,y) = sup  corr(f(x), g(y))-
fEJ‘Ck,gEJ’fg

@ Mean embedding: distribution representation,
pp = f k(-, x)dP(x).
x

@ MMD: (semi)-metric defined by mean embedding,

MMD(P, Q) = [pp — pals, -

@ Cross-covariance operator:

Coy = Exy [p(x) @ U (y)] — pix ® py-.
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Recall

@ KCCA: independence measure,

preealx,y) = sup  corr(f(x), g(y))-
fEJ‘Ck,gEJ’fg

@ Mean embedding: distribution representation,
pp = f k(-, x)dP(x).
x

MMD: (semi)-metric defined by mean embedding,

MMD(P, Q) = [pp — pals, -

@ Cross-covariance operator:

Coy = Exy [(x) @ ¥(y)] — px ® py -
@ HSIC: independence measure,

HSIC(x, y) = |

Collys
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No density estimation

Thus,
@ independence measure,
@ distance,
@ inner product

measures/estimates on probability distributions

without density estimation!
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HSIC estimators

Zoltan Szabdé Structured Data: Dependency, Testing



Recall: MMD estimator

k(fish;,dog;)

MMD%(P, Q) = CE@ + Go,o —2Gpg (without diagonals in CEP, Go,0)
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HSIC: intuition. X': images, ): descriptions.

S
4
’ J Their noses guide them through life, and
they're never happier than when following
” an interesting scent. They need plenty of
exercise, about an hour a day if possible.

A large animal who slings slobber, exudes a
distinctive houndy odor, and wants nothing more
than to follow his nose. They need a significant
amount of exercise and mental stimulation.

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.

Text from dogtime.com and petfinder.com
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HSIC intuition: Gram

matrices

Zoltan Szabd

Their noses guide them through life, and ~
they're never happier than when following G
an interesting scent. They need plenty of y

exercise, about an hour a day if possible.

A large animal who slings slol]
distinctive houndy odor, and
than to follow his nose. They
amount of exercise and ment,

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.
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HSIC intuition: Gram matrices

3
v
, J —~ Their noses guide them through life, and ~
G they're never happier than when following G
X an interesting scent. They need plenty of y

exercise, about an hour a day if possible.

A large animal who slings slol]
distinctive houndy odor, and
than to follow his nose. They
_ amount of exercise and ment,

- Known for their curiosity, intelligence, and
excellent communication skills, the Javanese

" breed is perfect if you want a responsive,
) interactive pet, one that will blow in your ear

and follow you everywhere.

Empirical estimate:

HSIC? = = (8,6, ) .
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Cocktail party: HSIC demo

0 .
(® RL Y (o \
-’
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ISA reminder

x = As, s=[sl;...;sM],

where s™-s are non-Gaussian & independent.
o Goal: {x;}_ ; >W=A"11{s}],,
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ISA reminder

x = As, s=[sl;...;sM],

where s™-s are non-Gaussian & independent.
o Goal: {x;}_ ; >W=A"11{s}],,

@ Objective function:
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ISA: source, observation

@ Hidden sources (s

ARCDEFR
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ISA: source, observation

@ Hidden sources (

A}'

@ Observation (
".:.;.. ,:; :',t . 3:..'\
B Fy .ol
ke
%i" LT s %
Rs X 3
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ISA: estimated sources using HSIC, ambiguity

e Estimated sources (

BEOADY
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ISA: estimated sources using HSIC, ambiguity

e Estimated sources (

BLOADY

@ Performance ( WA) ambiguity:
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Conjecture: ISA separation theorem [Cardoso, 1998]

@ ISA = ICA + permutation.
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Conjecture: ISA separation theorem [Cardoso, 1998]

o ISA = ICA + permutation. HSIC(§;, §),
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Conjecture: ISA separation theorem [Cardoso, 1998]

o ISA = ICA + permutation. HSIC(§;, §),
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Conjecture: ISA separation theorem [Cardoso, 1998]

o ISA = ICA + permutation. HSIC(§;, §),

@ Basis of the state-of-the-art ISA solvers.
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Conjecture: ISA separation theorem [Cardoso, 1998]

o ISA = ICA + permutation. HSIC(§;, §),

@ Basis of the state-of-the-art ISA solvers.
e Sufficient conditions [Szabé et al., 2012]:
o s™: spherical [Fang et al., 1990].
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Invariance to
@ 90° rotation: f(uy,up) = f(—up,u1) = f(—u1,—uwp) = f(u, —u1).
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D @
<)

L3
\\_ - < /)
sy e
L ——

Invariance to
@ 90° rotation: f(uy,up) = f(—up,u1) = f(—u1,—uwp) = f(u, —u1).
e permutation and sign: f(tui, tu) = f(£ur, £uy).
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N {'ﬁ_.
(; * \;)

Invariance to
@ 90° rotation: f(uy,up) = f(—up,u1) = f(—u1,—uwp) = f(u, —u1).
@ permutation and sign: f(tu, tup) = f(tu, tuq).
o [P-spherical: f(uy,up) = h (X |uilP) (p>0).
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Another HSIC demo: translation

@ 5-line extracts.
@ representation, kernel: bag-of-words, r-spectrum (r = 5).
@ sample size: n = 10. repetitions: 300.
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Another HSIC demo: translation

@ 5-line extracts.
@ representation, kernel: bag-of-words, r-spectrum (r = 5).
@ sample size: n = 10. repetitions: 300.

Results:
@ r-spectrum: average Type-ll error = 0 (a = 0.05),
@ bag-of-words: 0.18.
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Recall: MMD in terms of kernel evaluations

MMD?(P, Q) = |z — pgl3;, =
= EX~IF’,X’~IP’k(Xa X/) + Ey~@,y/~@k(ya y/)
— 2B« py~k(x,y).
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Recall: MMD in terms of kernel evaluations

MMD?(P, Q) = |z — pgl3;, =
= EX~IF’,X’~IF’k(Xa X/) + Ey~@,y/~@k(ya y/)
— 2B« py~k(x,y).

Can we rewrite HSIC in terms of expected kernel values?
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HSIC in terms of kernel evaluations [Gretton et al., 20053]

HSIC?(x,y) = | C§ |5 = |CY — 1x ® 1y |26
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HSIC in terms of kernel evaluations [Gretton et al., 20053]

HSIC?(x, y) H yHHs “ Gy _MX®”)’HiIS
H yHHs + H/‘LX ®:U’)/HH5 < ;ya MX ®:U’y>H5 .
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HSIC in terms of kernel evaluations [Gretton et al., 20053]

HSICZ(X y) HCyHHS “ — Hx ®NYHi/s
H yHHs + H/‘LX ®:U’)/HH5 < ;ya MX ®:U’y>H5 .

First term:

[C5 s = (B [(0) @0 (0)], By [0(x) @ %(7)]) s
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HSIC in terms of kernel evaluations [Gretton et al., 20053]

HSIC?(x, y) H yHHs “ Mx®ﬂy”i,5
H YHHS + HMX @NyHHS < ;y,ﬁbx ®’U’y>H5'
First term:
| yHH5_<EXy P(x) @ Y(y)], Exryr [p(x )®¢(Y)]>
= Exy By SSO(X)®¢( ), () @ V() s

(0 (x)g, (D) N,

<el Rf,eo® f2>H5(g-(2,g{1) = <e].7 e2>g-[1 <f17 f2>g-(2




HSIC in terms of kernel evaluations [Gretton et al., 20053]

2
HSIC?(x, y) H yHHs “ MX®MyHH5
H yHHs + H/‘LX ®:U’)/HHS < ;ya MX ®:U’y>H5 .

First term:

IC y||H5—<EXy () @Y (Y)], Exryr [0(x )®¢(y)]>
= BBy (9(x) ®@9(y), (<) @9(y)) s
(0 (x)g, (D) N,
= Eqy By k (3, X' )l(y, ¥').

<el Rf,eo® f2>H5(g-(2,g{1) = <e].7 e2>g-[1 <f17 f2>g-(2




HSIC: second term

2
Hﬂx ® /‘yHHS = (Ux ® My, px @ Ny>H5
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HSIC: second term

2
(™ ®,uyHH5 = (ux @ py, px ®:U’)/>HS
= <MX7Mx>g{k<Ny=/~‘y>m
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HSIC: second term

2
[ x ® /‘}’HHS = (px ® fhy, pix ® ,U«y>HS
= <MX7Mx>g{k<Ny=/~‘y>m
= EXX/k(X, X,)Eyylg()/?y,)'
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HSIC: third term

<C>gy7:U’X ®Hy>H5 = <Exy [@(X) ®¢(_V)], Hx ®:U’)/>H5
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HSIC: third term

<C>gy7:U’X ®Hy>H5 = <Exy [@(X) ®¢(_V)], Hx ®:U’)/>H5
= Ex (9p(x) @Y (y), px ®My>H5

~~

) NX)j{k <¢(Y)a :u}’>ﬂ-(e

~
E, s k(x,x") ]Eyle()/7y/)

~_ | —

(p(x

-
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HSIC: third term

(Coyr tix ® py) s = (Eay [0(x) @ D(¥)], 11x ® p1y) s
= Ex (9p(x) @Y (y), px ®My>H5

) NX)j{k <¢(Y)a :u}’>ﬂ-(e

~
E, s k(x,x") ]Eyle()/7y/)

= ]E,Xy [Exfk(x,xl)nyﬁ(y,y/)] .

~_ | —

(p(x

-
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HSIC: after gathering the terms

HSIC?(x,y) = ExyEpryr k(x, X)(y, y') + B k(x, X \Ey l(y, y')
— 2E,, DEX//((X, x’)IEyIE(y,y')] )
=:a+b—2c.
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HSIC: after gathering the terms

HSIC?(x,y) = ExyEpryr k(x, X)(y, y') + B k(x, X \Ey l(y, y')
— 2E,, DEX//((X, x’)IEyIE(y,y')] )
=:a+ b—2c.
Idea: given {(x;,yi)}"_, Hid Py,
o Let us estimate Cg, jix, py empirically.
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HSIC: after gathering the terms

HSIC?(x,y) = ExyEpryr k(x, X)(y, y') + B k(x, X \Ey l(y, y')
— 2E,, DEX//((X, x’)IEyIE(y,y')] )
=:a+b—2c.

Idea: given {(x;,yi)}"_, Hid Py,

o Let us estimate Cg, jix, py empirically.

HSIC?(x,y) = % <(~5X./ Gy>F: see the intuition. The details. ..
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T

HSIC estimation: from Cy , fiy, {1,

First term:

2= CY |2 = EnyErryk(x, X)e(y,y"),

2

. _—
az‘C“

Xy

HS
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T

HSIC estimation: from Cy , fiy, {1,

First term:

2= CY |2 = EnyErryk(x, X)e(y,y"),

- <12 o) ® (1), - 2w<xj>®w<yj>>
=1 HS

i= j=1

. _—
az‘C“

Xy
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T

HSIC estimation: from Cy , fiy, {1,

First term:

2= CY |2 = EnyErryk(x, X)e(y,y"),

2 1 1<
5= ‘ o <n 2P0 @ (yi), — Y w(x) ®¢(YJ)>
i=1 Jj=1 HS
1 n
= ? Z (GX)U(G)/)U
ij=1
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T

HSIC estimation: from Cy , fiy, {1,

First term:

2= CY |2 = EnyErryk(x, X)e(y,y"),

R — 12 1 1
5= ‘ s s <n Z o(xi) @ Y(yi), . Z o(x) ®1/J(yj)>
i=1 i=1
J HS
1 n 1 1
=3 . (Gi(Gy)y = — (Gx, Gy)p = — tr(G,Gy).
ij=1
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HSIC estimation: 2nd term

b= |pux ®/‘y”$-/5 = Exx’k(X7X/)Eyy’£(y7y/)-
T A~ A 12
b= |fix ®NyHH5
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HSIC estimation: 2nd term

b= |pux ®/‘y”$-/5 = Exx’k(X7X/)Eyy’£(y7y/)-
. . 2 . o .
b= |fix ®NyHH5 = (fix ® fly, fix ®:“)/>H5
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HSIC estimation: 2nd term

b= |pux ®/‘y”$-/5 = Exx’k(X7X/)Eyy’£(y7y/)-
. . 2 . o .
b= |fix ®NyHH5 = (fix ® fly, fix ®:“)/>H5

(gele s ol [igole s,
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HSIC estimation: 2nd term

b= |pux ®/‘y”$-/5 = Exx’k(X7X/)Eyy’£(y7y/)-
. . 2 . o .
b= |fix ®NyHH5 = (fix ® fly, fix ®:“)/>H5

- <[1 w(xo] ® [1 > mm], [1 > @(Xi)] ® [1 > ¢<yj>]>
i=1 =1 i=1 j=1 HS
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HSIC estimation: 2nd term

b= |pux ®/‘y”$-/5 = Exx’k(X7X/)Eyy’£(y7y/)-
. . 2 . o .
b= |fix ®NyHH5 = (fix ® fly, fix ®:“)/>H5

:<[ii‘i«,@(x,-)]®[iji’1vn] [ ZW'] [i

HM:

),
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HSIC estimation: 3rd term (without '—2’)

c= <C)':y7MX®:uy>H5’
6 = <C>?y7lax®:&)/>h,s
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HSIC estimation: 3rd term (without '—2’)

c= <C)':y7MX®:uy>H5’
6 = <C>?y7lax®:&)/>h,s

<,17 o(xi) @ (yi), [,17 > SO(Xa)] ® [,17 ’l/)(yb)]>
-1 a=1 b=1 HS

Zoltan Szabé Structured Data: Dependency, Testing



HSIC estimation: 3rd term (without '—2’)

c= <C)':y7MX®:uy>H5’
6 = <C>?y7lax®:&)/>h,s

3>
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HSIC estimation: 3rd term (without '—2’)

c= <C)':y7MX®:uy>H5’

e = (Ch.i®p,),

[l
3\!—‘/\
S|
I s
—
AS)
x
®
<
—
=<
| —
S|
1=
35
&
| E—|
®
| —
S|
1=
=
<
N
\/
iy
n
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HSIC estimation: 3rd term (without '—2’)

c= <C)';Iy7MX®:U“y>H57

¢ = < xy):U’X®:u)/>HS
1 e Ly
= <n p(xi) @Y (yi), [n > w(xa)] ® [n 2 ’¢’(yb)]>
i=1 a=1 b=1 HS
1 1 ¢ Ly
== <<p(x,) ®U(yi) [n SO(Xa)] ® [n 2, w(yb)]>
i=1 a=1 b=1 HS
1¢ 1 ¢ Ly
= ; Z <<p(x,), E Z gD(Xa) <¢(YI)7 - w()/b)>
i=1 a=1 Hy b=1 J
%Z;’:;((X,-,Xa) %Z :‘;(M Yb)
1 & n
= ﬁ Z [ k(x,,xa)ﬁ(y,,yb)]
a,b=1 Li=1 |
(G ér)ab
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HSIC estimation: 3rd term (without '—2’)

c= <C)';Iy7MX®:U“y>H57

¢ = < xy):U’X®:u)/>HS
1 | 1y BN
= <n p(xi) @ Y(yi), [n > @(Xa)] ® [n > '¢(yb)]>
-1 a1 b1 HS
1 1{ IS
=2 <<P(X,) ®¥(vi) [n @(Xa)] ® [n > w(yb)]>
-1 a1 b—1 HS
1 1¢ BN
= ; Z <<p(x,), E Z gD(Xa) <¢(YI)7 - w()/b)>
i-1 a=1 H, b=1 He
%Z;’:;((X,- X3) %Z :‘;(M »Yb)

_

"

(GxGy)a,b
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HSIC estimation: putting together

HSIC?(x,y) =: 4+ b—2¢
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HSIC estimation: putting together

HSIC?(x,y) =: 4+ b—2¢

_ % tr(GxG,) + % <1TGX1) (ITGyl) - %ITGXGyI
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HSIC estimation: putting together

H/SE%(X,)/) —:4+b—2¢
1 LT T 2.7
— S5 tr(G,G,) + ﬁ<1 G.1) (176,1) - S5176,G,1
1 1.+ 1.+ 1.
- (6.6, - 1117G,G, — 1117G,G, + 117G, 1176, )

<
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HSIC estimation: putting together

H/SE%(X,)/) —:4+b—2¢
1 LT T 2.7
— S5 tr(G,G,) + ﬁ<1 G.1) (176,1) - S5176,G,1
1 1.+ 1.+ 1.
- (6.6, - 1117G,G, — 1117G,G, + 117G, 1176, )

<

1
= ? tr (HGXHGy)
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HSIC estimation: putting together

H/SE%(X,)/) —:4+b—2¢
1 LT T 2.7
— S5 tr(G,G,) + ﬁ<1 G.1) (176,1) - S5176,G,1
1 1.+ 1.+ 1.
- (6.6, - 1117G,G, — 1117G,G, + 117G, 1176, )

<

N

(1h=52)Gx (1= 52) Gy
1 1
= 5 tr(HGHG,) = —tr (HG.HHG,H)

Iy
Gy G,
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HSIC estimation: putting together

H/SE%(X,)/) —:4+b—2¢
1 LT T 2.7
— S5 tr(G,G,) + ﬁ<1 G.1) (176,1) - S5176,G,1
1 1.+ 1.+ 1.
- (6.6, - 1117G,G, — 1117G,G, + 117G, 1176, )

<

N

(1h=52)Gx (1= 52) Gy
1 1 1 /. &
= 5 tr(HGHG,) = —tr (HGXH HGyH> - <GX,Gy>F.

Iy
Gy G,
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HSIC estimation: putting together

HSIC?(x,y) =: 4+ b—2¢

_ % tr(GxG,) + % <1TGX1) (ITGyl) - %ITGXGyI

1 T L7 Logr T
St (G.G, — Z117G,G, — Z117G,G, + 117G,117G, )

<

(1)1, %),
1 1 1/« =
= 5 tr(HGHG,) = —tr (HGXH HGyH> - <GX,Gy>F.
G G,

Bias of HSIC,: O (1).
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Reminder: MMD?, MMD?, MMD?

MMD?(P, Q) := E,k(x,x") + E,p k(y,

Y -
n n
MMD2(P, Q) = 222 (%, %)) %ZZ k(yis )

i=1j=1
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HSIC? until now

HSICz(X7 )/) = ExyEx’y’k(Xv X/)E(y, yl) + Exx’k(x7 X/)Eyy’e()@ y/)
- 2Exy [Exk(x, x")EyE(y,y')],

HSIC2(X _)/ 2 Z k XI)XJ)E(yHyJ)
ij=1
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HSIC? until now

HSICz(X7 )/) = ExyEx’y’k(Xv X/)E(y, yl) + Exx’k(x7 X/)Eyy’e()@ y/)
— QEXy [EX//{(X X/) /K(y,y/)] ,

HSIC2(X y) = Z k(xi, x)e(yi,yj) + .- ..
ij=1

@ x,x’ should be independent, but

@ with plug-in: / = j, it introduces bias.
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), £ij := £(yi, ¥;)-
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), £ij := £(yi, ¥;)-

R 1 . 1
dp = ? 2 kUgU’ dy = n(n—]_);kugu
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), Lij := £(yi, ¥;)

ws
(o)
|

—
=

>
<

=
<

1
dy = —= D kiilijs
n(n—1) ; s

"

1
Z kl..gl..
2 ey

17 ={(i1,...,ip) - ij € {1,..., n} without replacement}, (n), = |/7].
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), Lij := £(yi, ¥;)

.1 ¢ . 1
dp = ? Z k/jf,’j, ay = 7,7(” — 1) ;kufu,
17)

"

1
Z kl..gl..
2 ey

1 n
Cp = 3 Z kiglir,

i,q,r=1

15 ={(i,-,ip) - ij € {1,..., n} without replacement}, (n), = |Ilg".
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), Lij := £(yi, ¥;)

R 1 ¢ R 1
dp = ? Z k/jf,’j, ay = 7,7(” — 1) Z k,'jf,'j,
ij=1 i#j
1
S kit
2 ey
1 n 1 n
Cp = F Z kiqfim Cy = W Z kiqfin
i,q,r=1 3 (i,q,r)ely

15 ={(i,-,ip) : ij € {1,..., n} without replacement}, (n), = |Ilg".
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), Lij := £(yi, ¥;)

. 1< . 1
dp = ? Z k/jf,’j, ay = 7,7(” — 1) Z k,'jf,'j,
ij=1 i#j
1
S kit
2 ey
1 n 1 n
Cp = F Z kiqfim Cy = W Z kiqfin
i,q,r=1 3 (i,q,r)ely
1 n
bb = F Z kiqur,
iajvq’r:]-

15 ={(i,-,ip) : ij € {1,..., n} without replacement}, (n), = |Ilg".

Zoltan Szabé Structured Data: Dependency, Testing



HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), Lij := £(yi, ¥;)

. 1< . 1
dp = ? Z k/jf,’j, ay = 7,7(” — 1) Z k,'jf,'j,
ij=1 i#j
1
Z kl..gl..
™2 e
R 1 < R 1 4
Cp = F Z kiqfim Cy = W Z kiqfin
i,q,r=1 3 (i,q,r)ely
1 & 1
by = = > kijlar, b, = oN D1 kilar.
i q.r=1 Y (id.q.relp

15 ={(i,-,ip) : ij € {1,..., n} without replacement}, (n), = |Ilg".
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HSIC: resulting unbiased estimator

After some linear algebra [Gretton et al., 2005a], (M) := }; ; Mj;,

IR = 5 (6.6,),.

—— 1 ~ 2 a o=
HSIC%(XaY) = m {<GX7Gy>F - (GxGy) 1+

1 ~ ~
+(n—1)(n—2)(GX)++(Gy)++] .
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Estimation in practice: few ITE examples
(https://bitbucket.org/szzoli/ite/)
(https://bitbucket.org/szzoli/ite-in-python/)
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https://bitbucket.org/szzoli/ite/
https://bitbucket.org/szzoli/ite-in-python/

KCCA estimation: Matlab

Goal: estimate KCCA,

>ds = [2;3;4]; Y = rand(sum(ds) ,5000) ;
>mult = 1;

>co = IKCCA_initialization(mult);
>KCCA = IKCCA_estimation(Y,ds,co);
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KCCA estimation: Matlab

Goal: estimate KCCA,

>ds = [2;3;4]; Y = rand(sum(ds) ,5000) ;
>mult = 1;

>co = IKCCA_initialization(mult);
>KCCA = IKCCA_estimation(Y,ds,co);

Alternative initialization:

>co = IKCCA initialization(mult,{’kappa’,0.01,’eta’,0.001});
where k: regularization constant, 7: low-rank approximation.
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KCCA & HSIC estimation: Matlab

Goal: estimate KCCA,

>ds = [2;3;4]; Y = rand(sum(ds) ,5000) ;
>mult = 1;

>co = IKCCA_initialization(mult);
>KCCA = IKCCA_estimation(Y,ds,co);

Alternative initialization:
>co = IKCCA initialization(mult,{’kappa’,0.01,’eta’,0.001});

where k: regularization constant, 7: low-rank approximation.

Note: HSIC similarly.
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MMD estimation: Matlab

Using for example U-statistic:

>X1 = randn(3,2000); X2 = randn(3,3000);
>mult = 1;

>co = DMMD_Ustat_initialization(mult);
>MMD = DMMD_Ustat_estimation(X1,X2,co);
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MMD estimation: Matlab

Using for example U-statistic:

>X1 = randn(3,2000); X2 = randn(3,3000);
>mult = 1;

>co = DMMD_Ustat_initialization(mult);
>MMD = DMMD_Ustat_estimation(X1,X2,co);

With low-rank approximation, and setting some parameters:

co2 = DMMD_Ustat_iChol_initialization(mult)
co3 = DMMD,Ustat,iChol,initialization(mult,{’sigma’,0.2,
’eta’,0.01})
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HSIC estimation: Python

Import ITE (1x), generate observations:
>>> import ite

>>> from numpy.random import randn
>>> from numpy import array

>>> ds = array([2, 3, 4])

>>> t = 1000

>>> y = randn(t, sum(ds))
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HSIC estimation: Python

Import ITE (1x), generate observations:
>>> import ite

>>> from numpy.random import randn
>>> from numpy import array

>>> ds = array([2, 3, 4])

>>> t = 1000

>>> y = randn(t, sum(ds))

Estimate HSIC:
>>> co = ite.cost.BIHSIC_IChol()
>>> hsic = co.estimation(y, ds)
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HSIC estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BIHSIC_IChol(eta=1e-3)
>>> hsic2 = co2.estimation(y, ds)
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HSIC estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BIHSIC_IChol(eta=1e-3)
>>> hsic2 = co2.estimation(y, ds)

Alternative-2:

>>> from ite.cost.x_kernel import Kernel

>>> k = Kernel({’name’: ’RBF’,’sigma’: 1})

>>> co3 = ite.cost.BIHSIC_IChol(kernel=k, eta=le-3)
>>> hsic3 = co3.estimation(y, ds)
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HSIC & KCCA estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BIHSIC_IChol(eta=1e-3)
>>> hsic2 = co2.estimation(y, ds)

Alternative-2:

>>> from ite.cost.x_kernel import Kernel

>>> k = Kernel({’name’: ’RBF’,’sigma’: 1})

>>> co3 = ite.cost.BIHSIC_IChol(kernel=k, eta=le-3)
>>> hsic3 = co3.estimation(y, ds)

Note: KCCA similarly.
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MMD estimation: Python

Import ITE, generate observations:

>>> import ite

>>> from numpy.random import randn
>>> dim = 3

>>> t1, t2 = 2000, 3000

>>> y1 = randn(tl, dim)

>>> y2 = randn(t2, dim)
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MMD estimation: Python

Import ITE, generate observations:

>>> import ite

>>> from numpy.random import randn
>>> dim = 3

>>> t1, t2 = 2000, 3000

>>> y1 = randn(tl, dim)

>>> y2 = randn(t2, dim)

Estimate MMD:

>>> co = ite.cost.BDMMD_UStat_IChol()
>>> mmd = co.estimation(yl, y2)
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MMD estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BDMMD UStat_IChol(eta=1e-2)
>>> mmd2 = co2.estimation(yl, y2)
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MMD estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BDMMD UStat_IChol(eta=1e-2)
>>> mmd2 = co2.estimation(yl, y2)

Alternative-2:

>>> k = Kernel(’name’: ’RBF’,’sigma’: 1)
>>> co3 = ite.cost.BDMMD _UStat_IChol(kernel=k,eta=1le-2)
>>> mmd3 = co3.estimation(yl, y2)
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Towards unbiased estimators

e MMD, HSIC: E, . k(x, x")-type quantities.

Zoltan Szabé Structured Data: Dependency, Testing



Towards unbiased estimators

e MMD, HSIC: E, . k(x, x")-type quantities.

@ x,x’: independence.
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Towards unbiased estimators

e MMD, HSIC: E, . k(x, x")-type quantities.
@ x,x’: independence.

@ Plugin methods: i = j, biased.
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Towards unbiased estimators

e MMD, HSIC: E, . k(x, x")-type quantities.
@ x,x’: independence.
@ Plugin methods: i = j, biased.

@ If we restrict to / # j, we got unbiased estimators.
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Towards unbiased estimators

e MMD, HSIC: E, . k(x, x")-type quantities.
@ x,x’: independence.

@ Plugin methods: i = j, biased.

@ If we restrict to / # j, we got unbiased estimators.

What is happening here? Concentration of the estimators?
— hypothesis testing: our statistics := these estimators
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Unbiased estimators for E, ,/k(x, x)-type
quantities — extensions of average
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@ Goal: estimate

O(P):= Eph (X1,..., Xm).
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@ Goal: estimate

o Given: xq1,...,xp ~ P, n=m.
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@ Goal: estimate
O(P):= Eph (X1,...,Xm) -
) ii.d.
o Given: xq1,...,xp ~ P, n=m.
@ Assume (w.l.0.g.): his symmetric,

h(x1,...,Xm) =h (xﬂ(l), . ,xﬂ(m)) YV permutation.

Example: k(x,x") = k(x', x).
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Goal: estimate

O(P):= Eph (X1,..., Xm).

. iid.
Given: x1,..., X, ~ P, n>=m.

Assume (w.l.o.g.): h is symmetric,
h(x1,...,Xm) =h (xﬂ(l), . ,xﬂ(m)) YV permutation.

Example: k(x,x") = k(x', x).
@ Otherwise: h « % D h (xﬂ(l), . ,x,r(m)).
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U-statistic

e Estimator for Eph(Xy,..., Xpn):

1
Up=U(x,...,xn) = — Z:h(x,-l,...,x,-m)7

> m-tuples without replacement.
Cc
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U-statistic

e Estimator for Eph(Xy,..., Xpn):

1
Up=U(x1,...,xn) = ) Z:h(x,-l,...,x,-m)7

> m-tuples without replacement.
Cc

e U,: unbiased, i.e. Ep(U,) = 6.
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V-statistic

e Estimator for Eph(Xy,..., Xpn):

n

n
\/,,Z\/(Xl,...7 imE Z X,'l,...,X,'m).

im=1
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V-statistic

e Estimator for Eph(X1,..., Xm):
1 n n
Vp=V(x1,...,xn) = o .21....Zlh(x,-1,...,x,-m).
n= Im=

@ Samples with replacement.
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U-statistic: examples

e O(P) = Ex.pX. Sample average:
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U-statistic: examples

e O(P) = Ex.pX. Sample average:

1 n
h(x)= x, Ulxt, .y Xn) = = > Xi.
i=1
o O(P) = Ex.pXk. Sample k" moment:
1 n
h(x)= xk, Ulxt,. .., xn) = ;ink.
i=1
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U-statistic: examples

e O(P) = Ex.pX. Sample average:

1 n
h(x)= x, Ulxt, .y Xn) = = > Xi.
i=1
o O(P) = Ex.pXk. Sample k" moment:
1 n
h(x)= xk, Ulxt,. .., xn) = ;ink.
i=1

o?(P) = EX? — E2X
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U-statistic: examples

e O(P) = Ex.pX. Sample average:

1 n
h(x)= x, Ulxt, .y Xn) = = > Xi.
i=1
o O(P) = Ex.pXk. Sample k" moment:
1 n
h(x)= x*, Ulxt, .., xn) = — Y xf.
(X) X (X17 y X ) n I_Z]-X/
o O(P) = 0%(P) = {(x — u)2dP(x), p = Ex~pX. Sample variance:
EX? + EX2
o?(P) = EX? —E2X = % —EX;EX,
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U-statistic: examples

e O(P) = Ex.pX. Sample average:

1 n
h(x)= x, Ulxt, .y Xn) = = > Xi.
i=1
o O(P) = Ex.pXk. Sample k" moment:
1 n
h(x)= x* Ulxt, ... xn) = = Y .
(X) X (le y X ) n I_lel
o O(P) = 0%(P) = {(x — u)2dP(x), p = Ex~pX. Sample variance:
EX? + EX2
o?(P) = EX? —E2X = % —EXiEX, = Eh(X1, Xa),

2 2
X{ + x5 — 2x1x0
2

h(x1,x2)=
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U-statistic: examples

e O(P) = Ex.pX. Sample average:

1 n
h(x)= x, Ulxt, .y Xn) = = > Xi.
i=1
o O(P) = Ex.pXk. Sample k" moment:
1 n
h(x)= x¥ Ulxa, - %) = = Y0 xf.
(X) X (le y X ) n I_lel
o O(P) = 0%(P) = {(x — u)2dP(x), p = Ex~pX. Sample variance:
EX? + EX2
o?(P) = EX? —E2X = % —EXiEX, = Eh(X1, Xa),
h(x1, x2)= <t ngz_ 2ax _ _2X2)2,
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U-statistic: examples

e O(P) = Ex.pX. Sample average:

1 n
h(x)= x, Ulxt, .y Xn) = = > Xi.
i=1
o O(P) = Ex.pXk. Sample k" moment:
1 n
h(x)= x¥ Ulxa, - %) = = Y0 xf.
(X) X (le y X ) n I_lel
o O(P) = 0%(P) = {(x — u)2dP(x), p = Ex~pX. Sample variance:
EX? + EX2
o?(P) = EX? —E2X = % —EXiEX, = Eh(X1, Xa),
h(xt, x0) = x2 + x2 — 2x1% _ (xg — x2)2,
2 2
2
U, . xp) = ——— h(xi, x;
(X17 7X) n(n_1> Z (X XJ)
1<i<j<n
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U-statistic: examples

e O(P) = Ex.pX. Sample average:

1 n
h(x)= x, Ulxt, .y Xn) = = > Xi.
i=1
o O(P) = Ex.pXk. Sample k" moment:
1 n
h(x)= x*, Ulxt, .., xn) = — Y xf.
(X) X (X17 y X ) n I_Z]-X/
o O(P) = 0%(P) = {(x — u)2dP(x), p = Ex~pX. Sample variance:
EX? + EX2
o?(P) = EX? —E2X = % —EXiEX, = Eh(X1, Xa),
h(xt, x0) = x2 + x2 — 2x1% _ (xg — x2)2,
2 2
2 1
Ulxt, %) = == >, hixi,x;) = ———= > h(xi, )
n(n—1) 1<iT<n n(n—1) =
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U-statistic: examples

e O(P) = Ex.pX. Sample average:

1 n
h(x)= x, Ulxt, .y Xn) = = > Xi.
i=1
o O(P) = Ex.pXk. Sample k" moment:
1 n
h(x)= x*, Ulxt, .., xn) = — Y xf.
(X) X (X17 y X ) n I_Z]-X/
o O(P) = 0%(P) = {(x — u)2dP(x), p = Ex~pX. Sample variance:
EX? + EX2
o?(P) = EX? —E2X = % —EXiEX, = Eh(X1, Xa),
h(xt, x0) = x2 + x2 — 2x1% _ (xg — x2)2,
2 2
2 1
U(X17-"7Xn)_7 2 h<Xi7Xj):7Zh(Xian):Sl%'
n(n—1) 1<iT<n n(n—1) =
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U-statistic: examples+

9(]11)) = Fp(to) = [P(X < to)
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U-statistic: examples+

0(P) = Fp(to) = P(X < t0) = EpX(—oo,10]
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U-statistic: examples+

0(P) = Fp(to) = P(X < t0) = EpX(—oo,10]

h(X): X{Xéto})

1 n
U(X]_, . ,Xn) = E Z X{X,'éto}
i=1
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U-statistic: examples+

0(P) = Fp(to) = P(X < t0) = EpX(—oo,10]
h( ): X{X<t0})
Ulxa, .-, x ZX{X, <to} = Fn(t0),

F,: empirical cdf.
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Extension: if we have L independent samples — MMD:

L=

e Given: x(j),...,x,(,f) i Pi(=1,...,L), nj=m;.
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Extension: if we have L independent samples — MMD:

L=

e Given: x(j),...,x,(,f) i Pi(=1,...,L), nj=m;.
@ Goal: estimate: 9=Eh<X1(1),...,X,(nll),..., 1(L 7...,X,(,,LL)>.

- /
15t block Lth block
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Extension: if we have L independent samples — MMD:

L=

e Given: x(j), . ,x,(,j.') i Pi(=1,...,L), nj=m;.
@ Goal: estimate: 0 = IEh(Xl(l), .. ,X,(,,ll), cee 1(L 7...,X,(,,LL)>.
1% block Lt block

@ Assumption: symmetry for each block.
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Extension: if we have L independent samples — MMD:

L=

4) () i.id.

o Given: xll oo X NP (=100, L), nj = mj.
@ Goal: estimate: 0 = IEh(Xl(l), .. ,X,(,,ll), cee 1(L 7...,X,(,,LL)>.
1% block Lt block

Assumption: symmetry for each block.

L-sample U-statistic

= e S (X X ).
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator.
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

@ Asymptotics: depends on var # 0 condition.

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y--+y Xm) ,
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

@ Asymptotics: depends on var # 0 condition.

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y--+y Xm) ,
Ve i=var he (X1,...,Xc), v =0.
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

@ Asymptotics: depends on var # 0 condition.

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y--+y Xm) ,
Ve i=var he (X1,...,Xc), v =0.

o IFERX(Xy, ..., Xm) < o0:

O=w<wu<...<vp=varh(Xy,...,Xy) < .
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

@ Asymptotics: depends on var # 0 condition.

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y--+y Xm) ,
Ve i=var he (X1,...,Xc), v =0.

o If ER(Xy,..., Xm) < o0t
O=w<wu<...<vp=varh(Xy,...,Xy) < .

@ c.0=vi=...=v.1<Vv. c=1: non-degenerate, c = 2:
degenerate U-statistic.
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

@ Asymptotics: depends on var # 0 condition.

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y--+y Xm) ,
Ve i=var he (X1,...,Xc), v =0.

o If ER(Xy,..., Xm) < o0t
O=w<wu<...<vp=varh(Xy,...,Xy) < .

@ c.0=vi=...=v.1<Vv. c=1: non-degenerate, c = 2:
degenerate U-statistic.

In most applications
c=1lorc=2.
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Asymptotics for ¢ = 1

Assume: Eph? < o0, ¢ = 1.

2 (Up —0) S N(0,mvi),

2
U, is AN <9, m "1> ,
n

AN := asymptotically normal.
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Asymptotics for ¢ = 2

Assume: Eph? < o0, ¢ = 2.

m(m—1)

n(Up —0) 2 >

where
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Asymptotics for ¢ = 2

Assume: Eph? < o0, ¢ = 2.

m(m—1)

n(Up —0) 2 >

o0
Y, Y =>IN0¢ - 1),

where
° ngi i.i.d. N2(0,1) variables,
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Asymptotics for ¢ = 2

Assume: Eph? < o0, ¢ = 2.

m(m—1)

a0
M(Ua—0) & =5V, Y =3 004 1),

where
° ngi i.i.d. N2(0,1) variables,

@ );: R-eigenvalues of T = T(/N'lg), 772 =hy—0

(Eﬂ@=f%@mmwﬂmm,geﬁ
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Exponential bound for U-statistic

Theorem (Hoeffding inequality)

Let h(x1,...,xm) € [a,b]. If 6® = var h, then for any t > 0

_ 2[n/m]#?
P(U,—0>t)<e -7,
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U-statistic: local summary

@ Minimum variance unbiased estimator.

@ ¢ = 1: asymptotically normal.

@ ¢ = 2: asymptotically oo-sum of weighted 2.
@ For bounded h: Hoeffding inequality.
Application

Hypothesis testing!
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Hypothesis testing
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What is a two-sample test?

o Given:
°o X = {Xi},"n=1 i P, Y = {yj}f=1 iid.
o Example: x; = i™ happy face, y; = j sad face.
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What is a two-sample test?

o Given:
°o X = {Xi},"n=1 i P, Y = {yj}f=1 iid.
o Example: x; = i™ happy face, y; = j sad face.

@ Problem: using X, Y test

Ho :P=Q, vs
Hlip;ﬁ@.
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What is a two-sample test?

o Given:
o X ={x}, g P Y= {)’j}f=1 £
o Example: x; = i™ happy face, y; = j sad face.
@ Problem: using X, Y test
Ho :P=Q, vs
H1 P #£ Q

@ Assumption: x,y € X. (X, k): kernel-endowed domain.
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What is a two-sample test?

o Given:
o X ={x}1, "Ry = {yh,
o Example: x; = i™ happy face, y; = j sad face.

@ Problem: using X, Y test

Ho :P=Q, vs
Hlip;ﬁ@.

@ Assumption: x,y € X. (X, k): kernel-endowed domain.

Discrepancy measure
Example: MMD
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What is an independence test?

@ Given: paired samples
n Qid.
o /= {(Xivyi) =1 = ny-
o Example:

o x;: i*M text in English, y;: i*" text translated to French.
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What is an independence test?

@ Given: paired samples

i
o /= {(Xivyi) 7:1 N ny-
o Example:

o x;: i*M text in English, y;: i*" text translated to French.

@ Problem: using data Z test

Ho: P, =P, ®P,, Hy:P,, # P, QP,.
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What is an independence test?

@ Given: paired samples
n Qid.
o /= {(Xivyi) =1 = ny-
o Example:

o x;: i*M text in English, y;: i*" text translated to French.

@ Problem: using data Z test
Ho : Py, =P, ®P,, H Py #P,QP,.

@ Assumption: (x,y) e X x Y. (X, k), (V,£): with kernels.
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What is an independence test?

@ Given: paired samples

i
o /= {(Xivyi) 7:1 N ny-
o Example:

o x;: i*M text in English, y;: i*" text translated to French.

@ Problem: using data Z test
Ho : Py, =P, ®P,, H Py #P,QP,.

@ Assumption: (x,y) e X x Y. (X, k), (V,£): with kernels.
Discrepancy measure
Example: HSIC
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Concepts in hypothesis testing

o Test statistic: A\, = Ap(X,Y), random.
@ Significance level: o = 0.01.

~

e Under Hy: Pyy( An < Ty ) =1—au
—_——

correctly accepting Hp

0.06 z
PHU (/A\n)

L _PHL (/\n) H

0.05 T,
-9 5\n

0.04r
0.03f
0.02r E 4
0.01} 7\

0 L : ]

0 20 40 60 80

)\n
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Concepts in hypothesis testing

o Test statistic: A\, = Ap(X,Y), random.

@ Significance level: o = 0.01.

e Under Hy: Pyy( An < Ty ) =1—au
—_——

correctly accepting Hp

e Under Hy: P, (Ty < /A\,,) = P(correctly rejecting Hp) =: power.

0.06 -
PHU (/A\n)
L —]DHl (/\n) H
0.05 ol
o},

0.04r
0.03r
0.02f E 4
0.01} A%

0 L : ]

0 20 40 60 80

j\n
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Two-sample testing (aka homogeneity
testing) — details.
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Two-sample testing with MMD

[Gretton et al., 2007, Gretton et al., 2012]

e Statistic: A, = MMD?2 or MMD?.
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Two-sample testing with MMD

[Gretton et al., 2007, Gretton et al., 2012]

e Statistic: A, = MMD?2 or MMD?.
@ Reject Hy: if An is 'large’.
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Two-sample testing with MMD

[Gretton et al., 2007, Gretton et al., 2012]

e Statistic: A, = MMD?2 or MMD?.
@ Reject Hy: if An is 'large’.

@ We need to control 5\,,.
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Two-sample testing with MMD

[Gretton et al., 2007, Gretton et al., 2012]

e Statistic: A, = MMD?2 or MMD?.
@ Reject Hy: if An is 'large’.
@ We need to control 5\,,.

o We will use U-statistic theory.
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Finite-sample control

@ Large deviation inequalities.

o P (\ma@,@) — MMD(P, @)) > e> < f(e, m, n)

m,n—00

0.
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Finite-sample control

@ Large deviation inequalities.
o P (\ma@,@) — MMD(P, @)) > e> < f(e, m, n)

@ = tests: consistent against fixed alternative.

m,n—00

0.
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Finite-sample control

@ Distribution-free tests

e quantile: P, Q-independent!
o less sensitive to detecting differences.
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Finite-sample control

@ Distribution-free tests

e quantile: P, Q-independent!
o less sensitive to detecting differences.

@ Proof idea:
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Finite-sample control

@ Distribution-free tests

e quantile: P, Q-independent!
o less sensitive to detecting differences.

@ Proof idea:

° MMD%: bounded difference property, McDiarmid inequality.
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Finite-sample control

@ Distribution-free tests

e quantile: P, Q-independent!
o less sensitive to detecting differences.

@ Proof idea:

° 1\@/[2[2,: bounded difference property, McDiarmid inequality.
o MMD?2: large deviation bound of U-statistics.
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based test

Needed: Asymptotic distribution of MMD%.

I\E/IB%(]P’, Q) = B Z Z k(xi, xj) + % ZZ k(yi, y;)
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Two-sample test using MMD asymptotics: Hp | 1

Under Hy (P = Q): asymptotic distribution is
AMMD? (P, P) ZA z2 - 2),
where z; ~ N(0,2) i.i.d.,

[ R ae00 = ), Rx,x) = (e = oo = o,

Il Empirical pdf| |

301

251

207

pdf

15¢

101

5t

—0904 -0.02 0 0.02

MMD?
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In practice

Approximate the null by

@ permutation-test: slow.
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In practice

Approximate the null by
@ permutation-test: slow.

@ two-parameter gamma distribution [Johnson et al., 1994]:

Q\X

x~1le™

Pa,g(Xx) = BT a) (x > 0, a: shape > 0, 3: scale > 0).
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Gamma distribution: demo

0.4

—o=2,B=1

0.1

0 5 10 15
X
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Gamma distribution: demo

0.4
— o=2,3=1
- - -o=4,p=1
0.3} 1
=
%0.2 1
o
0.1 1
O S
0 10 15
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Gamma distribution: demo

0.4
—o=2,p=1
- '(X,=4,B=1
0.3} —0=2,p=3|

0 5 10 15
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Gamma approximation

@ Assumption: statistic T ~ p, 3.
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Gamma approximation

@ Assumption: statistic T ~ p, 3.

e For p, 3 gamma distribution:

ET=af, var(T)= af?
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Gamma approximation

@ Assumption: statistic T ~ p, 3.

e For p, 3 gamma distribution:

var(T) E2T
ET var(T)’

ET=ap, var(T)=aB? = 3=
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Gamma approximation

@ Assumption: statistic T ~ p, 3.

e For p, 3 gamma distribution:

var(T) E2T

_ — 2 = =
ET=apf, var(T)=af I6] BT var(T)’

o Thus, ET and var(T) — &, .

Zoltan Szabé Structured Data: Dependency, Testing



Gamma approximation

@ Assumption: statistic T ~ p, 3.

e For p, 3 gamma distribution:

var(T) E2T
ET var(T)’

ET=ap, var(T)=aB? = 3=

o Thus, ET and var(T) — &, .

@ Consistency of the test is lost.
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Which null approximation to use?

Rules-of-thumb:

@ Small sample size: permutation test.
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Which null approximation to use?

Rules-of-thumb:
@ Small sample size: permutation test.

@ Medium sample size: gamma approximation, truncated
expansion [Gretton et al., 2009],
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Which null approximation to use?

Rules-of-thumb:
@ Small sample size: permutation test.

@ Medium sample size: gamma approximation, truncated
expansion [Gretton et al., 2009],
@ Large sample size:

o online techniques [Gretton et al., 2012], or
o recent linear methods (next time).
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Independence testing: HSIC
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Independence testing

Theorem ([Gretton et al., 2008, Pfister et al., 2017])

Under Hy

0
—2
nHSIC, % Y \iz?,  z ~ N(0,1).
i=1
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Independence testing

Theorem ([Gretton et al., 2008, Pfister et al., 2017])

Under Hy

0
—2
nHSIC, % Y \iz?,  z ~ N(0,1).
i=1

Notes:
o For U-statistic: >; \;(z? — 1).
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Independence testing

Theorem ([Gretton et al., 2008, Pfister et al., 2017])

Under Hy

o0]
—2
nHSIC, % Y \iz?,  z ~ N(0,1).
i=1

Notes:
o For U-statistic: >; \;(z? — 1).
@ In practice: permutation-test/gamma-approximation.
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Related work
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Two-sample problem: truncated expansion

[Gretton et al., 2009]: n = m, z; = (x;,y;). Estimator:

1
2 - - . 7.
MMD, (P,Q)= 1) ,; h(zi, zj),

h(z,2') = k(x,X) + k(y,y") = k(x,y") = k(X' y).
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Two-sample problem: truncated expansion

[Gretton et al., 2009]: n = m, z; = (x;,y;). Estimator:

MMD?, (P, Q)= % > h(zi, z),
n(n—1) =
h(z,2') = k(x,x) + k(y,y') — k(x,y') = k(X' y).

MT/[B%,: unbiased.
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Two-sample problem: truncated expansion — continued

1
Assuming 2?0:1 A? < o, the empirical null converges as n —

Z)\,na—2 ii (a2-2), aj~N(©0,2).
i=1
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Two-sample problem: truncated expansion — continued

1
Assuming 2?0:1 A? < o, the empirical null converges as n —

n o0
Toi=) Ain(a2-2) Z (a2 —2), a ~ N(0,2).
i=1 i=1
Note:
Ain =A"(SX) (i=1,...,n), GyeR™"
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Online variant [Gretton et al., 2012]

— 1
2 - - ..
MMD?, (P, Q)= D) > h(zi, 7)),

i7)
has a natural online approximation, ny := [n/2]

n

MMD2 P,Q) = 2 (x2i—1, Y2i-1), (X2i, ¥2i))-
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Online variant [Gretton et al., 2012]

— 1
2 - i
MMD?, (P, Q)= nln—1) i;jh(z,,zj),
has a natural online approximation, ny := [n/2]

n

MMD2 P,Q) = 2 (x2i—1, Y2i-1), (X2i, ¥2i))-

@ Unbiased.
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Online variant [Gretton et al., 2012]

1
mz h(zi, z),

i#]

MMD?, (P, Q)=

has a natural online approximation, ny := [n/2]

n

MMD2 P,Q) = 2 (x2i—1, Y2i-1), (X2i, ¥2i))-

@ Unbiased.

@ Linear-time: streaming data.
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Online variant [Gretton et al., 2012]

1
mz h(zi, z),

i#]

MMD?, (P, Q)=

has a natural online approximation, ny := [n/2]

n

MMD2 P,Q) = 2 (x2i—1, Y2i-1), (X2i, ¥2i))-

@ Unbiased.
@ Linear-time: streaming data.

@ In practice: high variance.
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Online variant — continued

By the average the CLT kicks in:

Assuming Eh? e (0,00), MMD? is asymptotically normal

Vi [MMD}(P, Q) - MMD?(P, Q)] 2 N (0,0%),

where 02 = 2 [Ez,z' h?(z,2') — E;Z,h (z, z’)].

.
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Block version [Zaremba et al., 2013|

Idea:
@ partition the data to blocks of size B,

@ on each block: compute MMD?,

@ average the results.
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Block version — continued

Properties:
e Statistic: asymptotically normal (Ho, Hi).
@ For consistency: increase B, s.t. Bﬂm — 0.

@ Reduced variance.
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Three-variable interaction test

@ Goal (interaction):
([x1;x2] L x3) v ([x1:x3] L x2) v ([x2; x3] L x1).

Example: P = Py ® Ps.
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Three-variable interaction test

@ Goal (interaction):
([x1;x2] L x3) v ([x1:x3] L x2) v ([x2; x3] L x1).

Example: P = Py ® Ps.
@ Applications:

e structure learning of graphical models,
e discovering V-structures.
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Three-variable interaction test — continued

Analogy
Independence & P=P; P < P—P; ® P, = 0.
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Three-variable interaction test — continued

Analogy
Independence & P=P; P < P—P; ® P, = 0.

@ Lancaster 3-variable interaction [Lancaster, 1969]:

LP)=P—-—P1,®@P3 —Pr3®P1 — P13 ®P> + 2P; ® P> ® Ps.
is a signed measure,

interaction = L(P) = 0.
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Three-variable interaction test — continued

Analogy
Independence & P=P; P < P—P; ® P, = 0.

@ Lancaster 3-variable interaction [Lancaster, 1969]:

LP)=P—-—P1,®@P3 —Pr3®P1 — P13 ®P> + 2P; ® P> ® Ps.
is a signed measure,
interaction = L(P) = 0.

e x; € (AXj, ki) are kernel endowed domains.
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Three-variable interaction test — continued

@ Interaction index [Sejdinovic et al., 2013a]:

| 2
= H/‘L(P)H%kl®%k2®%k3 '
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Three-variable interaction test — continued

@ Interaction index [Sejdinovic et al., 2013a]:

| 2
= H/‘L(P)H%kl®%k2®%k3 '

@ Empirical estimate:
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Three-variable interaction test — continued

@ Interaction index [Sejdinovic et al., 2013a]:

| 2
= H/‘L(P)H%k@%kz@%@ '

@ Empirical estimate:

@ Null approximation: permutation-test.
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Time-series tests: independence

@ Goal: test independence of stationary processes.

@ Independence tests:
e Statistic: HSIC.
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Time-series tests: independence

@ Goal: test independence of stationary processes.

@ Independence tests:

e Statistic: HSIC.
e i.i.d. permutation technique: would fail.
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Time-series tests: independence

@ Goal: test independence of stationary processes.

@ Independence tests:
e Statistic: HSIC.
e i.i.d. permutation technique: would fail.
o Idea: shift-approach = preserves 'time structure’
[Chwialkowski and Gretton, 2014].
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Time-series tests: two-sample, independence, interaction

e Permutation approach (i.i.d): +1.
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Time-series tests: two-sample, independence, interaction

e Permutation approach (i.i.d): +1.

@ Idea: mask according to the memory of the processes.
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Time-series tests: two-sample, independence, interaction

e Permutation approach (i.i.d): +1.
@ Idea: mask according to the memory of the processes.

@ Implementation [Chwialkowski et al., 2014]: based on wild
bootstrap [Leucht and H.Neumann, 2013].
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Time-series tests: two-sample, independence, interaction

e Permutation approach (i.i.d): +1.
@ Idea: mask according to the memory of the processes.

@ Implementation [Chwialkowski et al., 2014]: based on wild
bootstrap [Leucht and H.Neumann, 2013].

3-variable interaction:

@ Lancaster interaction + wild bootstrap
[Rubenstein et al., 2016].
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Goodness-of-fit test

e Given:
iid.
o {xi}_1 '~ aq,
e p: target distribution.
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Goodness-of-fit test

e Given:
iid.
o {xi}_1 '~ aq,
e p: target distribution.

@ p, g live on X c RY (differentiability), kernel k on X.
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Goodness-of-fit test

e Given: N
o Pl < g,
e p: target distribution.
@ p, g live on X c RY (differentiability), kernel k on X.

o Goal:

Ho: p=gq,
Hi:p#q.
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Goodness-of-fit test: continued

o Idea [Chwialkowski et al., 2016, Liu et al., 2016]: Stein
operator

d
Z[alogp f )+af’(X)}, fedt= @, My,
i1 aX, aX,'
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Goodness-of-fit test: continued

o Idea [Chwialkowski et al., 2016, Liu et al., 2016]: Stein
operator

L 2

s P ¢ —
o 7 (x) o }, fed:=QLH,
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Goodness-of-fit test: continued

o Idea [Chwialkowski et al., 2016, Liu et al., 2016]: Stein
operator

L O(x)
aX,' ’(X> aX,'

} . feH =% Hy,
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Goodness-of-fit test: continued

o Idea [Chwialkowski et al., 2016, Liu et al., 2016]: Stein
operator

L O(x)
aX,' ’(X> aX,'

} . feH =% Hy,

e For cp-universal k: T,(q) =0 < p=q.
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Goodness-of-fit test: continued

o Idea [Chwialkowski et al., 2016, Liu et al., 2016]: Stein
operator

L O(x)
aX,' ’(X> aX,'

} . feH =% Hy,

e For cp-universal k: T,(q) =0 < p=q.
e Enough: p up to multiplicative constant (V log p).
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Goodness-of-fit test: continued

o Idea [Chwialkowski et al., 2016, Liu et al., 2016]: Stein
operator

L O(x)
aX,' ’(X> aX,'

} . feH =% Hy,

e For cp-universal k: Ty(q) =0< p =q.
e Enough: p up to multiplicative constant (V log p).
@ Null approximation: wild bootstrap (including non-i.i.d.).
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Quadratic-time methods

@ Two-sample, independence, interaction, goodness-of-fit test.
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Quadratic-time methods

@ Two-sample, independence, interaction, goodness-of-fit test.

o Kernel endowed domain (goodness-of-fit: RY).
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Quadratic-time methods

@ Two-sample, independence, interaction, goodness-of-fit test.
o Kernel endowed domain (goodness-of-fit: RY).

o Typically: null can be ugly, techniques do not scale well.
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Quadratic-time methods

@ Two-sample, independence, interaction, goodness-of-fit test.
o Kernel endowed domain (goodness-of-fit: RY).

o Typically: null can be ugly, techniques do not scale well.

Linear-time tests, with high-power!
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@ Lancaster-interaction measure: reason of the last term?
@ Stein operator: why does it work?

@ Stein operator: how to estimate it?
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Lancaster interaction

Interaction measure:
LP)=P-Pio@P3 —Po3®@P; —P13@P> + 2P; @ P, ® Ps.
Assume for example:

P=P®P3 = Pi2=P1®@P, Pi3=P&®P;3,

x1 L [xo; x3], x1 L xo, x1 L x3,
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Lancaster interaction

Interaction measure:
LP)=P-Pio@P3 —Po3®@P; —P13@P> + 2P; @ P, ® Ps.
Assume for example:

P=P®P3 = Pi2=P1®@P, Pi3=P&®P;3,
x1 L [x2; x3], x1 L xo, x1 L x3,

and L simplifies to

LP)=P—-P12®P3 — Po3®P; —P13®@P, +2P; @ P> ® P3 = 0.
—_— ——

P ®P>®P3 P1®@P>®P3
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Stein operator (d = 1 for simplicity): why?

Let f e Hy.

(Spf)(x) = [log p(x)]'f(x) + f'(x)
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Stein operator (d = 1 for simplicity): why?

Let f e Hy.
(S5F)(x) = [log ()] F(x) + F(x)
P, Pl
= 00 I P
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Stein operator (d = 1 for simplicity): why?

Let f e Hy.
(S5F)(x) = llog p()]'F(x) + F(x)
P, P [pf]
= o000 o P = T
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Stein operator (d = 1 for simplicity): why?

Let f e Hy.
(S5F)(x) = llog p()]'F(x) + F(x)
P, P [pf]
= o000 o P = T

p = g implies: for any f

o511 = [ PO ) e

R p(x)
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Stein operator (d = 1 for simplicity): why?

Let f e Hy
(S5F)(x) = llog p()]'F(x) + F(x)
P, P [pf]
= o000 o P = T
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Stein operator (d = 1 for simplicity): why?

Let f e Hy.
(S5F)(x) = llog p()]'F(x) + F(x)
P, P [pf]
= o000 o P = T

p = g implies: for any f

o511 = [ PO ) e

R p(x)

= [ pboreor ax = [ptrtor=, ~o.

Assumption: lim|,|_,, p(x)f(x) = 0.
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Stein operator: computation

Test statistics:

To(q) = sup Ex q(Spf)(x).

1£lg¢, <1
We rewrite (S,f)(x) by the reproducing property:

(Spf)(x) = [log p(x)]'F(x) + £'(x)
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Stein operator: computation

Test statistics:

To(q) = sup Ex q(Spf)(x).

1£lg¢, <1
We rewrite (S,f)(x) by the reproducing property:
(Spf)(x) = [log p(x)]'F(x) + £'(x)
= [|ng(X)]/<f, k('7X)>fHk + <f7 k/('7x)>g-(

k
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Stein operator: computation

Test statistics:

To(q) = sup Ex q(Spf)(x).

13, <1

We rewrite (S,f)(x) by the reproducing property:

)
(Spf)(x) = [log p(x)]'f (x) + '(x)

[log p(x )] ( D )ag, (K (%) )gq,
=

f,[log p(x ( )+k/( )>g{k'
=:p (»X)
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Stein operator: computation

Test statistics:

To(q) = sup Ex q(Spf)(x).

13, <1
We rewrite (S,f)(x) by the reproducing property:
(Spf)(x) = [log p(x)]'f(x) + '(x)
= [log p(x )] ( X))ag + (F K (X)),
<f, log p(x ( )—i—k’( )>9fk'
—65(-%)
Thus,
Told) = sup_ Exvg(F, €p (X)) g,
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Stein operator: computation

Test statistics:

To(q) = sup Ex q(Spf)(x).

13, <1
We rewrite (S,f)(x) by the reproducing property:
(Spf)(x) = [log p(x)]'f(x) + '(x)
= [log p(x )] ( X))ae, + (F K (%)) g,
<f, log p(x ( )—i—k’( )>9fk'
—65(-%)
Thus,
To(q) = e Ex~g(f 6o (X)) g, = o (F Exngbp(s X)) g,
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Stein operator: computation

Test statistics:

To(q) = sup Ex q(Spf)(x).

1£lg¢, <1

We rewrite (S,f)(x) by the reproducing property:

(Spf)(x) = [log p(x)]'Ff () + f'(x)

= [log p(x )] ( X))ae, + (F K (%)) g,
<f7 |ng ( )+k/( )>g{k'
—65(-%)
Thus,
To(q) = sup Equ<f (s, >ﬂfk = sup <f Ex~qép(- >9Ck
1Fllg, <1 I£llg, <1
= [Ex~q&p(+s ¥) |4, =: I&lls, - & : Stein witness function.
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Stein operator: computation finished

Until now: with g = Ex4&p(+, %), (-, x) = [log p(x)]'k(+, x) + K'(+, x)

[TP(q)]2 = HgHg{k = <EXNQ€P('7X)aEX/~q§p('7X/)>}(k
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Stein operator: computation finished

Until now: with g = Ex4&p(+, %), (-, x) = [log p(x)]'k(+, x) + K'(+, x)

[TP(q)]2 = HgHg{k = <EXNQ€P('7X)aEX/~q§p('7X/)>}(k
= EX~qu’~q<fp(‘7X)7€p(‘7xl)>}(kv
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Stein operator: computation finished

Until now: with g = Ex4&p(+, %), (-, x) = [log p(x)]'k(+, x) + K'(+, x)

[To(@] = gl = (BxmabolsX), Exnglol-s X)),
:EX~qu’~q<5p(‘7X)7€p(‘7 )>}(k7
(€p (%), €p( X)) g, = ([log PO k(- x) + K'(-, x),
[log p(x )] k(- X) + K'(-, X)), =1 hp(x, X'),
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Stein operator: computation finished

Until now: with g = Ex4&p(+, %), (-, x) = [log p(x)]'k(+, x) + K'(+, x)

[To(@] = gl = (BxmabolsX), Exnglol-s X)),
= ExnqBrng(€p(, %), &p (- X))y,
(€p(-,%),&p (-, X))y, = ([log p(x)]'k(-, x) + K'(-, x),
[log PON]'k(-,x') + K'(-,X') )50, =1 hp(x,X"),
hp(x,y) = [log p(x)]'[log p(y)]'k(x, y) + [log p(x)]'ky (x, y)+
[log p(y)]' ks (x, y) + Ky (x, ¥)-
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Stein operator: computation finished

Until now: with g = Ex4&p(+, %), (-, x) = [log p(x)]'k(+, x) + K'(+, x)

[To(@] = gl = (BxmabolsX), Exnglol-s X)),
:EX~qu’~q<5p(‘ )fp(' )> He?
(€p(-,%),&p (-, X))y, = ([log p(x)]'k(-, x) + K'(-, x),
[log PON]'k(-,x') + K'(-,X') )50, =1 hp(x,X"),
hp(x,y) = [log p(x)]'[log p(y)]'k(x, y) + [log p(x)]'ky (x, y)+
[log p(y)]' ks (x, ) + Ky (x, y)-

= Quadratic-time estimator (U-statistic):

[TP( = n—l Zh XHXJ

Zoltan Szabé Structured Data: Dependency, Testing



Hypothesis testing: linear-time methods
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@ Nystrom method, random Fourier features.
@ Analytic representations — linear-time two-sample testing.

@ High-power linear-time techniques:

e two-sample testing,
e independence testing.
e goodness-of-fit testing.
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Three schemes

Exemplified in independence testing [Zhang et al., 2017]:
@ block-HSIC: analog of block-MMD.
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Three schemes

Exemplified in independence testing [Zhang et al., 2017]:

@ block-HSIC: analog of block-MMD.
@ 2 low-rank schemes:
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Three schemes

Exemplified in independence testing [Zhang et al., 2017]:
@ block-HSIC: analog of block-MMD.
@ 2 low-rank schemes:

e Nystrom method
[Williams and Seeger, 2001, Drineas and Mahoney, 2005].
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Three schemes

Exemplified in independence testing [Zhang et al., 2017]:
@ block-HSIC: analog of block-MMD.
@ 2 low-rank schemes:

e Nystrom method
[Williams and Seeger, 2001, Drineas and Mahoney, 2005].
o random Fourier features: [Rahimi and Recht, 2007,
Sutherland and Schneider, 2015, Sriperumbudur and Szabé, 2015].
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HSIC recall

G5, = Eu [ (00) — 1) ® (4() — 1)
= Exy [0(x) @Y (y)] — px ® py,

HSIC(x, y) H yHHS
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

e Without centering:

R™" 5 G ~ G,,G; |G,
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

e Without centering:

1 1
nxn ~ -1 e 2T
R 535G~ Gn,rGr’r c';r,n = c'.'n,rc'.'r,r c';r,r Gn,r
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

e Without centering:
~ _1 1
R™" 535G~ Gn,rGr_’,}Gr,n = Gn,rGr,rzGr,rQGrz:r

_1 _1]7
= Gn,rGr,2 |:Gn,rGr,r2:|
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

e Without centering:
~ _1 1
R™" 535G~ Gn,rGr_’,}Gr,n = Gn,rGr,rzGr,rQGrz:r

T
_1 _1
= Gn,rGr, 4 |:Gn,rGr,r2} = oY ((D”)T . PUe Rnxr’
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

e Without centering:
N 1 1
R™" 3G~ Gn,rGr_}Gr,n = Gn,rGr,rQGr,rQGrz:r
_1 _1 7 -
=G, G,/ {GnJG,f] = oY (d")", dYeR™,

17
R™%7 5 CY = [Gn,,G,f] GG,

i

Zoltan Szabé Structured Data: Dependency, Testing



Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

e Without centering:
~ _1 1
R™" 535G~ Gn,rGr_’,}Gr,n = Gn,rGr,rzGr,rQGrz:r

T
_1 _1
= Gn,rGr,r2 |:Gn,rGr,r2} = oY ((D”)T . PUe Rnxr’

) i

17 _1
R™" 5 CY = [Gn,,G,f] G,,G, 2 = (") ov.
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

e Without centering:
~ _1 1
R™" 535G~ Gn,rGr_’,}Gr,n = Gn,rGr,rzGr,rQGrz:r

T
_1 _1
= Gn,rGr,r2 |:Gn,rGr,r2} = oY ((D”)T . PUe Rnxr’

) i

17 _1
R™" 5 CY = [Gn,,G,f] G,,G, 2 = (") ov.

@ With centering:

A

R™" 5 G = H,GH,
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
R™"5G ~ G,,G; G, = G,,JG;,%G:,%GL
~ GG,/ {G,,JG,_,;] iy (@), oYeR™,
17 _1
R™" 5 CY = [Gn,,G,f] G, G, 7 = (&")7 .
@ With centering:

R™"5G = H,GH, = H," (") H,,,
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
R™"5G ~ G,,G; G, = G,,JG;,%G;,%GL
~ GG,/ {G,,JG,_,;] iy (@), oYeR™,
17 _1
R™" 5 CY = [Gn,,G,f] G, G, 7 = (&")7 .
@ With centering:

R™" 5 G = H,GH,, = H,o" (¢*)7 H,,
R™" 5 C = (¢¥)T H,H, 0"
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
R™"5G ~ G,,G; G, = G,,JG;,%G;,%GL
~ GG,/ {G,,JG,_,;] iy (@), oYeR™,
17 _1
R™" 5 CY = [Gn,,G,f] G, G, 7 = (&")7 .
@ With centering:

R™" 5 G = H,GH,, = H,o" (¢*)7 H,,
R 5 CE = (Y)T HyH,0Y = ()T ¢°.
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Implementation for x and y, separately

On x:

éx ~ q)u(q)u) T

X X
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Implementation for x and y, separately

On x:

Gy~ 0Y(0N)T = CY = (oY) 70!
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Implementation for x and y, separately

On x:

G m OU(ONT = Cl = (o)7L, o = |(02) T (08,)T | e R,
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Implementation for x and y, separately

G n 0207 = €l = (01T oY, ol = [(02,) 5 (08,) | e R,

- x,1
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Implementation for x and y, separately

G~ OU(ONT = Cl = (o)L, oY = (o))

Gx = H,G.H, = H, 0" (6*)TH,,
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Implementation for x and y, separately

Gx~ 00T = €Y = (o) T 0, oy

Gx = H,G.H, = H,0Y (09)TH,, €S = (
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Implementation for x and y, separately

Gx~ 00T = €Y = (o) T 0, oy

Gx = H,G.H, = H,0Y (09)TH,, €S = (
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Implementation for x and y, separately

On

X

Gx~ 00T = €Y = (o) T 0, oy

Il
—
—~
X<
—
~—
~
—~
©
xe
3
~
—
—_—
m
3
X
<

Gy = H,GH, = H,0! (0) T H,,, CE = (0%)T H,H, oY =: (¢¢)7 ¢C.

X

Ony:

6, ~ oy(@)T =€) = (o)) "oy &) = [(0)) 755 (8),) | e R
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Implementation for x and y, separately

On

X

G n 20T = €l = (01T oY, of = [(0r) 5 s (08,) | e R

G, = H,G,H, = H, 0! (®*)TH,, CS = (¢“)T H,H, 0! =: (¢$)7 &€

X

6, ~ oY@ = ¢y = (o)) "oy &) = [(0)) 755 (8),) | e R

y,1

G, ~ H,G,H, = H,0! ()T H,, CS = (¢%)T H,H,0! =: (¢¢)7 o¢.
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-based HSIC estimator

Population quantity:

2

HSIC2(x, y) = [Exy [0(x) @ 1(y)] — 1x @ iy |45
By [ (600 — 1) ® (00) ~ )]

HS

Estimator:

.
14, 1o,
=, Sone "= Fen) (o 7

2

F
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-based HSIC estimator

Population quantity:

HSIC2(x, y) = [Exy [0(x) @ ¥(y)] — 11x ® pty |25
2
(p(x

[ — 1) ® (Y(y) — /ny)]H

HS
Estimator:

.
— 1 1o 1
HSIC}, y(x,y) = . Z oY (o)) - (n Z d’i,i) (n Z q’;,;)
i=1 =1 =1

2
T T
=0T ep - ey 1oy

2

F
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-based HSIC estimator

Population quantity:

HSIC2(x, y) = [Exy [0(x) @ ¥(y)] — 11x ® pty |25
(p(x

2
- [ — 1) ® () ~ My)]HHs'
Estimator:
12
— 1 T 1o 1
HSICE v (x,y) = |~ 3 00 (07) " — { — 2 0 ) | 2,9y
i=1 i=1 i=1
F
1 T wu 1 u\ T T AU 2
= ; (cbx) q>y - ? (q)x> ]'n]'n be
F
1 - 1,1 2
S HCICEE S
(S —
H,=HTH,
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-based HSIC estimator

Population quantity:

HSIC2(x, y) = [Exy [0(x) @ ¥(y)] — 11x ® pty |25
(p(x

2
- [ ~ i) @ (V) - My)]HHs'
Estimator:
— 1 T 1o 1 il
HSICE y(x,y) = |~ > @4 (97) " — (,,Z‘D?i) (an’?,i)
i—1 i—1 i—1
F
1 T wu 1 u\ T T AU 2
= ;((DX) q)y_?(q)x) ]'n]'ncby
F
1 - 1,17 2 |1 |
o M Gt B i HCE
(S —
H,=HTH,
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Nystrom-based HSIC estimator — conclusion

HSIC?(x,y) = | CxcyHis ;

— 1 2
HSIC} y(x,y) = Hn ()7 o¢

X y

F
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Nystrom-based HSIC estimator — conclusion

HSIC?(x,y) = | C5 2.

S 1 2
HSIC} y(x,y) = Hn ()7 o¢

X y

F

1 T - :
Cs, changed to - (®F)" &, with Frobenius norm.
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Nystrom technique: notes

@ Use Hﬁ,v in

e permutation test, or spectral approach.
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Nystrom technique: notes

@ Use Hﬁ,v in

e permutation test, or spectral approach.

e Computational complexity (null approximation):
O(n) >0 +r2+(rZ+r)n+ran).

In practice: ry, r, < n.
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Nystrom technique: notes

@ Use Hﬁ,v in

e permutation test, or spectral approach.

e Computational complexity (null approximation):
O(n) >0 +r2+(rZ+r)n+ran).

In practice: ry, r, < n.
@ GP [Snelson and Ghahramani, 2006, Titsias, 2009]:

@ subset — optimized subset of size r,
e inducing points.
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Random Fourier features
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Characteristic functions: quick summary [Sasvari, 2013]

P'—>(;5PZ

dp(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd
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Characteristic functions: quick summary [Sasvari, 2013]

P ¢PZ
dp(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd
Properties:
o3, P L gp,
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Characteristic functions: quick summary [Sasvari, 2013]

P— ¢PZ
dp(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd

Properties:
o3PS op,
o |pp(t)] <1, pp(—t) = ¢p(t) Vte R
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Characteristic functions: quick summary [Sasvari, 2013]

P ¢PZ
dp(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd
Properties:
o3, P L gp,

o |¢p(t)| < 1, ¢p(—t) = ¢p(t) Vte R
@ ¢p: uniformly continuous on RY.
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Characteristic functions: quick summary [Sasvari, 2013]

P ¢PZ
dp(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd
Properties:
o3, P L gp,

o |pp(t)| <1, ¢p(—t) = ¢p(t) Vte R
@ ¢p: uniformly continuous on RY.
o pd: X7 ¢p(ti —tj)ci§ =0, for Yne ZT, t; € RY, ¢; e C.
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Characteristic functions: quick summary [Sasvari, 2013]

P (;SPZ
dp(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd
Properties:
o3, P L gp,

o |pp(t)| <1, ¢p(—t) = ¢p(t) Vte R
@ ¢p: uniformly continuous on RY.
o pd: X7 ¢p(ti —tj)ci§ =0, for Yne ZT, t; € RY, ¢; e C.

Bochner's theorem & G > 0 definition of kernels!
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Characteristic functions: continued

Operations, closedness:

@ Sum of independent variables:

¢ (t) =] [on(t), VeeR
i=1
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Characteristic functions: continued

Operations, closedness:

@ Sum of independent variables:
¢ (t) =] [on(t), VeeR
i=1

o Affine transformation (A € R *%):

Daxsb(t) = e (ATt> , VYteRY.
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Characteristic functions: continued

Operations, closedness:

@ Sum of independent variables:
¢ (t) =] [on(t), VeeR
i=1

o Affine transformation (A € R *%):
Daxsp(t) = eBP g (ATt> , VteRY

e Concatenation of independent variables: x = [x1;...;Xp]

Px(t) = ﬁ@,(t;), t=[t;...;t,] e R?
i=1
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Characteristic functions: continued

Operations, closedness:

@ Sum of independent variables:
¢ (t) =] [on(t), VeeR
i=1

o Affine transformation (A € R *%):
Daxsp(t) = eBP g (ATt> , VteRY

e Concatenation of independent variables: x = [x1;...;Xp]

Px(t) = ﬁ@,(t;), t=[t;...;t,] e R?
i=1

Distance covariance!
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Characteristic functions: continued

Moment condition on P = differentiability of ¢p. )

Assume that exists:
d
M, = Exp[x®] aeN9 [x*:= fo’ )
i=1

Then 302¢p and

Pop(t) = i1 | x2e/ X dP(x), Vt e RY,
Rd

d
Pp(0) = iPIM,, Ja| = a;,
i=1
and ®¢p is uniformly continuous.
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RFF idea

o k: continuous bounded & shift-invariant on RY [k(x,y) = ko(x — y)].
By Bochner:

k= [ @ anw)
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RFF idea

o k: continuous bounded & shift-invariant on RY [k(x,y) = ko(x — y)].
By Bochner:

k= [ @ anw)

Zoltan Szabé Structured Data: Dependency, Testing



RFF idea

o k: continuous bounded & shift-invariant on RY [k(x,y) = ko(x — y)].
By Bochner:

k)= [ TN W)
R cos(wT (x—y))+isin(w’ (x—y))

_ fRd cos (T (x ~y)) dA(w).

e RFF trick [Rahimi and Recht, 2007] (MC): w1.m 1= (w;)7

= Yo (w] 0 -)
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RFF idea

o k: continuous bounded & shift-invariant on RY [k(x,y) = ko(x — y)].
By Bochner:

k= [ @ anw)

cos(wT (x—y))+isin(w’ (x—y))
= f cos (wT(x - y)) dA(w).
Rd

o RFF trick [Rahimi and Recht, 2007] (MC): wi.m 1= (w;)™; "2 A,

k(x,y) = ;écos (wJ-T(x - y)) = fRd cos (wT(x - y)) dAp(w).
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RFF idea

o k: continuous bounded & shift-invariant on RY [k(x,y) = ko(x — y)].
By Bochner:

k(x,y) = glw’ (x=y) dA(w)
cos(wT (x—y))+isin(w’ (x—y))

_ fRd cos (T (x ~y)) dA(w).

i.id.
~

® RFF trick [Rahimi and Recht, 2007] (MC): w1 := (w;)[Z; A,

k(x,y) = % i cos (wJ-T(x - y)) = f ,cos (wT(x - y)) dAp(w).
j=1 R’

Recall (characteristic kernels)

We saw many k — A examples!
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@ Why is RFF useful?
o Does it converge (k — k ~ 0)? Rates?
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Why is RFF useful?

Kernel approximation:

= g e (o] 0-9).
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Why is RFF useful?

Kernel approximation:
1 m
= s (& ).

By the trigonometric identity:

cos(a — b) = cos(a) cos(b) + sin(a) sin(b),
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Why is RFF useful?

Kernel approximation:

1 m

= s (& ).
By the trigonometric identity:

cos(a — b) = cos(a) cos(b) + sin(a) sin(b),
kixy) = (6(x).6(y) )
1

R2m ’

sin (w{x) c...:sin (wa>] e R?>™.
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Why is RFF useful?

Kernel approximation:
1 m
— » cos .
= 2y (<] )
By the trigonometric identity:

cos(a — b) = cos(a) cos(b) + sin(a) sin(b),
kixy) = (6(x),4(y) )
1

RZm’
sin (w{x) c...:sin (wa>] e R?>™.

We got (random) explicit feature maps!
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RFF application in independence testing

Previous slide =
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RFF application in independence testing

Previous slide =

Gy~ 02 (04)7 G, ~ o) (o))",
and hence
)T 1 1 T
HSICb RFF X _y 2 (D - (n Z q>>[i,i> (n Z q);,i)
i=1 i=1
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RFF application in independence testing

Previous slide =

u u u uy T
Gy ~ x ((Dx)T? G)’ ~ d)y (d)y) ’
and hence
712
—2 1 n T 1 1 u 1 u u
HSICbR,_—,_—(X,y) = ; 2 (Dii ((D;,I) - ; Z ¢X7i ; Z (D}’J.
i=1 i=1 i=1
F
1 7.
=...= = () ®¢| .
05705

We simply 'overloaded’ the features with the RFF ones.
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Some further RFF-accelerated measures

o KCCA [Lopez-Paz et al., 2014].

@ MMD [Sutherland and Schneider, 2015,
Zhao and Meng, 2015, Lopez-Paz, 2016].
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RFF: in kernel ridge regression

e Given: {(X,-,y,-)}le.
@ Task: find f € Hy s.t. f(x;) ~ y;,

1

l
_ N o2 2
) = 3 LUF0) = + Ml — grip - (3> 0)

Y
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RFF: in kernel ridge regression

e Given: {(X,-,y,-)}le.
@ Task: find f € Hy s.t. f(x;) ~ y;,

1

l
_ N o2 2
) = 3 LUF0) = + Ml — grip - (3> 0)

Y

o Analytical solution, O(¢3) — expensive:

f(x)

[k(x1, %), ..., k(xe, x)](G + Aﬁ/)*l[yl; oyl
G X;

[k( lan)]€j=1'
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RFF: in kernel ridge regression

Given: {(X,-,y,-)}le.
Task: find f € Hy s.t. f(x;) ~ yi,

¢
1
f) =~ i) = yil? S, — mi :
J(f) =5 ;[f(x) il + Ml — min - (A>0)
o Analytical solution, O(¢3) — expensive:
F(x) = [k(x1, %), ..., k(x¢,)](G + XD y1; .. .5yl
G= [k(Xl'vxj)]ﬁj=1'

o ldea: G, matrix-inversion lemma, fast primal solvers — RFF.
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Approximation quality

@ Hoeffding inequality + union bound
[Rahimi and Recht, 2007, Sutherland and Schneider, 2015]:

Hk B IQHLOO(S) = O <8|If/gﬁ(m)> '
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Approximation quality

@ Hoeffding inequality + union bound
[Rahimi and Recht, 2007, Sutherland and Schneider, 2015]:

Hk B IQHLOO(S) = O <8|If/gﬁ(m)> '

o ECFs [Csorgo and Totik, 1983]: [8,,| = €°(™ — optimal rate,
asymptotic!
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Approximation quality

@ Hoeffding inequality + union bound
[Rahimi and Recht, 2007, Sutherland and Schneider, 2015]:

Hk B IQHLOO(S) = O <8|If/gﬁ(m)> '

o ECFs [Csorgo and Totik, 1983]: [8,,| = €°(™ — optimal rate,
asymptotic!
e Finite-sample L*-bound [Sriperumbudur and Szabé, 2015] 2=

_o. [Vlelsl
L(8) s vm '

i
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Approximation quality

@ Hoeffding inequality + union bound
[Rahimi and Recht, 2007, Sutherland and Schneider, 2015]:

Hk B IQHLOO(S) = O <8|If/gﬁ(m)> '

o ECFs [Csorgo and Totik, 1983]: [8,,| = €°(™ — optimal rate,
asymptotic!
e Finite-sample L*-bound [Sriperumbudur and Szabé, 2015] 2=

_o. [Vlelsl
L(8) s vm '

@ RFF in ridge regression [Rudi and Rosasco, 2017], kernel PCA
[Sriperumbudur and Sterge, 2018, Ullah et al., 2018], classification
with 0-1 loss [Sun et al., 2018], Lipschitz losses [Li et al., 2018].

i
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Optimal |k — kHL/ : proof idea

o Empirical process form [Pg := { gdP; g(w) = cos (w' (x —y))]:

sup

k(x,y) — /?(x,y)‘ = sup|Ag — Amg|
X,yES geg
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Optimal |k — kHL/ : proof idea

o Empirical process form [Pg := { gdP; g(w) = cos (w' (x —y))]:

sup

k(x.y) = k(x,y)| = sup|Ag = Amg| = [A = Anlg.
X,y€8 geg
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Optimal |k — kHL/ : proof idea

o Empirical process form [Pg := { gdP; g(w) = cos (w' (x —y))]:

sup
X,yes

k(x.y) = k(x,y)| = sup|Ag = Amg| = [A = Anlg.
geg

o f(wi:m) = [A — Anllg concentrates (bounded difference):

1

IM—AMbﬁEMWM—AMb+;§-
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Optimal |k — kHL/ : proof idea

o Empirical process form [Pg := { gdP; g(w) = cos (w' (x —y))]:

sup
X,yes

k(x.y) = k(x,y)| = sup|Ag = Amg| = [A = Anlg.
geg

o f(wi:m) = [A — Anllg concentrates (bounded difference):
1
Vm’

@ G is 'nice’ (uniformly bounded, separable Carathéodory) =

IN=Amlg = Buwrp IN=Amlg +

Ewypm A= /\mHg SEuy, R(G,wim) -
S

Eesupgeg| % 27, €8 (w))|
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Proof idea — continued

@ Using Dudley's entropy bound:

1

R (g wl:m) =< ﬁ

1912 (A m)
log N'(G, L2(A,,), r)dr.
|7 oA (@ ().
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Proof idea — continued

@ Using Dudley's entropy bound:

|9‘L2<Am>

R(G,wim) 2 \fj og/\/(g,Lz(/\m)./r)dr.

@ G is smoothly parameterized by a compact set =

4|8|A
r

NA(G, L2(Am).7) < < +1>d, A(wrm) =

1 & )
*Z lwjl-
mJ,:1
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Proof idea — continued

@ Using Dudley's entropy bound:

|9‘L2<Am>

R(G,wim) 2 \fj og/\/(g,Lz(/\m)./r)dr.

@ G is smoothly parameterized by a compact set =

4|8|A
r

d 1 m
N (G, L2(Am), 1) < < + 1) o Alwrm) = | — D lwil-
j=1

o Putting together [|G|;2(p,) < 2, Jensen inequality] we get ...
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Theorem (Finite-sample, asymptotically optimal uniform bound for
RFF)
Let k be continuous, bounded, shift-invariant, and

02 := {|w|?dA\(w) < 00. Then for Y7 > 0 and compact set
8§ c R

)

R h(d, |8|,0) + v/27 .
" 1k = Klngy > MBI o

h(d,|S|,0) := 32+/2dlog(2[8| + 1) + 16 2d

og(2s[+ 1)
324/2dlog(c + 1).
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: motivation

The object of interest:

sup |[Pf — P,f].
fer
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: motivation

The object of interest:

sup |[Pf — P,f].
fer

Original motivation:
e F: cdf, F,: empirical cdf.
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: motivation

The object of interest:

sup |[Pf — P,f].
fer

Original motivation:
e F: cdf, F,: empirical cdf.

@ Glivenko-Cantelli theorem:

0 = |F — Fall,, = sup|F(x) — Fa(x)|
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: motivation

The object of interest:

sup |[Pf — P,f].
fer

Original motivation:
e F: cdf, F,: empirical cdf.

@ Glivenko-Cantelli theorem:
0 <<= ||F = Fpl., = sup|F(x) = Fa(x)]

=sup [Pf —Puf|, F = {X(0x : xR}
feF

Ref: [van der Vaart and Wellner, 1996, van der Vaart, 1998,
van de Geer, 2009].
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Notes on RFF: LP bounds, kernel derivatives

@ One can also get:

o LP(8) results (< uniform bound, type of LP).
e bounds for 0kP9 [Szabé and Sriperumbudur, 2019].
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Notes on RFF: LP bounds, kernel derivatives

@ One can also get:
o LP(8) results (< uniform bound, type of LP).
e bounds for 0kP9 [Szabé and Sriperumbudur, 2019].
oPAF(x,y)
oPx0dy !
e nonlinear variable selection [Rosasco et al., 2010, Rosasco et al., 2013],

@ Kernel derivatives:
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Notes on RFF: LP bounds, kernel derivatives

@ One can also get:

o LP(8) results (< uniform bound, type of LP).
e bounds for 0kP9 [Szabé and Sriperumbudur, 2019].
oP9f (x,y)
oPx0y !
e nonlinear variable selection [Rosasco et al., 2010, Rosasco et al., 2013],
o infinite-dimensional exponential family fitting
[Sriperumbudur et al., 2017].

@ Kernel derivatives:

Let us look at the examples! J
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Nonlinear variable selection

@ Objective function, A > 0:

d
1 ,
J(f) =~ D) =yl + A ) of | — min,

i=1 j=1
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Nonlinear variable selection

@ Objective function, A > 0:

d
1 R .
J(f) =~ D) —yil? + 2D 0| — min,

i=1 j=1

@ Intuition:
o if f does not depend on variable j, then 0;f = 0.
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Infinite-dimensional exponential family (R9)

@ Exponential family:
po(x) o< 0T,

where 0: natural parameter, T (x): sufficient statistics.
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Infinite-dimensional exponential family (R9)

@ Exponential family:
po(x) o< 0T,

where 0: natural parameter, T (x): sufficient statistics.

@ Examples: normal, exponential, gamma, sz beta, ...
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Infinite-dimensional exponential family (R9)

@ Exponential family:
po(x) o< 0T,

where 0: natural parameter, T (x): sufficient statistics.
@ Examples: normal, exponential, gamma, sz beta, ...

@ InfiniteD generalization:

pf(X) oc ef(X) — e<f,k(~,x)>g{k‘
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Infinite-dimensional exponential family (R9)

@ Exponential family:
po(x) o< 0T,

where 0: natural parameter, T (x): sufficient statistics.
@ Examples: normal, exponential, gamma, sz beta, ...

@ InfiniteD generalization:

F00 _ ok (XD,

pr(x) c e’ =e

Fitting idea (score matching, Fischer divergence):
2

dx — min .
2 feﬂ-fk

J(ps: pr) == fp*(X)

dlog p«(x)  Olog pr(x)
ox ox
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Notes on RFF: operator-valued extension

o Standard setup: k: X x X - R

Fe={f: X >R|..}.
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Notes on RFF: operator-valued extension

o Standard setup: k: X x X - R
He={f: X ->R|...}.
@ Operator-valued case:

He={f: X > Y.}
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Notes on RFF: operator-valued extension

o Standard setup: k: X x X - R
He={f: X ->R|...}.
@ Operator-valued case:
He={f: X >Y]|...}, k: X xX— L(Y).

Y: (separable) Hilbert. Example: Y = R9, £(Y) = R9*9,
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Notes on RFF: operator-valued extension

o Standard setup: k: X x X - R
He={f: X ->R|...}.
@ Operator-valued case:
He={f: X >Y]|...}, k: X xX— L(Y).

Y: (separable) Hilbert. Example: Y = R9, £(Y) = R9*9,
o RFF idea

o works [Brault et al., 2016]; (R?,+) — LCA: v’
e open question: 'optimal’ rates.
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Nystrom method, RFF: the end.
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Linear-time two-sample testing: analytic
representations.
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Linear-time 2-sample test [Chwialkowski et al., 2015]

@ Recall:

MMD(P, Q) = |pp — paolly, -
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Linear-time 2-sample test [Chwialkowski et al., 2015]

@ Recall:

MMD(P, Q) = |pp — paolly, -

@ ldea: change the norm

J
p(P,Q) :=p (P,Q: {Vj}f:1> = Z [up(v)) — po(v))]?

with random {vj}f=1 test locations.
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Linear-time 2-sample test [Chwialkowski et al., 2015]

@ Recall:

MMD(P, Q) = |pp — paolly, -

@ ldea: change the norm

J
p(P,Q) :=p (IP’, Q {vJ-}f:1> = % D lue(v)) = po(v)]?

Jj=1

with random {vj}f=1 test locations.

Is p a random metric? How do we estimate it? Distribution under
Ho? J
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What is a random metric?

It is a metric almost surely (assumptions: next slide).
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What is a random metric?

It is a metric almost surely (assumptions: next slide).

In other words,
e p(P,Q) =0, p(P,Q) =0 < P =Q almost surely.
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What is a random metric?

It is a metric almost surely (assumptions: next slide).

In other words,
e p(P,Q) =0, p(P,Q) =0 < P =Q almost surely.
e p(P,Q) = p(Q,P) almost surely.
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What is a random metric?

It is a metric almost surely (assumptions: next slide).

In other words,
e p(P,Q) =0, p(P,Q) =0 < P =Q almost surely.

e p(P,Q) = p(Q,P) almost surely.
e p(P,Q) < p(P,D) + p(D, Q) almost surely.

Zoltan Szabé Structured Data: Dependency, Testing



What is a random metric?

It is a metric almost surely (assumptions: next slide).

In other words,
e p(P,Q) =0, p(P,Q) =0 < P =Q almost surely.
e p(P,Q) = p(Q,P) almost surely.
e p(P,Q) < p(P,D) + p(D,Q) almost surely.

V= {vj}f:1 < R9: reason of randomness.
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Result

If X < RY is connected open, and k is

® bounded: supy , k(x,x") < By < 0,
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Result

If X < RY is connected open, and k is
® bounded: supy , k(x,x") < By < 0,

o analytic: x — k(x,y) is analytic for any 'y € R9.
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Result

If X < RY is connected open, and k is
® bounded: supy , k(x,x") < By < 0,
o analytic: x — k(x,y) is analytic for any 'y € R9.

® characteristic:  is injective,
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Result

If X < RY is connected open, and k is
® bounded: supy , k(x,x") < By < 0,
o analytic: x — k(x,y) is analytic for any 'y € R9.
® characteristic:  is injective,

then

J
o(B,Q) =, | = S le(v) — g (v)]?

Jj=1

(.

J
j=1-

is a metric a.s. w.r.t. {v;}
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Why do analytic features work? — proof idea

@ i is injective and maps to analytic functions:

o k: bounded, analytic = elements of H: analytic.
e k: characteristic, bounded = 1 = uy: well-defined, injective.
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Why do analytic features work? — proof idea

@ i is injective and maps to analytic functions:

o k: bounded, analytic = elements of H: analytic.
e k: characteristic, bounded = 1 = uy: well-defined, injective.

@ u: characteristic = for P # Q, f := up — ug # 0.
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Why do analytic features work? — proof idea

@ i is injective and maps to analytic functions:

o k: bounded, analytic = elements of H: analytic.
e k: characteristic, bounded = 1 = uy: well-defined, injective.

@ u: characteristic = for P # Q, f := up — ug # 0.
e f: analytic, thus

M~

p(P,Q) = [1e(v;) — Ho(v))]®
j=1
is a metric, a.s. w.r.t. (v; i'i'vd') m < A. Reason: for an
analytic f # 0, m{v: f(v) =0} = 0.
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Compute

J
(P Q) = J - Z fir(v;) N@("J>]2,
j=1
lx—v|?

where fip(v) = 1 3" | k(x;,v). Example using k(x,v) = e~ 2.2

—  fip(v)
—  Jig(v)

—  (p(v) = fig(v))*
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Estimation — continued

J

N 1

P*(P,Q) = 5 Z fip(vj) — fig(v))]?
J
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Estimation — continued
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Estimation — continued

where z,, = %Z?:l [k(xi,vj) — k(YiNj)]f:l eR’.
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Estimation — continued

j=1
151 1" 2 1Y 1
:Jz;llnzlk(x’?vj)_nz;k<YI:VJ)] _JZJI(ZH)J Z*ZTZ,,,
J= 1= i= j=

where z,, = %Z,’-’zl [k(xi,vj) — k(Yi,Vj)]J=1 eR’.

@ Good news: estimation is linear in n!

e Bad news: intractable null distr. = \/ﬁpAQ(IP’,IP’) 9, sum of J
correlated x2.
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Normalized version gives tractable (asymptotic) null

@ Modified test statistic:

j\n = ni;’,—Z;lzm
where X, = cov ({z;}]_,).
@ Under Hy:

~

o A\, LR x2(J). = Easy to get the (1 — a)-quantile!
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@ Characteristic functions — 'poor’ choice:

J
p2(P,Q) := %Z [6p(v)) — do(v))]?

[Chwialkowski et al., 2015, Prop. 1]: It fails to distinguish a
large class of distributions.
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@ Characteristic functions — 'poor’ choice:

J
p2(P,Q) := %Z [6p(v)) — do(v))]?

[Chwialkowski et al., 2015, Prop. 1]: It fails to distinguish a
large class of distributions.

@ [Moulines et al., 2007]:

nyn
p3(P,Q) := =F HC (1o — uu»)H ;
k
n
C= X Co + C,y : pooled covariance operator.
ny + ny Ny + ny

Zoltan Szabé Structured Data: Dependency, Testing



@ Characteristic functions — 'poor’ choice:

J
p2(P,Q) := %Z [6p(v)) — do(v))]?

[Chwialkowski et al., 2015, Prop. 1]: It fails to distinguish a
large class of distributions.

@ [Moulines et al., 2007]:

nyn
p3(P,Q) := =F HC (1o — uu»)H ;
k
n
C= X Co + C,y : pooled covariance operator.
ny + ny Ny + ny

Computational cost: high (cubic).
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Notes — continued

@ Until now: spatial domain.

@ Smoothed characteristic functions:

vp(t) = | op(@)ilt —w)dw, te R,

J
pa(P,Q) := j Z [Ye(v)) — volv))]?.
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Notes — continued

@ Until now: spatial domain.

@ Smoothed characteristic functions:

vp(t) = | op(@)ilt —w)dw, te R,

J
Z [p(v;) — v (v))]2.

k \

@ Notes:

e For analytic smoothing kernels (¢), it works.
e It is more sensitive to differences in the frequency domain.
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Linear-time high-power two-sample testing
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Example-1: NLP

@ Given: two categories of documents (Bayesian inference,
neuroscience).
e Task:

e test their distinguishability,
e most discriminative words — interpretability.

= L

Zoltan Szabé Structured Data: Dependency, Testing



Example-2: computer vision

e Given: two sets of faces (happy, angry).
o Task:

o check if they are different,
o determine the most discriminative features/regions.
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One-page summary [Jitkrittum et al., 2016a]

@ We get a nonparametric t-test.
@ It gives a reason why Hy is rejected.
o ltis

e adaptive — high test power.
o fast (linear time).
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https://github.com/wittawatj/interpretable-test

One-page summary [Jitkrittum et al., 2016a]

@ We get a nonparametric t-test.

@ It gives a reason why Hy is rejected.
o ltis

e adaptive — high test power.
o fast (linear time).

Code:
@ https://github.com/wittawatj/interpretable-test
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https://github.com/wittawatj/interpretable-test

@ Until this point: test locations (V) are fixed.
@ Instead: choose § = {V, 0} to

maximize lower bound on the test power.
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@ Until this point: test locations (V) are fixed.
@ Instead: choose § = {V, 0} to

maximize lower bound on the test power.

Theorem (Lower bound on power, for large n)

Test power = L()\,); L: explicit function, monotonically increasing.

@ Here,
o A\, = nuTZ_lu: population version of 3\,, = ninTZ;li,,.
o p=Eylz], T =Ey[(zs—p)(z—p)7].
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Convergence of the A, estimator

But A, is unknown. = Split (X, Y) into (X¢, Yir) and (Xie, Yie).
o Locations, kernel parameter: 6 = arg max, A (6).
2
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Convergence of the A, estimator

But A, is unknown. = Split (X, Y) into (X¢, Yir) and (Xie, Yie).
o Locations, kernel parameter: 6 = arg max, A (6).
2

o Test statistic: 3\56(9).
2
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Convergence of the A, estimator

Theorem (Guarantee on objective approximation, v, — 0)

SUp|Z] (X + 7n) 120 — pTE | = O(n75).
v,k
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Convergence of the A, estimator

Theorem (Guarantee on objective approximation, v, — 0)

sup |27 (T + 7n) 120 — pTZ 1| = O(n75).
v,k

Examples:

_ x—y)?

= {kg(x,y) =e 27 :0>0},

= {kA(x, y) = e (-YTAK-Y) L A 0} )

K
K
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@ Lower bound on the test power:
o [0 = Al < 20— pily + |0 — X[ )
e Bound the r.h.s. by Hoeffding inequality = P(|\, — A,| = t).

~

o By reparameterization: P(A, > T,) bound.
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@ Lower bound on the test power:
o |An—An| 2 |Zn — pfy + [Zn — Xl .
o Bound the r.h.s. by Hoeffding inequality = P(|An — An| = 1).
o By reparameterization: P(A\, > T,) bound.
e Uniformly Mo & Ap:
e Reduction to bounding sup ||z, — p|
v,8

2 sup | X, ZHF'
V.8

e Empirical processes, Dudley entropy bound.
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Non-convexity, informative features

Vo Al (V1,V5)

— 160
1140
1120
1100
180
160
140
120
=0

@ 2D problem:
P:=N(0,1), Q:=N(eg,lI).

o V= {Vl,VQ}. Fix vq to the
triangle.

o vy — S\n({vl,v2}): contour
plot.

— 192
1184
1176
1168
1160
1152
{1144
1136
—128
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Non-convexity, informative features

A g A‘HZ(VD Vg) — 160

1140
1120
1100
180
160
140
120
=0

— 192
1184
1176
1168
1160
1152
{1144
1136
—128
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@ Nearby locations: do not
increase discrimininability.

@ Non-convexity: reveals multiple
ways to capture the difference.




Computational complexity

@ Optimization & testing: linear in n.
o Testing: O (ndJ + nJ? + J3).
@ Optimization: O (ndJ2 + J3) per gradient ascent.
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Number of locations (J)

e Small J:

e often enough to detect the difference of P & Q.
o few distinguishing regions to reject Hp.
o faster test.
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Number of locations (J)

o Very large J:

o test power need not increase monotonically in J (more
locations = statistic can gain in variance).
o defeats the purpose of a linear-time test.
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Numerical demos
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Parameter settings

Gaussian kernel (o). @ = 0.01. J = 1. Repeat 500 trials.
Report

#times A\, > T, holds
#trials ’

P(reject Hy) ~

o Compare 4 methods

ME-full: Optimize V and Gaussian bandwidth o.

ME-grid: Optimize 0. Random V [Chwialkowski et al., 2015].
MMD-quad: Test with quadratic-time MMD [Gretton et al., 2012].
o MMD-lin: Test with linear-time MMD [Gretton et al., 2012].

Optimize kernels to power in MMD-lin, MMD-quad.
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NLP: discrimination of document categories

5903 NIPS papers (1988-2015).
Keyword-based category assignment into 4 groups:

e Bayesian inference, Deep learning, Learning theory, Neuroscience
@ d = 2000 nouns. TF-IDF representation.

Problem nt* | ME-full ME-grid MMD-quad MMD-lin
1. Bayes-Bayes 215 .012 .018 .022 .008
2. Bayes-Deep 216 .954 .034 .906 .262
3. Bayes-Learn 138 .990 774 1.00 .238
4. Bayes-Neuro 394 1.00 .300 .952 972
5. Learn-Deep 149 .956 .052 .876 .500
6. Learn-Neuro 146 .960 572 1.00 .538

Performance of ME-full [O(n)] is comparable to MMD-quad [O(n?)].
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NLP: most/least discriminative words

o Aggregating over trials; example: 'Bayes-Neuro'.
@ Most discriminative words:
spike, markov, cortex, dropout, recurr, iii, gibb.

o learned test locations: highly interpretable,
o 'markov’, 'gibb’ (<= Gibbs): Bayesian inference,
o 'spike’, 'cortex': key terms in neuroscience.
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NLP: most/least discriminative words

o Aggregating over trials; example: 'Bayes-Neuro'.

@ Least dicriminative ones:

circumfer, bra, dominiqu, rhino, mitra, kid, impostor.
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Distinguish positive/negative emotions

e Karolinska Directed Emotional Faces (KDEF) [Lundqvist et al., 1998].
@ 70 actors = 35 females and 35 males.
o d =48 x 34 = 1632. Grayscale. Pixel features.

+......

happy  neutral surprised afraid angry disgusted

Problem nte ‘ME-fuII ME-grid MMD-quad MMD-lin

+vs. £ 201 .010 .012 .018 .008
+vs. — 201 .998 .656 1.00 .578
-'j‘i:-l-'._
|3.;1'

@ Learned test location (averaged) =
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Linear-time high-power two-sample testing:

finished
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Linear-time high-power independence testing
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Example: dependency testing of media annotations

@ We are given paired samples. Task: test independence.
@ Examples:
o (song, year of release) pairs
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Example: dependency testing of media annotations

@ We are given paired samples. Task: test independence.
@ Examples:
o (song, year of release) pairs

o (video, caption) pairs
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Example: dependency testing of media annotations

@ We are given paired samples. Task: test independence.
@ Examples:
o (song, year of release) pairs

o (video, caption) pairs

?
° {(X,',y,')}le — Hy: [P)Xy = PX]P)),, Hy : ny # PXIP)y.
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2-sample test — independence test

Until now:
@ adaptive linear-time 2-sample test (automatic parameter tuning).
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2-sample test — independence test

2-sample test:

J
MMD(P,Q) = ||pp — MQHJ{,( , p(P,Q) = Z Hp VJ — HQ vj)]27
_/:1
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2-sample test — independence test

2-sample test:

J
MMD(P,Q) = ||pp — MQHJ{,( , p(P,Q) = Z Hp VJ — HQ vj)]27
_/:1

Independence test [Jitkrittum et al., 2016b]:

J
1
HSIC(x,y) = |ty — px ® My”g{,@}(e , FSIC(x,y) = Z u?(vj, w;)
J=1
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2-sample test — independence test

2-sample test:

J
MMD(P,Q) = ||pp — MQHJ{,( , p(P,Q) = Z Hp VJ — HQ vj)]27
_/:1

Independence test [Jitkrittum et al., 2016b]:

J
1
HSIC(x,y) = |ty — px ® My”g{,@}(e , FSIC(x,y) = Z u?(vj, w;j),
J=1

with u(v,w) = pi,, (v, W) — 15 (v) 11y (W) witness function.
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FSIC: covariance view

(v,w): fixed. By rewriting

u(v, W) = fixy (v, W) — px(V) 1y (W)
— By [k (%, )y, w)] — B [k(x,v)]Ey [Cly, w)]
= covky (k(x,v), L(y,w)) .

= We picked the (v, w) entry of

Coy = Exy [p(x) ® ¥(y)] — 11x ® py,

HSIC = | Gy s -
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FSIC is an independence measure

Ifk: X xX —>R,{:Y x)Y — R are bounded, characteristic,
analytic kernels [X < R%, Y < R%: connected open], then almost
surely

FSIC(x,y) =0< x Ly.
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FSIC is an independence measure

Ifk: X xX —>R,{:Y x)Y — R are bounded, characteristic,
analytic kernels [X < R%, Y < R%: connected open], then almost
surely

FSIC(x,y) =0< x Ly.

Consequence

FSIC can be applied in ISA, feature selection, outlier-robust image
registration, ...
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Empirical estimator for FSIC

J
1
FSICZ(X) y) = j Z UZ(Vja wj)? U(V, W) = :qu(vv W) - NX(V)Ny(W)7
=1
—— 2 1 J A2 A —~ —
FSIC (y) = & D) 2uywy). (v, w) = 55 (v. ) — (775 (v, w).
=1
1
=5 ul3
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Empirical estimator for FSIC

FSICZ (X, y) = u2 (Vj’ wj)? U(V, W) = Hxy (Vv W) — Mx (V)/‘y (W)7

-~
I
—

=
D=

—2 R — o
FSIC (x,y) = = 3 %(vj,w)), (v, w) = i3y (v, w) — (fix/iy ) (v, w),

D~
<>

[ I e
L.
Il
ful

2
= 5 lulz,

where we use the unbiased estimators [2nd = "y, (v)uy (w) - diag']:

ny v, W ; Z Xn yH )7
Loy (W, W) = —————— % k(x;,v)l(yj, w).
Y n(n—1) ; ' /
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Asymptotic distribution of U

For fixed (v,w):
. 2
U(V,W) = m Z hv,w ((th,‘)a (xja YJ)) )

i<j

hV,W ((X, y)v (X,, y,)) = % [k(X7 V) - k(xlv V)] [f(y, W) - g(ylv W)]
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Asymptotic distribution of U

For fixed (v,w):
n(n2_1) D v (%0, ¥i), (%4, ¥7)) 5

i<j

hV,W ((X,y), (X,, y,)) = % [k(X,V) - k(xlvv)] [f(y, W) - g(ylvw)] ’

d(v,w) =

theory of U-statistics

thus

Theorem (Asymptotic normality)

J

For any fixed locations V = {(vj,wj)}le, i:= [ﬁ(vj,wj)]j:1

Vn(a—u) % N, x),

Yjj = coVyy (G(vi,wij), d(vj,wj)).
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NFSIC = FSIC + whitening

_— 9 2
e nFSIC (x,y) = nH"JHQ: asymptotically sum of correlated x°-s.

Zoltan Szabé Structured Data: Dependency, Testing



NFSIC = FSIC + whitening

_— 9 2
e nFSIC (x,y) = n%: asymptotically sum of correlated y°-s.
@ Quantile: hard. = With the whitening trick:

e Under Hy: with v, — 0

~ A —1
o = naT (}:n + %lJ) 6% x2(J).

Zoltan Szabé Structured Data: Dependency, Testing



NFSIC = FSIC + whitening

_— 9 2
e nFSIC (x,y) = n%: asymptotically sum of correlated y°-s.
@ Quantile: hard. = With the whitening trick:

e Under Hy: with v, — 0

~

Xy = nai” (): + %lJ)fl 6% 2(J).

o Under H,: we get a consistent test (i.e., power — 1).
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NFSIC can be estimated

Test statistic:

Estimator: no n x n Gram matrix
o K:=[k(vj,xj)] € R/*n L .= [(wi,yj)] € RI*n

3 T P P ° n n)° n
o3, = T = (KH,)o (LH,) —a1], := (bl — (o),

Computational time:

O (L + Pn+ (dy +dy)Jn).
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https://github.com/wittawatj/fsic-test

NFSIC can be estimated

Test statistic:
« T e -1
Ap = nu (Zn + ’yn|J> u.

Estimator: no n x n Gram matrix
o K:=[k(vj,xj)] € R/*n L .= [(wi,yj)] € RI*n

& T A~ A~ Kol)1, K1,)o(L1,
o3, = T = (KH,)o (LH,) —a1], := (bl — (o),

Computational time:
O (L + Pn+ (dy +dy)Jn).

Code with demos:
https://github.com/wittawatj/fsic-test
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Choosing the locations & kernel parameters

o Consistent test: for YV = {(vj,wj}f:1 and kernel parameters.
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Choosing the locations & kernel parameters

o Consistent test: for YV = {(vj,wj}f:1 and kernel parameters.

@ Choose the power proxy maximizer.

Let NFSIC?(x,y) = A, = nu" X~ tu. For large n,
test power = L(\,),

L: monotonically increasing.
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Choosing the locations & kernel parameters

o Consistent test: for YV = {(vj,wj}f:1 and kernel parameters.

@ Choose the power proxy maximizer.

Let NFSIC?(x,y) = A, = nu" X~ tu. For large n,
test power = L(\,),

L: monotonically increasing.

@ In practice: data-splitting (a la 2-sample testing).
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HSIC versus FSIC

Which one to choose?

o HSIC = |Ju]3, g,

e FSIC = HUHLz(v). V= {(Vjij)}];l'
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HSIC versus FSIC

Which one to choose?

o HSIC = |Ju]3, g,
o When p,, — pip, is diffuse, close to flat.

e FSIC = HUHLz(v). V= {(Vjij)}];l'
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HSIC versus FSIC

Which one to choose?

o HSIC = |Ju]3, g,
o When p,, — pip, is diffuse, close to flat.

e FSIC = HUHLz(v). V= {(Vjij)}];l'

e When p,, — p.p, is local, with many peaks.
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Demo settings

@ k, ¢: Gaussian. J = 10.
@ Report: rejection rate of Hp.
o Compare 6 methods:

Method Description Tuning Test size  Complexity
NFSIC-opt  Studied Gradient descent  n/2 O(n)
NFSIC-med  No tuning Random locations n O(n)
QHSIC Full HSIC Median heuristic ~ n O(n?)
NyHSIC Nystrom + HSIC ~ Median heuristic ~ n O(n)
FHSIC RFF + HSIC Median heuristic ~ n O(n)
RDC RFF + CCA Median heuristic n O(nlog n)
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Demo-1: million song data

(Song, year of release) =: (x,y).

@ Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].

o x e R%=%: audio features.

o Left: break (x,y) pairs, i.e. Hp holds; right: H; is true.
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Demo-1: million song data

(Song, year of release) =: (x,y).
@ Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
o x e R%=%: audio features.
o Left: break (x,y) pairs, i.e. Hp holds; right: H; is true.

‘-—- NFSIC-opt  =-® NFSIC-med e—e QHSIC  *—= NyHSIC e— FHSIC +— RDC

0.025 — . T 1.0F
0.020 0.91 1
. « 0.8t 1
: g
5 0.015 8.0.7- 1
- 0.6f 1
g 0.010 B osl <
2 =020 - 1
0.005 0.4} 1
0.3} « 1
0.000 : - -
500 1000 1500 2000 500 1000 1500 2000
Sample size n Sample size n
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Demo-2: videos and captions

(Youtube video, caption) =: (x,y).
o VideoStory46K [Habibian et al., 2014]
o x € R?900=dx: Fisher vector encoding of motion boundary
histograms [Wang and Schmid, 2013].
o y e R1878=d: hag of words. TF.
o Left: break (x,y) pairs, i.e. Hy holds; right: Hj is true.
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Demo-2: videos and captions

(Youtube video, caption) =: (x,y).
o VideoStory46K [Habibian et al., 2014]
o x € R?900=dx: Fisher vector encoding of motion boundary
histograms [Wang and Schmid, 2013].
o y e R1878=d: hag of words. TF.
o Left: break (x,y) pairs, i.e. Hy holds; right: Hj is true.

‘-—- NFSIC-opt =@ NFSIC-med e— QHSIC »—~+ NyHSIC +—e FHSIC +— RDC

0.018 1.0
0.016}
0.8}
_ 0.014} g
2 0.012} £ 0.6/
(0] o
= 0.010 a
2 0.008} 7 0.4r
= 0.006" .
: 0.2
0.004}.-
0'0%00 40‘00 60I00 8000 02%00 40‘00 60‘00 8000
Sample size n Sample size n

Zoltan Szabé Structured Data: Dependency, Testing



Linear-time goodness-of-fit testing: Stein operator &

analytical kernels [Jitkrittum et al., 2017]

Given:
@ Density/model: p.
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https://github.com/wittawatj/kernel-gof

Linear-time goodness-of-fit testing: Stein operator &

Given:

e Density/model: p.
e Samples: X = {x;}7_; ~ g (unknown).
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https://github.com/wittawatj/kernel-gof

Linear-time goodness-of-fit testing: Stein operator &

analytical kernels [Jitkrittum et al., 2017]

Given:
e Density/model: p.
e Samples: X = {x;}7_; ~ g (unknown).
Problem: using p, X test

Ho:p=gq, vs
Hy:p#q.

Quick summary:
@ Best paper award (NIPS-2017, 3/3240).
@ Demo: criminal data analysis.
o Code: https://github.com/wittawat]
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@ Dependency measures, distances: KCCA, HSIC, MMD.
@ Mean embedding, cross-covariance operator.
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@ Dependency measures, distances: KCCA, HSIC, MMD.

@ Mean embedding, cross-covariance operator.
@ Applications:

e ISA, distribution regression, image registration, feature selection,
e hypothesis testing.
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Dependency measures, distances: KCCA, HSIC, MMD.
Mean embedding, cross-covariance operator.
Applications:
e ISA, distribution regression, image registration, feature selection,
e hypothesis testing.
Hypothesis testing:
e quadratic methods,
e scaling: block-variants, Nystrom, RFF,
e linear-time adaptive nonparametric tests.
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Thank you for the attention!
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