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Overview

@ Concepts from functional analysis:

normed-, inner product space,
convergent-, Cauchy sequence,

complete spaces: Banach-, Hilbert space,
continuous/bounded linear operators.
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Overview

@ RKHS:
o different views:

@ continuous evaluation functional,
@ reproducing kernel,

© positive definite function,

O feature view (kernel).

e equivalence, explicit construction.
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We define the 'length’ of a vector. ]

F: vector space over R. ||-|| : F — [0,00) is norm on F, if
@ ||f|| = 0iff. f =0 (norm separates points),
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We define the 'length’ of a vector. ]

F: vector space over R. ||-|| : F — [0, 00) is norm on F, if
@ ||| = 0iff. f =0 (norm separates points),
Q ||M || = |\ [|f]| YA € R,Vf € F (positive homogenity),
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We define the 'length’ of a vector. ]

F: vector space over R. ||-|| : F — [0, 00) is norm on F, if
@ ||| = 0iff. f =0 (norm separates points),
Q ||M || = |\ [|f]| YA € R,Vf € F (positive homogenity),
Q |If +g| <|Ifll + llgll Vf,g € F (triangle inequality).
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We define the 'length’ of a vector. ]

F: vector space over R. ||-|| : F — [0, 00) is norm on F, if
@ ||| = 0iff. f =0 (norm separates points),
Q ||M || = |\ [|f]| YA € R,Vf € F (positive homogenity),
Q |If +gl < |Ifll + |lg|l ¥f, g € F (triangle inequality).
Note:
e norm = metric: d(f,g) = ||f —g| =

@ study continuity, convergence.
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Normed space: examples

o (R,[-),

1
o (R [xll, = [ x[P)7 ). 1 < p.
o p=1: |x||; =>;|x| (Manhattan),
o p=2: x|, = />; x* (Euclidean),

o p=o00: [|x]|,, = max;|x;| (maximum norm).

o (cta.th 1, = [JE1600rad]). 1<
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Inner product space

F: vector space over R. (-,-) : F x F — R is an inner product on
FifforVa; e R, f;,f,g e F

Q@ (a1 +aoh,g) = a1 {f,g) + az {f, g) (linearity),
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Inner product space

F: vector space over R. (-,-) : F x F — R is an inner product on
FifforVa; e R, f;,f,g e F

o <C(]_f1 + 042f2,g> =01 <f17g> + (0% <f27g> (|inearity),
Q (f,g) = (g,f) (symmetry),
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Inner product space

F: vector space over R. (-,-) : F x F — R is an inner product on
FifforVa; e R, f;,f,g e F

Q@ (a1 +aoh,g) = a1 {f,g) + az {f, g) (linearity),

Q (f,g) = (g,f) (symmetry),
Q (f,f)>0,(f,fl=0& f=0.
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Inner product space

F: vector space over R. (-,-) : F x F — R is an inner product on
FifforVa; e R, f;,f,g e F

QO (uh + ash,g) = a1 (fi,8) + a2 (f, g) (linearity),
@ (f,g) = (g, f) (symmetry),
Q@ (f,f)>0;(f,f)=0&f=0.
Notes:
e 1, 2 = bilinearity.
o inner product = norm: ||f|| = \/{f, f).

e 1,2,3' ((f,f) > 0) is called semi-inner product.
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Inner product space: examples

° (Rd, (x,y) = Zixiy")'
o (RledZ’ (A,B)r = tr(ATB) = i AUBU)'

(C[a bl, (f.g) = [P F(x )
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Norm vs inner product

Relations:

o [(f.g)| <IIfll-llgll (CBS),
o 4(f.g)=|f+gl>—|If —gl* (polarization identity),
o If +gl”+IIf —gl* =2 +2llg|* (parallelogram law).
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Norm vs inner product

Relations:

o [(f,g)[ <Ifll-lell (CBS)

o 4(f,g)=|If +gl>—|If — gl (polarization identity),

o [f+gl*+If —gl* =2|If|>+2gl* (parallelogram law).
Notes:

e CBS holds for semi-inner products.

e parallelogram law = characterization of '||-|| < (-,-)".
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Convergent-, Cauchy sequence

F: normed space, {fy}2; C F,f € F,

e Convergent sequence: f, Ly FifVe> 03N = N(e) e N, s.t.
Vn> N, |f,—fllz<e
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Convergent-, Cauchy sequence

F: normed space, {fy}2; C F,f € F,

e Convergent sequence: f, Ly FifVe> 03N = N(e) e N, s.t.
Vn> N, |f,—fllz<e

e Cauchy sequence: {f,}72; is a Cauchy sequence if Ve > 0
IN =N(e) e N, st. Vn,m > N, ||f, — fr|| 2 < €.
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Convergent-, Cauchy sequence

F: normed space, {fy}2; C F,f € F,
e Convergent sequence: f, Ly FifVe> 03N = N(e) e N, s.t.
Vn> N, |f,—fllz<e

e Cauchy sequence: {f,}72; is a Cauchy sequence if Ve > 0
IN =N(e) e N, st. Vn,m > N, ||f, — fr|| 2 < €.

Note:
o convergent = Cauchy: ||fy — ]| 2 < ||fo — fll 2 + |f — fml| £
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Not every Cauchy sequence converges

Examples:
o 1,1.4,1.41,1.414,1.4142,...: Cauchy in Q, but 2 ¢ Q.

o (€011, lzpo):

1_ L 1,1
27 2n 3t an 1

But a Cauchy sequence is bounded.
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Banach space, Hilbert space

o Complete space: V Cauchy sequence converges.
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Banach space, Hilbert space

o Complete space: V Cauchy sequence converges.
@ Banach space = complete normed space, e.g.

O Let pe[l,00), LP(X, A, 1) =
1/p
{f : (X, A) — R measurable : ||f\|p = {/ |f(X)|Pd’u(X)] < OO}_
X

Q (C[av b]a Hf”oo = MaXy¢[a,b) |f(X)|)
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Banach space, Hilbert space

o Complete space: V Cauchy sequence converges.
@ Banach space = complete normed space, e.g.

O Let pe[l,00), LP(X, A, 1) =
1/p
{f : (X, A) — R measurable : ||f\|p = {/ |f(X)|Pd’u(X)] < OO}_
X

Q (C[av b]a Hf”oo = MaXy¢[a,b) |f(X)|)
o Hilbert space = complete inner product space; L?(X, A, ).
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Linear-, bounded operator

F, G: normed spaces. A : F — G is called

@ linear operator:
@ A(af) =a(Af) VaeR, f e F, (homogeneity),
Q A(f +g)=Af + Ag Vf,g € F (additivity).

G = R: linear functional.
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Linear-, bounded operator

F, G: normed spaces. A : F — G is called
@ linear operator:
@ A(af) =a(Af) VaeR, f e F, (homogeneity),
Q A(f+g)=Af+Ag Vf,ge F (additivity).

G = R: linear functional.

e bounded operator: A'is linear & ||A|| = supscr HfHHg < 00

fl )
K/ A: F=G

{Af :
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Unbounded linear functional: example

(CHO, 1], [|f]l o == maxyepoy IF(X)]), A(f) = £/(0) € R:
@ A: linear <« differentiation & evaluation are linear,
Q fulx)=e™ (neZ"):
o |Ifall.o <1, but
o |A(f)| = |F/(0)] = ‘ - ne_”X‘XIO‘ =|—nl=n-oc.
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Continuous operator

o Def: Ais
e continuous at fy € F: Ve >0 36 = d(¢, fp) > 0, s.t.

If —foll» <6 implies [|Af — Af0||g <e.

e continuous: if it is continuous at Vfy € F.
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Continuous operator

o Def: Ais
e continuous at fy € F: Ve >0 36 = d(¢, fp) > 0, s.t.

If —foll» <6 implies [|Af — Af0||g <e.

e continuous: if it is continuous at Vfy € F.

o Example:

o Let A (f) == (f,g)r €R, where f,g € F.
o Ag is Lipschitz continuous:

(-5 7 lin.

CBS
Ag(f) = Ag(R)l = [(h—fg)rl < lgllzllf—fllx.
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Continuous-bounded relations

Theorem:
@ A: linear operator. Equivalent: A is

@ continuous,
@ continuous at one point,
© bounded.
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Continuous-bounded relations

Theorems:
@ A: linear operator. Equivalent: A is

@ continuous,
@ continuous at one point,
© bounded.

@ Riesz representation (F: Hilbert, G = R):

continuous linear functionals = {(-,g) r : g € F}|
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Let us switch to RKHS-s! J
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Kernel examples

_lla=bl3 _lla=bli2
kg(a,b) = e 202 | ke(a,b) = e 202
1 1
kc(a,b) = —— kla,b)= —
(2.6) = =T t(2.0) 1+ |la— b|
— blI?
kp(a.b) = ((a.b) + 0)° . ko(a,b) =1~ 12— bl

lla—b|2+6
1

la — b||3 + 62

3lla—b Valla—sl
kw3 (a; b) = (1 + \[”‘QGH2> o~ etz

V5la—bll, 5la— b3\ _ vt
(a,b)_(1+ 7 + 302 e T .

k,-(a, b) =
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View-1: continuous evaluation. )

o Let # C RY be a Hilbert space.
o Consider for fixed x € X the 0y : f € H — f(x) € R map.
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View-1: continuous evaluation. )

o Let # C RY be a Hilbert space.
o Consider for fixed x € X the 0y : f € H — f(x) € R map.

e The (Dirac) evaluation functional is linear:

ox(af + Bg) = (af + Bg)(x) = af (x) + Bg(x)
— a8 (F) + B6x(g) (Va,B ER, f,g € H).
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View-1: continuous evaluation. )

o Let # C RY be a Hilbert space.
o Consider for fixed x € X the 0y : f € H — f(x) € R map.

e The (Dirac) evaluation functional is linear:

ox(af + Bg) = (af + Bg)(x) = af (x) + Bg(x)
— a8 (F) + B6x(g) (Va,B ER, f,g € H).

@ Def.: H is called RKHS if d, is continuous Vx € X.
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Example for non-continuous 4,

H = L2[0,1] > f(x) = x":
Q f, — 0¢€ H since

1 1/2
lim |f, —Of, = lim (/ x2"dx> —m L g,
n—00 n—00 0 n—oo y/2n + 1
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Example for non-continuous 4,

H = L2[0,1] > f(x) = x":
Q f, — 0 € H since
1 1/2
lim ||, — O||, = lim (/ x2"dx> T S
n—00 n—00 0 n—o00 \/2n+1
Q but 51(f,7) =1-» (51(0) =0.

In L?: norm convergence 7 pointwise convergence. J
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View-1: convergence

In RKHS: convergence in norm = pointwise convergence! )

o Result: f, RN N f, ALY
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View-1: convergence

In RKHS: convergence in norm = pointwise convergence! )

o Result: f, RN N f, ALY
@ Proof: For any x € X,

() = F()] "2 16.(F) = 6(F)] P27 16.(F — )]

dx: bounded
< ol e = Fll -

<oo —0
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View-2: reproducing = elements, kernel trick. )

o Let H be a Hilbert space of X — R functions.

@ k: X xX — Ris called a reproducing kernel of # if for
Vx e X

@ k(-,x) € H ('generators’),
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View-2: reproducing = elements, kernel trick. J

o Let H be a Hilbert space of X — R functions.

@ k: X xX — Ris called a reproducing kernel of # if for
Vxe X, feH

@ k(-,x) € H ('generators’),
@ (f,k(-,x))y = f(x) (reproducing property).
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View-2: reproducing = elements, kernel trick. J

o Let H be a Hilbert space of X — R functions.

@ k: X xX — Ris called a reproducing kernel of # if for
Vxe X, feH
@ k(-,x) € H ('generators’),
@ (f,k(-,x))y = f(x) (reproducing property).
Specifically: Vx,y € X,

k(X7y) - <k ('7X) ) k(‘vy»H-
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View-2: reproducing = elements, kernel trick. J

o Let H be a Hilbert space of X — R functions.

@ k: X xX — Ris called a reproducing kernel of # if for
Vxe X, feH
@ k(-,x) € H ('generators’),
@ (f,k(-,x))y = f(x) (reproducing property).
Specifically: Vx,y € X,

k(X7y) - <k ('7X) ) k(‘,Y))H.

Uniqueness, existence? \
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Reproducing kernel: uniqueness

Reproducibility & norm definition = uniqueness. )

o Let ki, ko be rk.-s of H. Then for Vf € H,Vx e X

(Foka(x) — ka(ox)) % 2 5 ) — F(x) = 0.
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Reproducing kernel: uniqueness

Reproducibility & norm definition = uniqueness. )

o Let ki, ko be rk.-s of H. Then for Vf € H,Vx e X

Y4, lin, ki rk.
(F k() = kX)) R R0 — Fx) = 0,
@ Choosing f = ki (-, x) — ko(+, x), we get
lka(-x) = ka(-, )5, = 0. (Vx € X)

i.e., kl = k2.
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View-2 (r.k.) < view-1 (RKHS)

@ Result: H has a rk. (k) & H is a RKHS.
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View-2 (r.k.) < view-1 (RKHS)

@ Result: H has a rk. (k) & H is a RKHS.
e Proof (=):

|0x(F)]

IN

VGG X) [l

i.e. 0x : H — R is bounded (hence continuous).
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View-2 (r.k.) < view-1 (RKHS)

@ Result: H has a rk. (k) & H is a RKHS.
e Proof (=):

16 (F)] P2 | F )] | k(X)) gl <

VGG X) [l

i.e. 0x : H — R is bounded (hence continuous).
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View-2 (r.k.) < view-1 (RKHS)

@ Result: H has a rk. (k) & H is a RKHS.
e Proof (=):

G RO R R [

L k) (1l

i.e. 0x : H — R is bounded (hence continuous).
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View-2 (r.k.) < view-1 (RKHS)

@ Result: H has a rk. (k) & H is a RKHS.
e Proof (=):

G RO R R [

L k) (1l

i.e. 0x : H — R is bounded (hence continuous).

Convergence in RKHS = uniform convergence! (k: bounded). J

Zoltan Szabé Kernel, RKHS



View-2 (r.k.) < view-1 (RKHS): <, existence of r.k.

Proof («): Let 0 be continuous for all x € X.
© By the Riesz repr. theorem 3f; € H

Ix(f) = (f, fs, )u, VF € H.
—~~

=k(-,x)?
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View-2 (r.k.) < view-1 (RKHS): <, existence of r.k.

Proof («): Let 0 be continuous for all x € X.
© By the Riesz repr. theorem 3f; € H

Ix(f) = (f, fs, )u, VF € H.
—~~

=k(-,x)?
@ Let k(X',x) = f5,(x'), Vx,x' € X, then

k(- x) =f5, € H,
<f7 k('7X)>H: 6x(f) = f(X)

Thus, k is the reproducing kernel.
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View-3: positive definiteness. )

@ Let k: X x X — R be a symmetric function.
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View-3: positive definiteness. )

@ Let k: X x X — R be a symmetric function.

o G = [k(Xi,Xj)]?,j:f Gram matrix.
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View-3: positive definiteness. )

@ Let k: X x X — R be a symmetric function.

o G = [k(Xi,Xj)]?,j:f Gram matrix.

o k is called positive definite, if
a’Ga>0

forVvn>1,Va eR", V(xi,...,xp) € X".
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View-4: 'kernel as inner product’ view. J

o Def: A k: X x X — R function is called kernel, if
Q J¢: X — F, where F is a Hilbert space s.t.
e k(X7.y) = <¢(X)7 ¢(y)>}'

@ Intuition: k is inner product in F.
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Reproducing kernel = kernel = positive definiteness

o Every rk. is a kernel: ¢(x) := k(-,x), k(x,y) = (k(-,x), k(-,¥)) 5
@ Every kernel is positive definite:

aTGa = i i a,-ajk(x,-,Xj)

i=1 j=1
k def {-,) 7 lin
b7 <zam )
i=1 F
I ”]—‘* VD E

Zal¢ XI

20.
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@ Result-1 (proved):
RKHS (dx continuous) < reproducing kernel.
@ Result-2 (proved):

reproducing kernel = kernel = positive definite.

Zoltan Szabé Kernel, RKHS



@ Result-1 (proved):
RKHS (dx continuous) < reproducing kernel.
@ Result-2 (proved):

reproducing kernel = kernel = positive definite.

Moore-Aronszajn theorem (follows)

positive definite = reproducing kernel.
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@ Result-1 (proved):
RKHS (dx continuous) < reproducing kernel.
@ Result-2 (proved):

reproducing kernel = kernel = positive definite.

Moore-Aronszajn theorem (follows)

positive definite = reproducing kernel.

= the 4 notions are exactly the same!
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Moore-Aronszajn construction: high-level view

o Given: a k: X x X — R positive definite function.
@ We construct a pre-RKHS Hj:

Ho = {f:Zaik('aXi) rai €R X € X} 2 {k(-x) : x € X},

i=1
<f7g>7-[0 = k(Xay)v

where f = k(-,x), g = k(-,y) .

Zoltan Szabé Kernel, RKHS



Moore-Aronszajn construction: high-level view

o Given: a k: X x X — R positive definite function.
@ We construct a pre-RKHS Hj:

Ho = {fZZaik(in) rai €R X € X} 2 {k(-x) : x € X},

i=1

(F.8)u, = DY ciBik(xi, ),

i=1 j=1

where f = Z,r-':l aik(-,x;), g = erll Bik(-, ;).
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Moore-Aronszajn construction: high-level view

@ Ho will satisfy:
@ linear space (v'); (f, g)y,: well-defined & inner product.
@ 0,-s are continuous on Hg (Vx).
@ For any {f,} C Ho Cauchy seq.:

£,0 = f Mo

@ From Hg we construct H as:
@ 7 c RY, for which
@ 3 {f,} Ho-Cauchy seq. such that f, ALY
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Moore-Aronszajn construction: high-level view

o Let

<f7g>’H = <fn7gn>H0 ’ (1)

lim
n—o0
where 7, x, f, g X, g Ho-Cauchy sequences.
o H will satisfy:
o Ho CH: v [fa =1 € Hol
o H is a RKHS with r.k. k:
@ H: linear space (V'),
Q (f,g),;: well-defined & inner product.
@ #H is complete.

@ J.-s are continuous on H (Vx).

© 7 has r.k. k (used to define Ho).
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(-, '>’Ho: well-defined, k reproducing on H,

o Recall: if f =31 ajk(-,x), g = ijzl Bik(-, yj), then
n m
(F,8)1, = > > iBik(xi, y))-
i=1 j=1

® (-,*)4, is independent of the particular {a;} and {;}:

(F.8)y =i > Bik(xi,y) =Y cig(xi) { Zﬁjf()/j)] :
=1 j=1 i=1 j=1
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(-, '>’Ho: well-defined, k reproducing on H,

o Recall: if f =31 ajk(-,x), g = ijzl Bik(-, yj), then
n m
=> 3 aiBik(xi, y)-
i=1 j=1

® (-,*)4, is independent of the particular {a;} and {;}:

o = D i Y Bik(xi,y)) = aig(x) |= > Bif(v)| -
i=1  j=1 i=1 j=1
@ = reproducing property on H:

(f, Zakx,, ) = f(x).
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(-, )a,: inner product

@ The 'tricky’ property to check:
1l == (f gy, =0 = f=0.

o This holds by CBS (for the semi-inner product (-, )4, ): Vx

k rk. on H CBS
O] =0 k()| < Fllzgy VKX, x) = 0.
=0
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Pre-RKHS:

Jx is continuous on Ho (Vx): Let f, g € Ho, then

Ox def, k r.k., <‘7'>H0“n

10x(F) — 3x(8)| RUBSSY-SY(QEINT
CBS, k rk.

< VKCGX) I —glly, -
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Pre-RKHS:

fn : Ho-Cauchy M 0= f, Ho, .

o f,: Cauchy = bounded, i.e. [/fy][;, < A

o fp: Cauchy = n,m > ANy ||fy — finll4y, < €/(2A).

o Let le = Z;:l a;k(-,x;). n > dAN,: |fn(X,')| < m (i =1,.. .,r).
For n > max(Nq, No):

2
(17 l7,, <€
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Pre-RKHS:

£, Ho-Cauchy % 0 = £, T, 0.

o f,: Cauchy = bounded, i.e. [|fy][;, < A

o fp: Cauchy = n,m > 3Ny: |y — fillyy, < €/(2A).

o Let fy, = > i ; aik(-,xi). n>3INa: |f(x7)] < e (i=1,...,r).
For n > max(Nq, No):

1l = (Fns Fadgy < | (Fa = f/vp) |+ [ (s gy, |

< o = [l [ fall 2 +Z |aifa(xi)| <e.
<[e/(2A)]A=5 =1 <lail gy
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(+, ) well-defined

an = (fn, &)y, is convergent by Cauchyness in R:

lap — am|<e
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(+, ) well-defined

an = (fn, &n)yy, is convergent by Cauchyness in R:

—am| = |< ns &n) Ho — fm7gm>9-[o‘
= |< ns &n) Ho fm7gn>7-[o + <fmagn>7.[0 - <fmvgm>7-[0‘
= (o — fim, 8n)agy + (Fims 8n — Bm)a, |
< |< — fm, &n 7.[0|+‘ fm, 8n — gm)?—[o‘
<|

IgnIIHOIIf fnllagy + 1fmll 1 &0 — 8imll 3, <€
S—— N N

€ €
<A <33 <B <35

fa, gn: Cauchy = bounded, i.e. ||fy]l3,, < A, llgnll#, < B-
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(+, ) well-defined

The limit is independent of the Cauchy seq. chosen: let
o fy,f, X f gn, g x, g: Ho-Cauchy seq.-s,
® ap = <fnvgn>7-[0- ap = <fr;7gr/7>7-[o'

Zoltan Szabé Kernel, RKHS



(+, ) well-defined

The limit is independent of the Cauchy seq. chosen: let
o fn, f, , f; &n &) o, g: Ho-Cauchy seq.-s,

® ap = <fnvgn>7-[0- ap = <fr;7gr/7>7-[o'
@ 'Repeating’ the previous argument:

o =l < lgnllag 10 = Fallagg + |l N80 — 80l

bounded —0 bounded —0
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(+, ) well-defined

The limit is independent of the Cauchy seq. chosen: let
o fy,f, X, fi gn g x, g: Ho-Cauchy seq.-s,
® ap = <fnvgn>7-[0- ap = <fr;7gr/7>7-[o'
@ 'Repeating’ the previous argument:
/ ! ! /
loy — | < Hg"HHo an - f"HHo + anHHO Hg” - gnHHO :
bounded —0 bounded —0

00l D o fy— ] 50 £ £ %0 (g g)

n
similarly).
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(+,+): inner product
The "tricky’ bit:
(f,f)y, =0=f=0.

o Let f,, = f Ho-Cauchy, and (f, f),, = lim, ||£,]|%,, = 0. Then
£ = Tim (60| = lim 166 2 tim (8] [fall =0
FGI] = Tim ()] = Tim [5(F)] < fim_ 8. [[foll, = 0.

<00 0

(*): dx is continuous on Ho.
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Until now: (-,-),, is well-defined & inner product. J

Remains:
@ 0,-s are continuous on H (Vx).
@ H is complete.
© The reproducing kernel on H is k.

Zoltan Szabé Kernel, RKHS



0,-s are continuous on H: lemma

Hy is dense in H. )

o Sufficient to show: f, RN Ho-Cauchy = f, Aor
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0,-s are continuous on H: lemma

Hy is dense in H. )

o Sufficient to show: f, RN Ho-Cauchy = f, Aor
@ Proof: Fix e > 0,
o fp: Ho-Cauchy = IN <Vm, n: |[fy, — foll, <e

o Fix n* > N, then f,, — fr. 5 f — f,..
o By the definition of |||, :

[f — fo

)

2 . 2 2
= lim ||fym — fpr <e
M m—00 H m 1o

e, f, 5 f.
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Sufficient to show: &4 linear is continuous at f = 0. Fix x € X. J

@ We have seen: 4, is continuous on Hyg, i.e. In

18 = Olly, = lI8ll3, < 1= 10x(8) —0x(0)] = |dx(g) — O] = |g(x)| < ¢/2.
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Sufficient to show: &4 linear is continuous at f = 0. Fix x € X. J

@ We have seen: 4, is continuous on Hyg, i.e. In

1&g = Ollyy, = llgllz, <1 = 10x(g) —0x(0)] = |6x(g) =0 = [g(x)| < €/2.
o Take f € H: |f|l; <n/2. Since Ho C H dense, 3f, Ho-Cauchy, IN

f(x) — ()| < €/2 [< F, 25 f],

IF = fully <n/2 = f 25 =

Il = Il < [[Fllag + [IF = fvllgy < 0-
~— Y——

n
<% <

NS
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Sufficient to show: &4 linear is continuous at f = 0. Fix x € X. J

@ We have seen: 4, is continuous on Hyg, i.e. In
g = Olls = llgll3, <1 = 16x(g) —x(0)] = |6x(g) — O] = [g(x)| < €/2.
o Take f € H: |f|l; <n/2. Since Ho C H dense, 3f, Ho-Cauchy, IN
F(x) — fu(x)| < e/2 [< f, 25 1],

IF = fully <n/2 = f 25 =
Il = e < Il
~——

+ I = fnlly < -
—_——

n
<% <

NS

e With g = fy we get |fy(x)| <
[F()] < [F(x) = fn(x )\H v (x
—_——

<

%
)| <

<

N
I\)M
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H is complete

High-level idea: let {f,} C H be any Cauchy seq.,
e Jf(x) := lim, f,(x) since
o 0y cont. on H = {f,(x)} C R Cauchy seq. = convergent.
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H is complete

High-level idea: let {f,} C H be any Cauchy seq.,
e Jf(x) := lim, f,(x) since
o 0y cont. on H = {f,(x)} C R Cauchy seq. = convergent.
@ Question: is the point-wise limit f € #H?
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H is complete

High-level idea: let {f,} C H be any Cauchy seq.,
e Jf(x) := lim, f,(x) since
o 0y cont. on H = {f,(x)} C R Cauchy seq. = convergent.
@ Question: is the point-wise limit f € #H?

o ldea:
@ 7o dense in H = 3g, € Ho s.t. |lgn — fallyy < L.
@ We show
° g > f {gn} C Ho: Cauchy seq.} = f € H.
o f, 5 f.
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og,,v—x>f:

|gn(x) — f(x)|

IN

|gn(x) = fa(x)| + |fa(x) — F(x)]
= |0x(gn —fa)| + [fa(x) = F(x)].

—0; d0x cont. on H —0; f def.
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e {gn} C Ho is Cauchy sequence:

Igm — &nll3y = llgm — &nlly

lgm = fmllag + ([ = Fallay + 10 — &l

1 1
— 4=+ |[fn—fally -
m n ——

IN

IN

g def —0;fp:H-Cauchy
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Q.

. H
e Finally, f, = f: , . gndef.
— 0: shown at "Hg dense in H P

e e 1
If = fallyy < WIf = &nllgy + llgn = fallyy < [If = gnlly + -
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Final property: the reproducing kernel on H is k

o Let f € H, and f, RLNYS Ho-Cauchy sequence.

o Then,
@ | (b) . ()
(f k(- x))gy = n||_>r20<fn,k(~,x))H0 = n"_[go fo(x) = (x),
where

o (a): definition of (-,-),,,
o (b): k reproducing kernel on Hg,
o (¢): fn X f.
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We have shown that

@ RKHS (0 continuous) < reproducing kernel < kernel
(feature view) < positive definite.

o

@ Moore-Aronszajn theorem:

o RKHS construction for a k pos. def. function.
o ldea:

© pre-RKHS: Ho = span [{k(-, x) }xex],
@ H := pointwise limit of Ho-Cauchy sequences.

Zoltan Szabé Kernel, RKHS



Appendix
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Vector space axioms

(V, 4+, \-) is vector space if [Vvi,v2,v3,v € V, a,b € R]:

(vi+v2) 4+ v3 = vy + (v + v3), (associativity)
vi + v = vo + v, (commutativity)
d0:v+0=v,
d—v:v+(—v)=0,
a(bv) = (ab)v,
lv =,
a(vi + v2) = avy + avy,
(a+ b)v = av + bv.
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‘H is a vector space

H C RY = Needed:
O f e = M\ e IHf} C Ho-Cauchy, f, 25 f.

{\fo} € Ho (< Ho: vector space), Cauchy,
(M) (x) 25 (M) (x).
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‘H is a vector space

H C RY = Needed:

@ f.geH=f+geH: 3} {g.} C Ho-Cauchy, f, =5 f, gn 25 g

{fn+ gn} C Ho (<= Ho: vector space), Cauchy,
(Fa + 8)(x) = (F + 8)(x).
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(-, )3, inner product

Needed: for Vf = Zia,-k(-,x,) g =>_;Bik(-,yj) € Ho
O (f.8)1, = (& F)Ho

(&) = zza,@ X ) ZZ@ak(yJ,x, (& F)ro
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(-, )3, inner product

Needed: for VA e R, f =) . aik(-, xi), g = Zj Bik(-, y;) € Ho

2] <)‘f>g>7'lo = )‘<f»g>7-l0:
(M 8)o = Y (M) Bik(xi, ) = A Y aiBik(xi, ) = MF, &)o-

ij ij
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(-, )3, inner product

Needed: for VA e R, f =Y. ajk(,xi), g = Z Bik(-,y;) € Ho

Q (hA+ 0,81 = (f,8)1 + (. 8)Ho [h <> &), X!, fo 5 X”]

l.h.s = Za,ﬂjk(x,-,yj Za Bik(xi, y;) + Zoz xi,yj) =rhs,
ij
where fi + f < o}, o, x], x!'.
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(-, )3, inner product

Needed: for VA e R, f =) . aik(-, xi), g = Zj Bik(-, y;) € Ho

Q f=0=(f,flu, =0:
f=0xk(-,x)=(f,f)u, =0x0x k(x,x) =0.
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(-, )% semi-inner product

Needed: for Vf,fi,h,g € H
o <f)g>'H = <g7 f>7—l:

<fa g>'H = ||m<fn7 gn>’HOHO::‘/Iim
n n

(&n; fn>Ho = (g, f)n.
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(-, )% semi-inner product

Needed: for Vf, fi,h,g € H,A€R

2] <)‘f7g>'H = )‘<f7g>’H:

. Ho:v
<)\f7g>'H = ||rr’n<)\fnagn>7'lo 0:

lirr1n )‘<fmgn>%o = )\Ii,r;n<fn7gn>7'lo = >‘<f’g>H'
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(-, )% semi-inner product

Needed: for Vf, fi,h,g € H,A€R

Q (A+h g)n="_hgn+(hagn
. W
<fl + f27g>’H = |',r7n<f1,n + f—2,nag>’HoH0: |',r7n[<f1,nag>7-lo —+ <f—2,nag>’Ho]
= lim(f1,n, 8)o + lim{fo.n, &)1o = (1, &)1 + (P2 &) -
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(+,-)3: semi-inner product

Needed: for Vf, fi,h,g € H,A€R

Q F=0=(f,flp =0: Let f, =0

(F, F)z = lim(0, 0)3, %" lim 0 = 0.

n
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