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Motivation:

o Objective functions: from dependency measures.
o Testing.

Kernel, RKHS.

Kernel Canonical Correlation Analysis.

Mean embedding:

o Characteristic property,
o Universality.

Maximum mean discrepancy.

Cross-covariance operator, HSIC.

Hypothesis testing.
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Dependency Measures as Objective Functions
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Outlier-robust image registration

[Kybic, 2004, Neemuchwala et al., 2007]

Given two images:
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Goal: find the transformation which takes the right one to the left.
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Outlier-robust image registration: equations

@ Reference image: Yyef,
@ test image: Viest,

@ possible transformations: ©.

Objective:

J(a) = I(YrefaYtest(o)) d 2’163@)(,

similarity

In the example: [=KCCA.
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Independent Subspace Analysis [Cardoso, 1998]

Cocktail party problem:
e independent groups of people / music bands,

@ observation = mixed sources.
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ISA equations

Observation:
x; = Asy, s=[sl;...;sM].

Goal: § from {x3,...,x7}. Assumptions:
o independent groups: / (s!,...,sM) =0,
@ s-s: non-Gaussian,

@ A: invertible.
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ISA solution

Find W which makes the estimated components independent:
y =Wx= [yl;...;yM]7

J(W) :l(yl,...,yM> —>n\1Ailn.
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Distribution regression

[Péczos et al., 2013, Szabd et al., 2016]. Sustainability

@ Goal: aerosol prediction = air pollution — climate.

aRipa

@ Prediction using labelled bags:
o bag := multi-spectral satellite measurements over an area,

o label := local aerosol value.
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Objects in the bags

L, time series b
WMAMM A~

@ Examples:
o time-series modelling: user = set of time-series,
e computer vision: image = collection of patch vectors,
o NLP: corpus = bag of documents,
o network analysis: group of people = bag of friendship graphs, ...
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Objects in the bags

L, time series b
WMAMM A~

@ Examples:

o time-series modelling: user = set of time-series,

e computer vision: image = collection of patch vectors,

o NLP: corpus = bag of documents,

o network analysis: group of people = bag of friendship graphs, ...

e Wider context (statistics): point estimation tasks.
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Regression on

o Given:
o labelled bags: 2 = {(P;,y:)}
o test bag: P.

14

oy P bag from P;, N := “S’|
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Regression on

o Given:
o labelled bags: 2 = {(P,,y,)} , P;: bag from P;, N := |P;|.
e test bag: P.

@ Estimator:

£ ar%T{inzZ, 1[ y,] +A[FIZ
€

featu re of P,
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Regression on

o Given:
o labelled bags: 2 = {(P,,y,)} , P;: bag from P;, N := |P;].
e test bag: P.

@ Estimator:

2
2 —agming 3 [1lep) ] 010

@ Prediction:

y(P)=g"(G+ox)?
g= K(NpaNP)] G = [K(Mﬁ,aﬂﬁj)]d = [yl
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Regression on

o Given:
o labelled bags: 2 = {(P,,y,)} , P;: bag from P;, N := |P;].
e test bag: P.

e Estimator:

2
2 —agming 3 [1lep) ] 010

@ Prediction:

y(P)=g"(G+ox)?
g= K(up,up)] G = [K(Mﬁ,aﬂﬁj)]d = [yl

Challenge

Inner product of distributions: K(up.,u,s) =7
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Feature selection

e Goal: find

o the feature subset (# of rooms, criminal rate, local taxes)
e most relevant for house price prediction (y).
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Feature selection: equations

o Features: x!,...,xF. Subset: S {1,...,F}
e MaxRelevance - MinRedundancy principle [Peng et al., 2005]:

1 ;
= = (X, M1 (xx) — :
J(S) |S| i (X /y ‘5‘2 ijes X X Sgr{q?i’:}
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Testing
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Motivation: detecting differences in AM signals

@ Amplitude modulation:
e simple technique to transmit voice over radio.
e in the example: 2 songs.

e Fragments from song; ~ P, song, ~ P,.
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Motivation: detecting differences in AM signals

@ Amplitude modulation:
e simple technique to transmit voice over radio.
e in the example: 2 songs.

e Fragments from song; ~ P, song, ~ P,.

ion: =P.?
Question: P, =P, 7 J




Motivation:

domain - 2-sample testing

@ How do we compare distributions?

@ Given: 2 sets of text fragments (fisheries, agriculture).

x1: Now disturbing reports out of
Newfoundland show that the fragile snow
crab industry is in serious decline. First the
west coast salmon, the east coast salmon
and the cod, and now the snow crabs off
Newfoundland.

x2: To my pleasant surprise he responded
that he had personally visited those
wharves and that he had already
announced money to fix them. What
wharves did the minister visit in my riding
and how much additional funding is he
going to provide for Delaps Cove,
Hampton, Port Lorne, ...

y1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

y2: On the grain transportation system we
have had the Estey report and the Kroeger
report. We could go on and on. Recently
programs have been announced over and
over by the government such as money for
the disaster in agriculture on the prairies
and across Canada.
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Motivation:

domain - 2-sample testing

@ How do we compare distributions?

@ Given: 2 sets of text fragments (fisheries, agriculture).

x1: Now disturbing reports out of
Newfoundland show that the fragile snow
crab industry is in serious decline. First the
west coast salmon, the east coast salmon
and the cod, and now the snow crabs off
Newfoundland.

x2: To my pleasant surprise he responded
that he had personally visited those
wharves and that he had already
announced money to fix them. What
wharves did the minister visit in my riding
and how much additional funding is he
going to provide for Delaps Cove,
Hampton, Port Lorne, ...

y1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

y2: On the grain transportation system we
have had the Estey report and the Kroeger
report. We could go on and on. Recently
programs have been announced over and
over by the government such as money for
the disaster in agriculture on the prairies
and across Canada.

Do {x;} and {y;} come from the same distribution, i.e. P, =P,? |
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Motivation:

domain - independence testing

@ How do we detect dependency? (paired samples)

x1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

x2: No doubt there is great pressure on
provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal
government to the provinces. In fact, we
have increased federal investments for early
childhood development.

y1: Honorables sénateurs, ma question
s'adresse au leader du gouvernement au
Sénat et concerne |'aide financiére qu'on a
annoncée pour les agriculteurs. La plupart
des agriculteurs n'ont encore rien reu de
cet argent.

y2: Il est évident que les ordres de
gouvernements provinciaux et municipaux
subissent de fortes pressions en ce qui
concerne les services de garde, mais le
gouvernement n’'a pas réduit le
financement qu'il verse aux provinces pour
les services de garde. Au contraire, nous
avons augmenté le financement fédéral
pour le développement des jeunes enfants.
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Motivation:

domain - independence testing

@ How do we detect dependency? (paired samples)

x1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

x2: No doubt there is great pressure on
provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal
government to the provinces. In fact, we
have increased federal investments for early
childhood development.

y1: Honorables sénateurs, ma question
s'adresse au leader du gouvernement au
Sénat et concerne |'aide financiére qu'on a
annoncée pour les agriculteurs. La plupart
des agriculteurs n'ont encore rien reu de
cet argent.

y2: Il est évident que les ordres de
gouvernements provinciaux et municipaux
subissent de fortes pressions en ce qui
concerne les services de garde, mais le
gouvernement n’'a pas réduit le
financement qu'il verse aux provinces pour
les services de garde. Au contraire, nous
avons augmenté le financement fédéral
pour le développement des jeunes enfants.

Are the French paragraphs translations of the English ones, or have
nothing to do with it, i.e. Pxy = PxPy? J
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We will use to tackle these problems

They exist essentially on any data type:

@ images, texts, graphs, time series, dynamical systems, ...
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Note: ITE toolbox

@ Estimators for

o dependency measures (3 KCCA),

o distances on distributions (3 MMD).

o independence of random variables (3 HSIC).
o Several demos. Link:

o Matlab: https://bitbucket.org/szzoli/ite/
e Python: https://bitbucket.org/szzoli/ite-in-python/
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https://bitbucket.org/szzoli/ite/
https://bitbucket.org/szzoli/ite-in-python/

Kernel Canonical Correlation Analysis

(KCCA)
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Independence measures

e Given: random variable (x,y) € X x Y, (x,y) ~ Pyy.

@ Goal: measure the dependence of x and y.
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Independence measures

e Given: random variable (x,y) € X x Y, (x,y) ~ Py,
@ Goal: measure the dependence of x and y.
@ Desiderata for a Q(Pyy) independence measure [Rényi, 1959]:
1. Q(Pyy) is well-defined,
Q(Px ) € [0,1],
Q(Pyy) =0iff. x L y.
Q(Pyy) =1iff. y = f(x) or x = g(y).
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Independence measures

@ He showed:

Q(ny) = sup corr(f(x),g(y)),
f,g: measurable
satisfies 1-4.
@ Too ambitious:

e computationally intractable.
e many measurable functions.
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Independence measures: measurable — continuous

o Cp(X)={f: X metric > R, bounded continuous} would
also work.

o Still too large!
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Independence measures: measurable — continuous

o Cp(X)={f: X metric > R, bounded continuous} would
also work.

o Still too large!

o Idea:

o certain RKHS-s are dense in Cp(X).
e computionally tractable.
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KCCA: definition

@ Given: k: XA xX >R, /:Yx)Y —R.
@ Associated:

o feature maps (x) = k(-,x), U(y) = £(y),
e RKHS-s g‘fk, J’C(
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KCCA: definition

@ Given: k: XA xX >R, /:Yx)Y —R.
@ Associated:

o feature maps p(x) = k(-,x), ¥(y) = £(-,y),
e RKHS-s g‘fk, J’C(

o KCCA measure of (x,y)e X x Y

preca(x, y; Hy, Hy) = sup  corr(f(x),g(y)),
feﬂ-fk,gef}{g

covyy (f(x),g(y))
corr(f(x), = = .
(f(x),&(y)) \/vary f(x) var, g(y)
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KCCA: notes

Optimization domain: H, x H,; > (f, g).
By reproducing property: we will get a finite-D task.
k,? linear: standard CCA.

In practice: we have {(x,,yn)}

N

o1 samples from (x, y).
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KCCA: empirical estimate

[y
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KCCA: empirical estimate

COVxy (f(x)
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KCCA: empirical estimate

1 N 1 N 1 N
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KCCA: empirical estimate

COVxy (f(x),8(y))
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KCCA: empirical estimate
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KCCA: empirical estimate

o f: appears only as (f, 3(xn))q, [similarly: g in <g,1/~)(y,,)>m]. =
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KCCA: empirical estimate

o f: appears only as (f, 3(xn))q, [similarly: g in <g,1/~)(y,,)>m]. =
@ V component of f L '

span ({gp(x,, W 1) = {Z cnP(xn), € = [cn] € R’V}

has no affect in the objective.
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KCCA: empirical estimate

o f: appears only as (f, 3(xn))q, [similarly: g in <g,1/~)(y,,)>m]. =
@ V component of f L '

N
span ({30} r) = {2 cnd(xn) ¢ = [cn] € RN}

has no affect in the objective.

Key idea

Enough to consider f = 'V . ¢;3(x), g = SV, dith(vi).
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KCCA: empirical estimate

Using that f = 3V | i@(xi), & = Sy did(vi):

(f, Z (@(xi), )>3{k

i=1
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KCCA: empirical estimate

Using that f = 3V | i@(xi), & = Sy did(vi):
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KCCA: empirical estimate

Using that f = 3V | i@(xi), & = Sy did(vi):
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KCCA: empirical estimate

Using that f = vazl cip(xi), g = ZIN:I d,-v,Z(y,'):

with the centered kernels (k, 7) and Gram matrices (G, G,).

All the objective terms can be expressed by ¢, d, Gy, Gy.
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KCCA: empirical estimate

o (Fx),8())= i (7, Bn)) 3, (8 D),
@ () = © il (B0 ) = & 3% (e B
and we have : .
(F E0ao, = (€6 (g 00, = (@76,
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KCCA: empirical estimate

N
G (), 8))= o D (F+ 30, {8 )
n=1
1Y 1 & .
B () = 1 D) (F 60, Aely) = 1 D & )2,
n=1 n=1
and we have
<f,¢(Xn)>g{k = (CTéx)na <g7qz}()/n)>g{£ = (chy)n-
Thus,
oy (F(x),8(1)= 16T 6:Gyd
it (x) = %CT(CX)%,V?LTyg(y) _ %dT(Gy)zd.
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KCCA: finite-D form

Empirical estimate of KCCA:

prcea P (x, y; Hi, Hy) = sup - = :
ceRN deRN \/CT(GX)2C\/dT(Gy)2d
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KCCA: finite-D form

Empirical estimate of KCCA:

prcea P (x, y; Hi, Hy) = sup - = :
ceRN deRN \/CT(GX)2C\/dT(Gy)2d

In practice (k > 0):

p/KC?A(va) = pK/’CC\A(Xay;g{kv:H:va’)

= sup :
ceRN deRV \/CT(GX + H'N)2C\/dT(Gy + /‘GlN)zd
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KCCA: finite-D form

Empirical estimate of KCCA:

prcea P (x, y; Hi, Hy) = sup - = :
ceRN deRN \/CT(GX)2C\/dT(Gy)2d

In practice (k > 0):

p/KéEA(va) = pK/’éC\A(Xay;iH:ka{fvﬁ)

= sup :
ceRN deRV \/CT(GX + H'N)2C\/dT(Gy + /‘GlN)zd

How do we solve it? l
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KCCA: solution

Stationary points of pkccal(x, y):

o () o ()
oc ’ od ’

which simplifies to

Eeq. TG AG rrnle =& (d76,6:)(Gy +rln)d
B cT(Gx + kly)2c G ‘
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KCCA: solution

Stationary points of pkccal(x, y):

o () o ()
oc ’ od ’

which simplifies to

Eeq. TG AG rrnle =& (d76,6:)(Gy +rln)d
B cT (G, + rly)2c d7(G, + kly)2d

Normalization:
@ (c,d): solution = (ac, bd): solution a,be R, # 0.

@ denominators = 1.
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KCCA: final task

Find the maximal eigenvalue, A\ := cTéxéyd, of the generalized
eigenvalue problem:

[éyoéx éxoéy] [d] = c'6.G,d [(éx +0MN)2 6, +0mN>2} [d] ‘
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KCCA as an independence measure

If x Ly, then pkcea(x,y; Hi, He, k) = 0. Opposite direction:
@ For 'rich” Hy, H,
[Bach and Jordan, 2002, Gretton et al., 2005b].
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KCCA as an independence measure

If x Ly, then pkcea(x,y; Hi, He, k) = 0. Opposite direction:
@ For 'rich” Hy, H,
[Bach and Jordan, 2002, Gretton et al., 2005b].

@ Enough: universal kernel on a compact metric domain (later),
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KCCA as an independence measure

If x Ly, then pkcea(x,y; Hi, He, k) = 0. Opposite direction:
@ For 'rich” Hy, H,
[Bach and Jordan, 2002, Gretton et al., 2005b].

@ Enough: universal kernel on a compact metric domain (later),

@ Example: Gaussian, Laplacian kernel.
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KCCA: regularization

In fact, we estimated

prccA(X, vy Hi, Hy, k) = sup  corr(f(x),g(y); k),
fe%k,geﬂfg

covxy (f(x),8(y))
corr(F(x), g(y); ) = -
yvane F() + < | Fl o vary g(0) + gl
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KCCA: regularization

In fact, we estimated

prccA(X, vy Hi, Hy, k) = sup  corr(f(x),g(y); k),
fe%k,geﬂfg

covxy (f(x),8(y))
corr(F(x), g(y); ) = -
yvane F() + < | Fl o vary g(0) + gl

@ Regularization is important: A € {0, +1} with x = 0, data
independently [Gretton et al., 2005b],
[Bach and Jordan, 2002].
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KCCA: regularization

In fact, we estimated

prccA(X, vy Hi, Hy, k) = sup  corr(f(x),g(y); k),
fe%k,geﬂfg

covxy (f(x),8(y))
corr(F(x), g(y); ) = -
yvane F() + < | Fl o vary g(0) + gl

@ For consistent KCCA estimate:

o ry — 0 [Leurgans et al., 1993](spline-RKHS),
[Fukumizu et al., 2007] (general RKHS).
e analysis: covariance operators (later).
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KCCA: symmetry, other form
For a

{Gyoéx cxoéy] [d] - cTéxéyd[(GX +0MN)2 (Gy +OH|N>2] M

([e,d], \) solution = ([—c;d], —\): solution. Thus, eigenvalues:

{>\17 7)‘1’ LR >\N7 7>‘N}
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KCCA: symmetry, other form

For a

R LSt

([e,d], \) solution = ([—c;d], —\): solution. Thus, eigenvalues:
{>\17 7)‘1’ LRI >\N7 7)‘N}

Adding the r.h.s. to both sides:

[(Cxétglmz <éyciifm2} H:(l”) {(cﬁom)z <cx+0mN>2] Lﬂ

with eigenvalues {1 + A1,1— A1,..., 1+ Ay, 1 — Ay}
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KCCA: M-variables

2-variables [(x,y)]:

[(éxétglfvf (Gyéﬂi%N)z] {c] =1+ {(CX +0K;IN)2 (Gx +0/‘€|N)2] LCJ
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2-variables [(x, )]
[(éxé‘:glN)2 (Gycji{N)Z] [;] C 1N {(Gx + ki) 0 ] {c}

0 (Gx + kly)?| |d
For M-variables (pairwise dependence):

(Gl:l- iﬁl/v)z B GG, e @1@/\/] c1
G,G; (GQ + /ﬁ?l/\/)2 .. G>Gy Co
éMél éMéz e (éM + /€|N)2 Cv

(él + I€|N)2 _ 0 0 C1

0 (Gz + KJN)2 0 C2

Y . .
0 0

(GM + /€|N)2 Cnm
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Centered Gram matrix

Gx = HG,H with H = Iy — E¥; H Ey e RVXV,

(Gx)u = /;(X,',XJ') = <95(Xi)7<75(xj)>g{k

Zoltan Szabé Structured Data: Dependency, Testing



Centered Gram matrix

Gx = HG,H with H = Iy — E¥; H Ey e RVXV,
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Centered Gram matrix

Gx = HG,H with H = Iy — E¥; H Ey e RVXV,

(Gx)ij = k(xi, %) =

A
—~
X
Ay
—~
X
N~—
~—
S

1 N 1 N
= <90(X/) - N Z SO(Xn)7 SO(XJ) - N Z QO(Xm)>g_fk
n=1 m=1
1 1 1
= (GX)IJ - N Z (Gx)lm - N Z (Gx)n/ > Z (Gx)nm
m=1 n=1 n,m=1
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Centered Gram matrix

Gx = HG,H with H = Iy — E¥; H Ey e RVXV,
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Centered Gram matrix

Gx = HG,H with H = Iy — E¥; H Ey e RVXV,

(Gx)j = k(xi, %) =

A
—~
X
Ay
—~
X
N~—
~—
S

1Y 1

= <90(X/) - N Z SO(Xn)790(XJ) - N Z QO(Xm)>g.fk
n=1 m=1

1 1 1
= (GX)IJ Y Z (Gx)lm - Z (Gx)n/ 2 2 (Gx)nm

N m=1 N n=1 n,m=1

Epn En En En

= <GX A A NGXN)U’
= (HGXH>ij7

H: symmetric (H = HT), idempotent (H? = H).



KCCA: finished.
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Mean embedding
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Mean embedding: pioneers

@ Nonparametric probability distribution representation.

o Late 70s-; survey in [Berlinet and Thomas-Agnan, 2004].
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Mean embedding: pioneers

@ Nonparametric probability distribution representation.
o Late 70s-; survey in [Berlinet and Thomas-Agnan, 2004].

@ Pioneers in ML: Bharath Sriperumbudur, Arthur Gretton,
Kenji Fukumizu, Alex Smola, Bernhard Scholkopf, Le Song.
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Mean embedding: further pointers

@ Names+: Ingo Steinwart, Francis Bach, Dino Sejdinovic,
Wittawat Jitkrittum, Krikamol Maundet, Kacper P.
Chwialkowski, llya Tolstikhin, Carl Johann Simon-Gabriel,
David Lopez-Paz, Dougal Sutherland, Aaditya Ramdas,
Karsten Borgwardt, Me;)
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Mean embedding: further pointers

@ Names+: Ingo Steinwart, Francis Bach, Dino Sejdinovic,
Wittawat Jitkrittum, Krikamol Maundet, Kacper P.
Chwialkowski, llya Tolstikhin, Carl Johann Simon-Gabriel,
David Lopez-Paz, Dougal Sutherland, Aaditya Ramdas,
Karsten Borgwardt, Me;)

o Wiki: https://en.wikipedia.org/wiki/Kernel _
embedding_of_distributions.
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https://en.wikipedia.org/wiki/Kernel_embedding_of_distributions
https://en.wikipedia.org/wiki/Kernel_embedding_of_distributions

Mean embedding: further pointers

@ Names+: Ingo Steinwart, Francis Bach, Dino Sejdinovic,
Wittawat Jitkrittum, Krikamol Maundet, Kacper P.
Chwialkowski, llya Tolstikhin, Carl Johann Simon-Gabriel,
David Lopez-Paz, Dougal Sutherland, Aaditya Ramdas,
Karsten Borgwardt, Me;)

o Wiki: https://en.wikipedia.org/wiki/Kernel _
embedding_of_distributions.

@ Recent review: [Muandet et al., 2017].
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Towards representations of distributions:

@ Given: 2 Gaussians with different means.

@ Solution: t-test.

Two Gaussian variables: different means

0.4

0.3r
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Towards representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.
@ ldea: look at the 2nd-order features of RVs.

Two Gaussian variables: different variances

0.4

0.3}

0.1
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Towards representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.
@ ldea: look at the 2nd-order features of RVs.

o o, = x> = difference in EX2.

Two Gaussian variables: different variances Pdi-s of X2
0.4 " 1.4 .
03 Ui H H
o 0.8 : :
0.2 8 . .
= 0.6/ : :
0.4 E :
0.1t ' H
0.2t h H
G -1 : 0 1
-6 -4 -2 0 2 4 6 10 10 10 10
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Towards representations of distributions:

@ Setup: a Gaussian and a Laplacian distribution.
@ Challenge: their means and variances are the same.
@ Idea: look at higher-order features.

Gaussian & Laplacian variables
0.7

0.5p

0.4}

pdf

0.3}
0.2r

0.1f

Let us consider feature representations! |
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From to

@ Recall:
o ¢(x) € Hy: feature of x € X.
o Kernel: k(x,x") = (p(x), o(x)) g, -
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From to

@ Recall:
o ¢(x) € Hy: feature of x € X.
o Kernel: k(x,x") = (p(x), o(x)) g, -
@ Mean embedding:
o Feature of P: up := E,p[p(x)] € Hg.
o Inner product: (ip, o) g, = Ex~px~ok(x,x").
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From to

@ Recall:
o ¢(x) € Hy: feature of x € X.
o Kernel: k(x,x") = (p(x), o(x)) g, -
@ Mean embedding:
o Feature of P: up := E,p[p(x)] € Hg.
o Inner product: (ip, o) g, = Ex~px~ok(x,x").

o up: well-defined for all distributions (bounded k).
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Bochner integral: quick summary [Diestel and Uhl, 1977,

Dinculeanu, 2000, Steinwart and Christmann, 2008|

o (X, A, u): measure space,
o f:(X,A) — B(anach space)-valued measurable function.
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Bochner integral: quick summary [Diestel and Uhl, 1977,

Dinculeanu, 2000, Steinwart and Christmann, 2008|

o Given:

o (X, A, u): measure space,
o f:(X,A) — B(anach space)-valued measurable function.

e For f =", cixa, (Ai € A, ¢ € B) measurable step functions

J fdu = 2 cin(Ap) € B.
X

i=1
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Bochner integral: quick summary [Diestel and Uhl, 1977,

Dinculeanu, 2000, Steinwart and Christmann, 2008|

o Given:

o (X, A, u): measure space,
o f:(X,A) — B(anach space)-valued measurable function.

e For f =", cixa, (Ai € A, ¢ € B) measurable step functions
n
J fdu = 2 cin(Ap) € B.
X i=1

e f measurable function is Bochner u-integrable if

o 3 (f,) measurable step functions: lim,_q §, [f — f5] g dp = 0.
o In this case lim,_o §, frdpu exists, =: { . fdu.
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Bochner integral: properties

o f: X — B is Bochner integrable < .. |[f]|gdu < .
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Bochner integral: properties

o f: X — B is Bochner integrable < .. |[f]|gdu < .
o In this case |§, fdu|,z < §4|fgdu. ('Jensen inequality’)
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Bochner integral: properties

o f: X — B is Bochner integrable < .. |[f]|gdu < .

o In this case |§, fdu|,z < §4|fgdu. ('Jensen inequality’)
o If

e S: B — B;: bounded linear operator,
e f: X — B: Bochner integrable, then

Sof : X — By is Bochner integrable and

s < L fdu> - L Sfdyu.
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Bochner integral: properties

o f: X — B is Bochner integrable < .. |[f]|gdu < .

o In this case |§, fdu|,z < §4|fgdu. ('Jensen inequality’)
o If

e S: B — B;: bounded linear operator,
e f: X — B: Bochner integrable, then

Sof : X — By is Bochner integrable and

s ( L fdu> - L Sfdyu.

|§ fdp| < §|f|dp and ¢ § fdu = §cfdp generalize nicely.
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Mean embedding: 5,

Given:
e (X, A) measurable space,
@ k: X xX — R kernel.

Theorem

pp = § 3 k(-, x)dP(x) exists, up € Hy, and
Pf = Byupf(x) — (F, p)gq, VF € Hy

under mild conditions:

o E, .py/k(x,x) < o0, and

e y — k(y,x) is measurable for any x € X.
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Existence of up: proof

o I, k(-,x)dP(x) (& € Hy) <

o > L k(%) e, AP(x) = Exepr/K(x, ).
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Existence of up: proof

o I, k(-,x)dP(x) (& € Hy) <

o > L k(%) e, AP(x) = Exepr/K(x, ).

o E  pf(x) =Exep (f, k('ax)>ﬂ{k = <f7EX~Pk('7X)>fHk =
<f7/1’]?>f}(k by
e reproducing property of k,
o g€ Hy— (f,g) € R: bounded linear (S « §).
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Existence of up: proof

o I, k(-,x)dP(x) (& € Hy) <

o > L k(%) e, AP(x) = Exepr/K(x, ).

o E  pf(x) =Exep (f, k('ax)>ﬂ{k = <f7EX~Pk('7X)>fHk =
<f7/1’]?>f}(k by
e reproducing property of k,
o g€ Hy— (f,g) € R: bounded linear (S « §).

@ Measurability of x € X — k(-,x) € Hy: < y — k(y,x) is
measurable Vx [Berlinet and Thomas-Agnan, 2004].
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Mean embedding: specific cases

For

o k(x,x') = e**): up = moment generating function of PP.
o k(x,y) = e/™¥): up = characteristic function of P.

o Only formally: k(x,y) = k(y,x)* fails.
o P =0y, up = k(-,x).
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Mean embedding: conditions

Condition:
@ y — k(y,x) is measurable Vx: super-mild.

o B, py/k(x,x) < oo: holds for bounded kernels, i.e. when

sup k(x,x") < Bx < 0.
x,x'eX
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Mean embedding: empirical estimate

@ up: typically analytically not available.
iid.

e Empirical estimate: from {x;}7_; "~ P

1
fp = — .Zlk(.’xi) = up, € Hy,
=

where P, = %27:1 Jx, is the empirical measure.
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Empirical mean embedding: finite-sample guarantees

Theorem ([Altun and Smola, 2006, Szabé et al., 2015])

For a k bounded kernel [sup, ,cx k(x,y) < By], with probability
=19

[1 + 4/log (%)] v/2By
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Finite-sample guarantee: proof idea

® g(x1,...,Xn) = [pp — pp, |4, bounded difference property =
@ McDiarmid inequality: concentration around Eg.

e Eg < expected kernel values (By appears).
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Finite-sample guarantee: note

Alternative of

P [pp — pe,lge, < /n >1-

by Bernstein inequality [Caponnetto and De Vito, 2007]:

P (I = ko, < 2V | 3 + g (2)]) 214
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MMD: preview

@ Mean embeddings define a semi-metric (MMD):

de(P,Q) := [up — nalls, -
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MMD: preview

@ Mean embeddings define a semi-metric (MMD):

de(P,Q) := [up — nalls, -

@ dy is metric & P — up is injective.
o Characteristic kernel [Fukumizu et al., 2004, Fukumizu et al., 2008]:

e characteristic function analogy.
o L-order polynomial kernel: encodes moments < L. (not)
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Mean embedding: universality (k)
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Universal kernel

Let C(X) = {f : X — R continuous}.

Definition

Assume:
@ X': compact metric space.
@ k: continuous kernel on X.

k is called (c)-universal [Steinwart, 2001] if 3 is dense in
(C(X), ]l - lloo)-
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Universal kernel

Hyx < C(X)? Non-compact spaces? J

Notes:
@ k: continuous, X: compact = k: bounded.

@ k: continuous, bounded = 3, = C(X)
[Steinwart and Christmann, 2008].
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Universal kernel

Hyx < C(X)? Non-compact spaces? J

Notes:

@ Extensions of c-universality to non-compact spaces:

e cp-universality, cc-universality,
... [Carmeli et al., 2010, Sriperumbudur et al., 2010a,
Simon-Gabriel and Schdlkopf, 2016].

Zoltan Szabé Structured Data: Dependency, Testing



k: universal = k: characteristic

> 3 different proof options:

@ [Micchelli et al., 2006]: k is c-universal < 1 is injective on
Mp(X), the set of finite signed Borel measures on X'.
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k: universal = k: characteristic

> 3 different proof options:

@ [Micchelli et al., 2006]: k is c-universal < 1 is injective on
Mp(X), the set of finite signed Borel measures on X'.

@ Direct reasoning [Gretton et al., 2012].
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k: universal = k: characteristic

> 3 different proof options:

@ [Micchelli et al., 2006]: k is c-universal < 1 is injective on
Mp(X), the set of finite signed Borel measures on X'.

@ Direct reasoning [Gretton et al., 2012].

@ Denseness of H + R in L?(P)
[Fukumizu et al., 2008, Fukumizu et al., 2009a].
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k: universal = k: characteristic

> 3 different proof options:

@ [Micchelli et al., 2006]: k is c-universal < 1 is injective on
Mp(X), the set of finite signed Borel measures on X'.

@ Direct reasoning [Gretton et al., 2012].

@ Denseness of H + R in L?(P)
[Fukumizu et al., 2008, Fukumizu et al., 2009a].

Let us construct some examples first! J
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Properties of universal kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

If k is universal, then

@ k(x,x) >0 forall xe X.
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Properties of universal kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

If k is universal, then
@ k(x,x) >0 forall xe X.

@ Every restriction of k to an X’ € X’ compact set is universal.
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Properties of universal kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

If k is universal, then

@ k(x,x) >0 forall xe X.

@ Every restriction of k to an X’ € X’ compact set is universal
e ¢(x) = k(-,x) is injective, i.e.

pe(x,y) = [¢(x) = oy,

is a metric.
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Properties of universal kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

If k is universal, then
@ k(x,x) >0 forall xe X.
@ Every restriction of k to an X’ € X’ compact set is universal.

e ¢(x) = k(-,x) is injective, i.e.

pr(x,y) = [0(x) — d(¥)lls,
is a metric.
@ The normalized kernel

T L k(va)
Koor) = e k)

is universal.
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Universal Taylor kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

@ Foran C*sf:(—r,r) >R
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Universal Taylor kernels

[Steinwart, 2001, Steinwart and Christmann, 2008]

@ Foran C*sf:(—r,r) >R

o If a, > 0 Vn, then

k(x,y) = £((x,5))

is universal on X := {x e R? : x|, < /r}.
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Universal kernels on compact subsets of R?, o > 0

° k(x,y) = e*(:¥): previous result with a, = (f‘%
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Universal kernels on compact subsets of R?, o > 0

° k(x,y) = e*(:¥): previous result with a, = (f‘%

2 . .
o k(x,y) = e ?lx¥l: exp. kernel & normalization.
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Universal kernels on compact subsets of R?, o > 0

@ k(x,y)=(1—(x,y))”“ binomial kernel
e on X compact = {x e RY : x|, < 1}.
o

o £ = (1= 0 = 2 (7)1 il <),

| —
>0

where (°) = Y7, b=t

1
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Universal = characteristic: proof-1

Injectivity on finite signed measures (proof):

@ k: universal = Hy is dense in C(X).
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Universal = characteristic: proof-1

Injectivity on finite signed measures (proof):
@ k: universal = Hy is dense in C(X).
e By Hahn-Banach theorem [Rudin, 1991] this denseness <

{0} = 93¢} = {IF e C(X) < VF 30, Te() J fdF = o
——
=Mp(X) <f7MF

:{FGMb(X)ZMFZO}.
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Hahn-Banach theorem

Let H is a subspace of a normed space C. H is dense in C iff.

{0} = H- := {Fe C':¥f e H,F(f) = 0}.
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Universal = characteristic: proof-2

Direct reasoning: We have already mentioned [Dudley, 2004]:
o Let X: metric space, P,Q € M{ (X).
@ ThenP=0Q <

Pf = Qf Vfe Cp(X).

We have a characterization of P = Q in terms of expectations. )
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Universal = characteristic: proof-2

e Goal: pup = pg =P =0Q.
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Universal = characteristic: proof-2

e Goal: pup = pg =P =0Q.
?
e We want: for any f € C(X) and € > 0, |Pf — Qf| < e.
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Universal = characteristic: proof-2

e Goal: pup = pg =P =0Q.

?
e We want: for any f € C(X) and € > 0, |Pf — Qf| < e.
@ Universality of k = Hy is dense in Cp(X)=C(X) (X: compact).
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Universal = characteristic: proof-2

e Goal: pup = pg =P =0Q.
?
e We want: for any f € C(X) and € > 0, |Pf — Qf| <e.
@ Universality of k = Hy is dense in Cp(X)=C(X) (X: compact).
o Hy > g:= e-approximation of f,

|Pf — Qf| < [Pf — Pg| +|Pg — Qg| + |Qg — Qf],
| S — — —

- —
<P|f—g|<e <e
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Universal = characteristic: proof-2

e Goal: pup = pg =P =0Q.

?

e We want: for any f € C(X) and € > 0, |Pf — Qf| <e.

@ Universality of k = Hy is dense in Cp(X)=C(X) (X: compact).
o Hy > g:= e-approximation of f,

|Pf — Qf| < [Pf — Pg| +|Pg — Qg| + |Qg — Qf],
| S — — —

———
<P|f—g|<e <€

Pg — Qg| = [ (g, 1p)sg, — (8 1)y, |= 0. Thus [Pf — Qf| < 2e.

<

v~

<g,/~LIP — HQ >9€k

=0
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Universality: finished. Now: characteristic
property.
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

2

BP.Q) = e~ = | [ k(000700 - [ Kpae)

He
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

2

BP.Q) = e~ = | [ k(000700 - [ Kpae)

= (a—b,a— b)y

He

k
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

2

B, = e — pall, = | [ k026 - [ kppaa
=(a—b,a—b)y,

fXJXk(xx )dP(x)dP(x JJ (v, y")dQ(y)dQ(y")
—2jkaydIP’ )dQ(y
x Jx

He
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

B, = e — pall, = | [ k026 - [ kppaa
=(a—b,a—b)y,

fXJXk(xx )dP(x)dP(x JJ (v, y")dQ(y)dQ(y")

— 2] f k(x, y)dP(x)dQ(y
X JX
(MPa MP)J{,( + <MQ7 /’LQ> He 2 </’LP7 IU’Q>9'fk )

2

He
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di(P,Q) (=MMD) in terms of kernel evaluations

[Gretton et al., 2007]:

2

B, = e — pall, = | [ k026 - [ kppaa
=(a—b,a—b)y,

fXJXk(xx )dP(x)dP(x JJ (v, y")dQ(y)dQ(y")

— 2] f k(x, y)dP(x)dQ(y
X JXx
(up, 1) g¢, + (1Qs Q) g, — 2 </~01P7MQ>9{k

‘LL}vy (P — Q)(x)d(P — Q)(y).

He
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= Polynomial kernels are not characteristic

[Sriperumbudur et al., 2010b]:
@ k(x,y) = (x,y): linear kernel (L =1).

2(B,Q) = |mp — mgl?,  mp = f xdP(x).
X

Zoltan Szabé Structured Data: Dependency, Testing



= Polynomial kernels are not characteristic

[Sriperumbudur et al., 2010b]:
@ k(x,y) = (x,y): linear kernel (L =1).

B®.Q) = |me ~mgl?,  me = | xdP(x).
X
o Kixy) = ((xy) + 1) (L =2)
2
G2, Q) = 2|me — ms| + |7 — X + memd — mgmf]| .

where |-|z: Frobenious norm; Xp: cov. matrix w.r.t. IP.

Zoltan Szabé Structured Data: Dependency, Testing



Characteristic property

Well-understood for

e Continuous bounded translation-invariant kernels on R¥:

k(x,y) = ko(x — y), ko € Cp(RY).
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Characteristic property

Well-understood for

e Continuous bounded translation-invariant kernels on R9:
k(x,y) = ko(x — y), ko € Cp(RY).
e Continuous bounded radial kernels on RY:
k(x,y) = ko(|x = yl), ko € Co(R),

ko(z) = f et yladu(t)
[0.0)

v e M} [0,00), i.e. it is a finite measure on [0, %0).
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Bochner's theorem

We focus on continuous bounded translation-invariant kernels: )

Theorem (Bochner's theorem [Wendland, 2005], k < A)

ko(z) = J e T dA(w),
Rd

where N is a finite Borel measure (w.l.0.g. probability).
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MMD in terms of characteristic functions

Using Bochner's theorem:

BP0 = [ [ Kxyd®-QxaE-2))
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MMD in terms of characteristic functions

Using Bochner's theorem:

BP0 = [ [ Kxyd®-QxaE-2))
- [ L] et reanwiar - ode - o))
Re JRd JRd
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MMD in terms of characteristic functions

Using Bochner's theorem:

BP0 = [ [ Kxyd®-QxaE-2))
- [ L] et reanwiar - ode - o))
R4 JRd JR

JRd URd SrdE - )} [JRd V(P Q)(y)] dA(w)

_

" v~

p(w)—dg(w) bp(w)—dg(w)
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MMD in terms of characteristic functions

Using Bochner's theorem:

d?(P,Q) =JRdf k(x, y)d(P — Q)(x)d(P — Q)(y)
[ L L neae - @ae- o

JRd URd SrdE - )} [JRd i<y7w>d(ﬂp—@)(}/)] dA(w)

_

" v~

p(w)—dg(w) pp(w)—do(w)

- [ 162(0) = 0P drGe)
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MMD in terms of characteristic functions

Using Bochner's theorem:

d(P,Q) = L@f k(x, y)d(P — Q)(x)d(P — Q)(y)
[ L L neae - @ae- o

JRd URd e - Qb )} [JRd e erd(p - Q)(y)] dA(w)

_/

e ~~

m op(w)—¢g(w)
~ [ tor() = sa@)2aA@) = 100 — s,
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Continuous bounded translation-invariant kernels

Theorem ([Sriperumbudur et al., 2010b])

They are characteristic iff. supp(\) = R9.
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Continuous bounded translation-invariant kernels

Theorem ([Sriperumbudur et al., 2010b])

They are characteristic iff. supp(\) = R9.

supp(N\) := {x € X: for any open set U such that x € U,A(U) > 0}.
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Continuous bounded translation-invariant kernels

Theorem ([Sriperumbudur et al., 2010b])

They are characteristic iff. supp(\) = R9.

supp(N\) := {x € X: for any open set U such that x € U,A(U) > 0}.

@ Example: Gaussian, Laplacian, Matérn kernel, B-spline kernel.
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Continuous bounded translation-invariant kernels

Theorem ([Sriperumbudur et al., 2010b])

They are characteristic iff. supp(\) = R9.

supp(N\) := {x € X: for any open set U such that x € U,A(U) > 0}.

@ Example: Gaussian, Laplacian, Matérn kernel, B-spline kernel.
@ Similar characterization 3 on 'Bochner domains’ (LCA groups,
orthogonal matrices, RY) [Fukumizu et al., 2009b].
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Matérn kernel

1-v vx — Y vix —
k(x,y)zko(x—y):i(v) (\/TU YH2> K, (M>’

- 29TV (v + d/2)v" [2v ~(v+d/2)
ko(w) = T <02 + 47° ]wg) >0 VYweR?,

where [: Gamma function, K,: modified Bessel function of the second
kind of order v.
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Matérn kernel

21 (wvx—yug) K (¢2v|x —y|2>
o 9y

k(Xv.y):kO(X_y): F(v) o

29+ ST (v + d/2)v’ [2v —(v+d/2)
ko(w) = Flv)o <02 + 4n? ng) >0 VYweRY,

where [: Gamma function, K,: modified Bessel function of the second

kind of order v. H
x—y
o For v =1: one gets k(x,y) = e~ e
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Matérn kernel

1-v vx — Y vix —
k(x,y)zko(x—y):i(v) (\/TU YH2> K, (M>’

- 29TV (v + d/2)v" [2v ~(v+d/2)
ko(w) = T <02 + 47° ]wg) >0 VYweR?,

where [: Gamma function, K,: modified Bessel function of the second

kind of order v. H
x—y
o For v =1: one gets k(x,y) = e~ 7

@ Gaussian kernel: v — 0.
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Translation-invariant kernels on R

[Sriperumbudur et al., 2010b]

For Poisson kernel: o € (0,1).

kernel name kg ko (w) supp (ko)
Gaussian e 27 ge=E R
Laplacian e—olxl \/goziwz R
Ban,1-spline +21+2 (x) B () R
2n+1-SPlN X[_%%] Vor whl
Sinc M ) V5 X[—0,01 (W) [—0o, 0]
Poisson W Ver 3 ollo(w —j) Z
Dirichlet % V2r Y2 6w —J) {0,£1,+2,... +n}
Fejér L ((+; NeZD Wi (1 - %) S(w —j) {0, £1, 42, ... +n}
Cosine cos(ox) Fow—=0)+6d(w+0o)] {—0,0}
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Translation-invariant kernels on R

[Sriperumbudur et al., 2010b]

For Poisson kernel: o € (0,1).

kernel name kg ko (w) supp (ko)
X2 o-w
Gaussian e 27 oe” e R
Laplacian eIl \/goziwz R
L L2042 gr1sin? 2 (g)
B;,,1-spline * X[_%%](X) T o R
Sinc M R \/?X[fa,a] (w) ) [703 U]
Poisson W V 271' ij=700 O'M(S(w —J) Z
sin 2n+1)x
Dirichlet % V2r Y2 6w —J) {0,£1,£2,...,%n}
n 2
.y in2 (n41)x n j .
Fejér n}rlssinz(g) Vemyi_ o, (1— %) O(w—J){0,+£1,42,...,+n}
Cosine cos(ox) Fow—=0)+6d(w+0o)] {—0,0}
d i d [
For x e RY: ko(x) = szl ko(xj), ko(w) = szl ko(wj).
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Cont. bounded translation-invariant kernels: consequence

@ B-spline kernel: supp(ko) is compact — practically relevant.
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Cont. bounded translation-invariant kernels: consequence

@ B-spline kernel: supp(ko) is compact — practically relevant.

@ More generally

Theorem ([Sriperumbudur et al., 2010b])

supp(ko): compact = k is characteristic.
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Construction of new characteristic kernels

Theorem ([Sriperumbudur et al., 2010b])

If k, ki, ko: cbt, k: characteristic, ko # 0. Then k + ki, kko is also
characteristic.
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Construction of new characteristic kernels

Theorem ([Sriperumbudur et al., 2010b])

If k, ki, ko: cbt, k: characteristic, ko # 0. Then k + ki, kko is also
characteristic.

We focus on k + ki (product: similarly):

(k + ki)(x,y) = k(x,y) + ki(x,y) = ko(x — y) + (k1)o(x — y)
f iy (A + Ay)(w).
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Construction of new characteristic kernels

Theorem ([Sriperumbudur et al., 2010b])

If k, ki, ko: cbt, k: characteristic, ko # 0. Then k + ki, kko is also
characteristic.

We focus on k + ki (product: similarly):

(k + ki)(x,y) = k(x,y) + ki(x,y) = ko(x — y) + (k1)o(x — y)
f iy (A + Ay)(w).

o k: characteristic = supp(A) = RY.
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Construction of new characteristic kernels

Theorem ([Sriperumbudur et al., 2010b])

If k, ki, ko: cbt, k: characteristic, ko # 0. Then k + ki, kko is also
characteristic.

We focus on k + ki (product: similarly):

(k + ki)(x,y) = k(x,y) + ki(x,y) = ko(x — y) + (k1)o(x — y)
f iy (A + Ay)(w).

o k: characteristic = supp(A) = RY.

e Since supp(N) < supp(A + A1), we get supp(A + A1) = R

hence k + kq is characteristic.

Zoltan Szabé Structured Data: Dependency, Testing




Radial, bounded, continuous kernels on R?

Recall (radial kernel):

Kooy) = kollx — ylb)  kolz) = f[ 0 )e—”-y%duu).
,00
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Radial, bounded, continuous kernels on R?

Recall (radial kernel):

2
Koo y) = kollx — vl kolz) = f[ e Rt
,00

Theorem ([Sriperumbudur et al., 2010b])

k is characteristic iff. supp(v) # {0}.
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More general spaces

@ My(X): set of all finite signed (Radon) measures on X
(Radon = Jsupp).
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More general spaces

@ My(X): set of all finite signed (Radon) measures on X
(Radon = Jsupp).

e Ulam’s Theorem [Dudley, 2004]: On an X’ Polish space V
Borel measure is Radon.
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More general spaces

@ My(X): set of all finite signed (Radon) measures on X
(Radon = Jsupp).

e Ulam’s Theorem [Dudley, 2004]: On an X’ Polish space V
Borel measure is Radon.

Definition

A k: X x X — R bounded, measurable kernel is called integrally
strictly positive definite (ispd) if

J f k(x,y)dF(x)F(y) >0 V0 #F e Mp(X).
X JXx
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Sufficient condition: ispd

Theorem ([Sriperumbudur et al., 2010b])

Ispd kernels are characteristic on an X topological space.

e ispd on R?: Gaussian, Laplacian, inverse multiquadrics,
Matérn kernels, B-splines.
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Sufficient condition: ispd

Theorem ([Sriperumbudur et al., 2010b])

Ispd kernels are characteristic on an X topological space.

e ispd on R?: Gaussian, Laplacian, inverse multiquadrics,
Matérn kernels, B-splines.

@ Dirichlet kernel: characteristic, though not ispd.

Zoltan Szabé Structured Data: Dependency, Testing



Sufficient condition: ispd

Theorem ([Sriperumbudur et al., 2010b])

Ispd kernels are characteristic on an X topological space.

e ispd on R?: Gaussian, Laplacian, inverse multiquadrics,
Matérn kernels, B-splines.

@ Dirichlet kernel: characteristic, though not ispd.

@ ispd property: checking might not be easy.
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Ispd: constructions

Translation-variant ispd from translation-invariant ispd kernel:

kO(Xay) = f(X)k(X7y)f(y)) fe Cb(X)
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Ispd: constructions

Translation-variant ispd from translation-invariant ispd kernel:
kO(Xay) = f(X)k(X7y)f(y)> fe Cb(X)

Example: ko(x,y) = e} X c RY compact

2
[x—yl

k(x,y) = e 7", Fx) = e” 5.
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Denseness in L'

Theorem ([Fukumizu et al., 2008, Fukumizu et al., 2009a])

Let r > 1.
e Ak: (X, A) x (X, A) - R bounded measurable kernel is
characteristic if H, + R is dense in L" (X, A,P) for all
P e M (X).
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Denseness in L'

Theorem ([Fukumizu et al., 2008, Fukumizu et al., 2009a])

Let r > 1.
e Ak: (X, A) x (X, A) - R bounded measurable kernel is
characteristic if H, + R is dense in L" (X, A,P) for all
P e M (X).

e With r =2, it is also a necessary condition.
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Denseness in L'

Theorem ([Fukumizu et al., 2008, Fukumizu et al., 2009a])

Let r > 1.
e Ak: (X, A) x (X, A) - R bounded measurable kernel is
characteristic if H, + R is dense in L" (X, A,P) for all
P e M (X).

e With r =2, it is also a necessary condition.

Note:

@ For a c-universal kernel k: sufficient condition holds with r = 2.
@ This gives a 3rd 'universal = characteristic’ proof.

Zoltan Szabdé Structured Data: Dependency, Testing



Denseness is sufficient: idea

e Goal: in this case, up = ug = P(A) = Q(A) for any A€ A.
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Denseness is sufficient: idea

e Goal: in this case, up = ug = P(A) = Q(A) for any A€ A.
@ Enough: |P(A) — Q(A)| = |[Pxa — Qxal <e VA€ A, Ve > 0.
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Denseness is sufficient: idea

@ Enough: |P(A) — Q(A)| = [Pxa — Qxal <e VA€ A, Ve > 0.
@ Idea:
control the max. difference of P and Q = TV of P — Q,

P — Q[(X) = 2sup [P(A) — Q(A)|.
Ac A
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Denseness is sufficient: idea

@ Enough: |P(A) — Q(A)| = [Pxa — Qxal <e VA€ A, Ve > 0.
@ Idea:
control the max. difference of P and Q = TV of P — Q,

P — Q[(X) = 2sup [P(A) — Q(A)|.
Ac A

exploit denseness for x4 € L' (X, A, |P — Q).

—17([P-ql)
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Total variation: quick summary

ldea: f=ft—f —|f|=Ff"+F".
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Total variation: quick summary

Idea: f=f" —f" —|f|=f" + . Analogously:

e (X, A): measurable space. p: signed measure on it.
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Total variation: quick summary

Idea: f=f" —f" —|f|=f" + . Analogously:
e (X, A): measurable space. p: signed measure on it.
@ Hahn-Jordan decomposition of p: X =P U N.
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Total variation: quick summary

Idea: f=f" —f" —|f|=f" + . Analogously:
e (X, A): measurable space. p: signed measure on it.
@ Hahn-Jordan decomposition of p: X =P U N.
e Positive & negative part of p (= p™ — p7):

pt(A) = pwAn?P), ut(A)=uAnN) VAec A
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Total variation: quick summary

Idea: f=f" —f" —|f|=f" + . Analogously:
e (X, A): measurable space. p: signed measure on it.
@ Hahn-Jordan decomposition of p: X =P U N.
e Positive & negative part of p (= p™ — p7):

pt(A) = pwAn?P), ut(A)=uAnN) VAec A

o TV of p: || :=pu" +p .
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Total variation: quick summary

Idea: f=f" —f" —|f|=f" + . Analogously:
e (X, A): measurable space. p: signed measure on it.
@ Hahn-Jordan decomposition of p: X =P U N.
e Positive & negative part of p (= p™ — p7):

pt(A) = pwAn?P), ut(A)=uAnN) VAec A

TV of w: |p| := pt + .
w: finite = pt, p: finite.
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Denseness is sufficient: proof

o Take: Ae A, ¢ > 0.
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Denseness is sufficient: proof

o Take: Ae A, ¢ > 0.
o Hy+Risdensein L'(P—Q|) = If e Hxy + R

If = xallrqp—qp <€
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Denseness is sufficient: proof

o Take: Ae A, ¢ > 0.
o Hy+Risdensein L'(P—Q|) = If e Hxy + R

If = XAl p_qp <€

@ Some lower bounding

e=|f — XAHL’(\IPL(I;M H f - (X4 HLl (IP-QJ)
_g
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Denseness is sufficient: proof

o Take: Ae A, ¢ > 0.
o Hy+Risdensein L'(P—Q|) = If e Hxy + R

If = XAl p_qp <€

@ Some lower bounding

e=|f — XAHU(U}L@ H f— XA H,_1 (IP-Q)) — = [P —Ql(lg])
—g
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Denseness is sufficient: proof

o Take: Ae A, ¢ > 0.
o Hy+Risdensein L'(P—Q|) = If e Hxy + R

If = xalir(p—qp <€
@ Some lower bounding
e=|f — XAHU(U}L@ H f— XA H,_1 (IP-Q)) — = [P —Ql(lg])

_g

> [P —Ql(g)
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Denseness is sufficient: proof

o Take: Ae A, ¢ > 0.
o Hy+Risdensein L'(P—Q|) = If e Hxy + R

If = xalir(p—qp <€
@ Some lower bounding
e=|f — XAHU(U}L@ H f— XA H,_1 (IP-Q)) — = [P —Ql(lg])

_g

> [P -Ql(g) = [(P - Q)(g)|
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Denseness is sufficient: proof

o Take: Ae A, ¢ > 0.
o Hy+Risdensein L'(P—Q|) = If e Hxy + R

If = xalir(p—qp <€
@ Some lower bounding
e=|f — XAHU(U}L@ H f— XA H,_1 (IP-Q)) — = [P —Ql(lg])

_g

> [P—-Ql(g) = [(P-Q)(g)] = [P(f = xa) — Q(f — xa)|
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Denseness is sufficient: proof

o Take: Ae A, ¢ > 0.
o Hy+Risdensein L'(P—Q|) = If e Hxy + R

If = XAl p_qp <€

@ Some lower bounding

€>Hf_XAHLr(UP7@| H f— XA HLI (IP-Q)) — |]P’—Q\(]g|)
—g
> [P-Ql(g) = [(P—Q)(g)] = |P(f —xa) — Q(f — xa)l
w Pxa — Qxal-

(*): Pf = Qf for any f € Hy since pup = L10.
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Denseness is necessary: proof

If 3, + R is not dense in L?(IP), then
e goal: ?Ql # Qo € M (X) st. pg, = 1o

~
L is not injective
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Denseness is necessary: proof

If 3, + R is not dense in L?(IP), then
e goal: ?Ql # Qo € M (X) st. pg, = 1o

~
L is not injective

@ Hahn-Banach: 0 # f € [?(P) st. f 11,3, thus

<f 1>L2(]P’): 0, <f7 h>L2(]P>): 0 (Vh € g_fk)
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Denseness is necessary: proof

If 3, + R is not dense in L?(IP), then
e goal: ?Ql # Qo € M (X) st. pg, = 1o

~
L is not injective

@ Hahn-Banach: 0 # f € [?(P) st. f 11,3, thus

<f 1>L2(]P’): 0, <f7 h>L2(]P>): 0 (Vh € g_fk)

o We define Q1, Q2 from f (f # 0= Q1 # Qo):

1

Qu(A) = CL [FIdP, Qa(A) = CL<ﬂ,—_’f)dP’ < Tl

=0

=
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Denseness is necessary: proof continued

We arrive at

10, — figy = f k(- x)dQ (x) — f k(- X)AQa(x)
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Denseness is necessary: proof continued

We arrive at

- [t
fk )d(Q1 — Q2)(x)
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Denseness is necessary: proof continued

We arrive at
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Denseness is necessary: proof continued

We arrive at
10, — figy = f k()0 (x) — [ k(- x)dQa(x)
= [ Kex0d(@s = @200 = ¢ | FOOKC 0BG,

X

(s — 1) (y) = cL F()k(y, x)dB(x)
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Denseness is necessary: proof continued

We arrive at
10, — figy = f k()0 (x) — [ k(- x)dQa(x)
= [ Kex0d(@s = @200 = ¢ | FOOKC 0BG,

X
(s — 1) (y) = cL F()k(y, x)dB(x)

:C<f7k(y7')>L2(]p>):0 (Vye)(')
Eg‘fk
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Denseness is necessary: proof continued

We arrive at
10, — figy = f k()0 (x) — [ k(- x)dQa(x)
= [ Kex0d(@s = @200 = ¢ | FOOKC 0BG,

X
(s — 1) (y) = cL F()k(y, x)dB(x)

:C<f7k(y7')>L2(]p>):0 (Vye)(')
Eg‘fk

Thus ug, — pg, = 0 despite Q1 # Q».
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Infinitely divisible distributions: quick summary

U: random variable.

Can it be decomposed to the sum of 2 i.i.d. random variables?
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Infinitely divisible distributions: quick summary

U: random variable.

Can it be decomposed to the sum of 2 i.i.d. random variables?
Can it be decomposed to the sum of 3 i.i.d. random variables?
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Infinitely divisible distributions: quick summary

U: random variable.

Can it be decomposed to the sum of 2 i.i.d. random variables?
Can it be decomposed to the sum of 3 i.i.d. random variables?
Can it be decomposed to the sum of 4 i.i.d. random variables?
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Infinitely divisible distributions: quick summary

U: random variable.

Can it be decomposed to the sum of 2 i.i.d. random variables?
Can it be decomposed to the sum of 3 i.i.d. random variables?
Can it be decomposed to the sum of 4 i.i.d. random variables?

Can it be decomposed to the sum of n i.i.d. random variables for
any ne Z*7?
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Infinitely divisible distributions: quick summary

Examples:
@ Poisson, negative binomial, Gamma distribution, student t.
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Infinitely divisible distributions: quick summary

Examples:
@ Poisson, negative binomial, Gamma distribution, student t.

@ normal, Cauchy distribution

Zoltan Szabé Structured Data: Dependency, Testing



Infinitely divisible distributions: quick summary

Examples:
@ Poisson, negative binomial, Gamma distribution, student t.

e normal (o = 2), Cauchy distribution (o = 1) <= V a-stable.
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Infinitely divisible distributions: quick summary

Examples:

@ Poisson, negative binomial, Gamma distribution, student t.

e normal (o = 2), Cauchy distribution (o = 1) <= V a-stable.
Counterexamples:

@ uniform, binomial distribution
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Infinitely divisible distributions: quick summary

Examples:

@ Poisson, negative binomial, Gamma distribution, student t.

e normal (o = 2), Cauchy distribution (o = 1) <= V a-stable.
Counterexamples:

o uniform, binomial distribution <= Vv any distribution with
bounded (finite) support.
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Symmetric infinitely divisible on RY = characteristic

Theorem ([Nishiyama and Fukumizu, 2016])

Assume
° k(x,y) = ko(X —y), ko € Cb(Rd), ko is the pdf of
@ an infinitely divisible, symmetric distribution.

Then k is characteristic.

Zoltan Szabé Structured Data: Dependency, Testing



Symmetric infinitely divisible on RY = characteristic

Theorem ([Nishiyama and Fukumizu, 2016])

Assume
° k(x,y) = ko(X —y), ko € Cb(Rd), ko is the pdf of
@ an infinitely divisible, symmetric distribution.

Then k is characteristic.

Examples: Gaussian, Matérn kernel, a-stable kernels, student
t-kernels, ...
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Characteristic kernels: finished.
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Local summary

@ Dependency measure applications.
o KCCA. Mean embedding: up = §, k(-,x)dP(x) € Hy.
@ Injectivity of i on
e probability distributions: characteristic property.
o finite signed measures: universality (X: compact metric).
@ By definition: injectivity of u <

di(P, Q) = llup — nally,

is a metric.
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Maximum mean discrepancy (MMD)
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MMD is a specific integral probability metric (IPM)

° F= {f € Hi o |Fllgg, = 1}; unit ball in €.

di(P, Q) = [l — pols,
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MMD is a specific integral probability metric (IPM)

° F= {f € Hi o |Fllgg, = 1}; unit ball in €.

di(P, Q) = |lup — pgll,
= sup (f, up —
feg (f, pp MQ>5{k
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MMD is a specific integral probability metric (IPM)

° F= {f € Hi o |Fllgg, = 1}; unit ball in €.

di(P, Q) = |lup — pgll,
= sup (f, up —
feg (f, pp NQ>ﬂ{k

= sup(Pf — Qf).
feg

Zoltan Szabé Structured Data: Dependency, Testing



MMD is a specific integral probability metric (IPM)

° F= {f € Hi o |Fllgg, = 1}; unit ball in €.

di(P, Q) = |lup — pgll,
= SUp <f’ IU’]P - ll’LQ>f}‘fk
feF

= sup(Pf — Qf).
feg

e IPMs [Zolotarev, 1983, Miiller, 1997].
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IPM: other J examples giving metric

o F = Cp(X) with X metric space.
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IPM: other J examples giving metric

o F = Cp(X) with X’ metric space.

o F={f:|fly :=supecx|f(x)]<1}:
e bounded functions.
e total variation distance.
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IPM: other J examples giving metric

o F = Cp(X) with X metric space.
o F={f:|fly :=supecx|f(x)]<1}:

e bounded functions.
e total variation distance.
Y — [FE)=f¥)l :

o F= {f. ], := supy, oy S

. LA bl i C.

o Kantorovich metric -~ 2%P2rable Mec_yz/ sserstein distance.
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IPM: other J examples giving metric

o F={f:|fl, :=supex|f(x)] <1}
e bounded functions.
e total variation distance.

TV upper bounds MMD [Sriperumbudur et al., 2010b]:

dk(]P)a Q) < sup k(X,X) TV(]P)aQ)
xeX
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IPM: other I examples giving metric — continued

o F={f:|flg = Iflo +[fll <1}
e bounded Lipschitz functions,
o Dudley metric.

Zoltan Szabé Structured Data: Dependency, Testing



IPM: other I examples giving metric — continued

o F={f:|flg = Iflo +[fll <1}
e bounded Lipschitz functions,
o Dudley metric.

. dl.

o F= {X(foo,t] teR }
e characteristic functions of half-intervals.

e Kolmogorov distance.
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Empirical estimation of IPMs

[Sriperumbudur et al., 2012]:
@ Kantorovich, Dudley metric: linear programming task.
e MMD (dy): easier.
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MMD estimators
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MMD estimator: intuition

L
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MMD estimator: intuition
?“‘, Dot H

‘H

k(dog;, dogJ,) k(dog;, fish;) ‘
—

k(fish;, dog;)

12, Mg ¢
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MMD estimator: intuition

> i
::‘J_.r Qﬂ-—‘
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MMD estimator: intuition
»”“‘ P H

- k(dog;, dog;)
]

o

k(dog;, fish;)

k(fish;,dog;)

MMD2(P,Q) = Gpp + Gg,o — 2Gpg (without diagonals in Gpp, Gg,o)

TMMD & HSIC illustration credit: Arthur Gretton
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MMD estimator-1

Recall: MMD = squared difference between feature means:

MMD?(P,Q) := df (P, Q) = |up — nol3,, =
= EX~IF’,X’~IF’k(X7 X/) + Ey~(@,y’~(@k()/a y/)
— 2Eqpy~qk(x,y).
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MMD estimator-1

Recall: MMD = squared difference between feature means:

MMD?(P,Q) := df (P, Q) = |up — nol3,, =
= EX~IF’,X’~IF’k(X7 X/) + Ey~(@,y’~(@k()/a y/)
— 2Eqpy~qk(x,y).

Unbiased empirical estimator using {x;}[Z; ~ P, {y;}/_; ~ Q:

MMD2(P, Q) = Gop + Gog — 2Grg
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MMD estimator-1

Recall: MMD = squared difference between feature means:
MMD?(P, Q) := d}(P, Q) = |pe — pgl, =
= EX~IF’,X’~IPk(X7 X/) + Ey~@,y’~(@k(}/a y/)
— 2Eqpy~qk(x,y).
Unbiased empirical estimator using {x;}[Z; ~ P, {y;}/_; ~ Q:

M@m@:@w@@m&

= ZZI{XMXJ ZZkYHYJ

i=1j#i i=1j#i
U statlstlc—l U—statistic—2
—*ZZXM
i=1j=1

~
sample average
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MMD estimator-2

We plug in the empirical measures (Pp,, Qp):

MMD?(P, Q) = ||up — pglZ, .
MMD2(P, Q) = |1, — g, |2,
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MMD estimator-2

We plug in the empirical measures (Pp,, Qp):

2
MMD?(P, Q) = ||up — pglZ, .
MMD2(P, Q) = |1, — g, |2,
= upn 3, + lisal3e, — 2010 10) s,
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MMD estimator-2

We plug in the empirical measures (Pp,, Qp):
2
MMD?(P,Q) = | — ngl3, »
MMD3(P, Q) = e, — o, I3,
= upn 3, + lisal3e, — 2010 10) s,

Enough:

(B> Q) 3¢ <

3=

S 2k<-,yj>>
i=1 XK
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MMD estimator-2

We plug in the empirical measures (Pp,, Qp):

MMD? (P, Q)

Enough:

<:qu7 /’LQn>ﬂ{k

2
= ue — pols, »
MMD2 (P, Q) =

2
lpen — a3,

= upn 3, + lisal3e, — 2010 10) s,

1 & 1<
= <m2k<,xf>,n2k< yJ>>
i=1 j=1 He
1 m n
= o 20 20 KCxi) KRG y))gg,
mn/zljzl ~~
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MMD estimator-2: continued

1 m m
MMDZ(P, Q) — jZEk(x,-,x, p sz vi ¥j)
i=1j=1

i=1j=1
- ~- 7 7
V-statistic-1 V—statistic—2
— Z D) k(i)
i=1j=1
-

sample average
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MMD estimator-2: continued

1 m m
MMDZ(P, Q) — jZEk(x,-,x, p sz vi ¥j)
i=1j=1

i=1j=1
- 7 7
V- statistic—l V—statistic—2
— Z D) k(i)
i=1j=1

~

sample average

Notes:
e MMD2(P,Q): unbiased; it might be negative.
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MMD estimator-2: continued

1 m m
MMDZ(P, Q) — jZEk(x,-,x, p sz vi ¥j)
i=1j=1

i=1j=1
- 7 7
V- statistic—l V—statistic—2
— Z D) k(i)
i=1j=1

~

sample average

Notes:
e MMD2(P,Q): unbiased; it might be negative.
o MMDL(P, Q) = |ue,, — pig, 5, =0
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MMD estimator-2: continued

1 m m
MMDZ(P, Q) — jZEk(x,-,x, p sz vi ¥j)
i=1j=1

i=1j=1
- 7 7
V- statistic—l V—statistic—2
— Z D) k(i)
i=1j=1

~

sample average
Notes:
e MMD2(PP,Q): unbiased; it might be negative.
o MMDZ(P, Q) = |z, — pag, |5, >0
o Computational complexity: O ((m + n)?), quadratic.

Zoltan Szabdé Structured Data: Dependency, Testing



@ Set kernel, convolution kernel.

Zoltan Szabé Structured Data: Dependency, Testing



@ Set kernel, convolution kernel.

@ Other valid K (up, 1g) examples — distribution classification
[Pdczos et al., 2012, Muandet et al., 2011] / distribution
regression [Szabd et al., 2016].
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@ Set kernel, convolution kernel.

@ Other valid K (up, 1g) examples — distribution classification
[Pdczos et al., 2012, Muandet et al., 2011] / distribution
regression [Szabd et al., 2016].

@ Few analytic expressions exist for MMD.
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@ Set kernel, convolution kernel.

@ Other valid K (up, 1g) examples — distribution classification
[Pdczos et al., 2012, Muandet et al., 2011] / distribution
regression [Szabd et al., 2016].

@ Few analytic expressions exist for MMD.
@ Embedding to RKBS.
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@ Set kernel, convolution kernel.

@ Other valid K (up, 1g) examples — distribution classification
[Pdczos et al., 2012, Muandet et al., 2011] / distribution
regression [Szabd et al., 2016].

@ Few analytic expressions exist for MMD.
@ Embedding to RKBS.

Let us see the details. J
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Set kernel

Convolution kernels [Haussler, 1999] 5 set kernel [Gartner et al., 2002]:

K(Pma Qn) <M]P’ma ;U'Qn = E Z Z XI7 yJ

i=1j=1

/ > 4 ‘ D 2P 4 B
Ve ™ W V=) Mg
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Other valid K examples [Christmann and Steinwart, 2010],

[Szabé et al., 2015] — distribution regression

Recall: K(P,Q) = {up, ), linear kernel.

Kc Ke Kc
np=hg) o |1e=ng |5¢ -1
eI e aE (1 + |pp — /t@Hg{sz)
K: Ki

NI

(14 Ie = malsg®)  (lie — mally, +62)

Zoltan Szabé Structured Data: Dependency, Testing



Other valid K examples [Christmann and Steinwart, 2010],

[Szabé et al., 2015] — distribution regression

Recall: K(P,Q) = {up, ), linear kernel.

Kc Ke Kc
np=hg) o |1e=ng |5¢ -1
eI e aE (1 + |pp — /t@Hg{sz)
K: Ki

Nl=

-1 _
(14 loe = als,®) (e - nold, +62)

Functions of | p — jug/ls;, = computation: similar to set kernel.
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Few analytic expressions exist: examples

[Gretton et al., 2007, Muandet et al., 2011]

Assume: P = N(m1,X;), Q = N(mo, X2).

k(x,y) K(up, pg) = (1p, 1@y,

—L(my—mo) T (Sy+504~1) " L(my—
e_%HX_yug = 3 (m—mp) " (T3 +Tp+~1)" " (my—mp)

i
[yZ1+yZa+1]2
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Few analytic expressions exist: examples

[Gretton et al., 2007, Muandet et al., 2011]

Assume: P = N(m1,X;), Q = N(mo, X2).

k(x,y) K(up, pg) = (1p, 1@y,

-1
e*%(M1*'"2)T(21+f2+7/) (my—my)

e~ lx—yl3 )
[yX1+vXa+]1|2
1+ (6 y)? (1 + (my,mp))® +tr (T1X2) + mXomy + myTimy
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Few analytic expressions exist: examples

[Gretton et al., 2007, Muandet et al., 2011]

Assume: P = N(m1,X;), Q = N(mo, X2).

k(x,y) K(up, pg) = (1p, 1@y,

2 —L(my—mo) T (Sy+504~1) " L(my—
o= FlIx—yI3 = 3 (m—mp) " (T3 +Tp+~1)" " (my—mp)

|’Y>:1+“/Z2+’\%
x,9))° (14 (my,m)) +tr (Z155) + mTomy + mpyXimy
X, y))? (14 (my,m))® +6m] L15omy + 3 (1 + (my, my)) x
[tr (2122) + mXomg + mgzlmz]

—~

(1+
(1+

—~
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RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
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RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
e B’ is isometric to a Banach space of functions on X, and
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RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
e B’ is isometric to a Banach space of functions on X, and

@ the evaluation functional is continuous on both B and B'.
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RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
e B’ is isometric to a Banach space of functions on X, and

@ the evaluation functional is continuous on both B and B'.

Notes:
e Generally, B < B”.
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RKBS definition

Definition ([Zhang et al., 2009])

A reflexive B Banach space [(B') = B] of functions on X is called
RKBS if
e B’ is isometric to a Banach space of functions on X, and

@ the evaluation functional is continuous on both B and B'.

Notes:

e Generally, B < B”.
e For B = H Hilbert: (H')" = 3 (Riesz representation theorem).
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RKBS properties

Using the

<f7g,>3 = g/(f)a (f€B>g,€B/)

notation
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RKBS properties

Using the
(f.g' )y =g'(f), (feB,g'eB)
notation
k(-,x)e B (Vxe X), f(x)=(f,k(-,x))y VfeB,
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RKBS properties

Using the
(f.g' )y =g'(f), (feB,g'eB)
notation
k(-,x)e B (Vxe X), f(x)=(f,k(-,x))y VfeB,
k(x,-)eB (¥xeX), f'(x) = (k(x,-),f")y V' eB,
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RKBS properties

Using the
<f7g,>3 = g/(f)a (f€B>g,€B/)
notation
k(-,x)e B (Vxe X), f(x)=(f,k(-,x))y VfeB,
k(x,-)eB (¥xeX), f'(x) = (k(x,-),f")y V' eB,
B = span{k(x,-), x € X}, B' = span{k(-,x), x € X},
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RKBS properties

Using the
<f7g,>3 = g/(f)a (f€B>g,€B/)
notation
k(-,x)e B (Vxe X), f(x)=(f,k(-,x))y VfeB,
k(x,-)eB (¥xeX), f'(x) = (k(x,-),f")y V' eB,
B = span{k(x,-), x € X}, B' = span{k(-,x), x € X},
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.

@ No inner product on B = an r.k. can be an arbitrary function.
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.

@ No inner product on B = an r.k. can be an arbitrary function.
o For specific RKBSs':

TUniformly Fréchet differentiable and uniformly convex.
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.

@ No inner product on B = an r.k. can be an arbitrary function.
o For specific RKBSs':

o 'Riesz representation theorem' exists,

TUniformly Fréchet differentiable and uniformly convex.
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.

@ No inner product on B = an r.k. can be an arbitrary function.
o For specific RKBSs':

o 'Riesz representation theorem' exists,
o ko G: X xX —>Rs.ip.

TUniformly Fréchet differentiable and uniformly convex.
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Pecularities of RKBS-s

@ Different RKBSs can have the same r.k.

@ No inner product on B = an r.k. can be an arbitrary function.
o For specific RKBSs':

o 'Riesz representation theorem' exists,

o ko G: X xX —>Rs.ip.

o pup = §, k(-,x)dP(x) € B’ [Sriperumbudur et al., 2011].
—

eB’

TUniformly Fréchet differentiable and uniformly convex.
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RKBS: computational intractability

Key for RKHS J{:

d2(P,Q) = L L k(x,y)A(® — Q) ()P — Q)(y).
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RKBS: computational intractability

Key for RKHS J{:

d2(P,Q) = L L k(x,y)A(® — Q) ()P — Q)(y).

For RKBS B:

@ dj: not expressible in terms of k(x,y),
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RKBS: computational intractability

Key for RKHS J{:

d2(P,Q) = L L k(x,y)A(® — Q) ()P — Q)(y).

For RKBS B:
@ dj: not expressible in terms of k(x,y),

@ associated distances and estimators: no closed form
expressions.
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MMD: finished
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Covariance operator
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Idea: (un)centered cross-covariance

C;’y =E, [XyT] ,

u: uncentered, c: centered.
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Idea: (un)centered cross-covariance

Cly =B |7 ] 5 =By [(x—E0) (y —E)7],

u: uncentered, c: centered.
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Idea: (un)centered cross-covariance

Cly =B |7 ] 5 =By [(x—E0) (y —E)7],
Coy = Ex [p(x) @9(y)],

u: uncentered, c: centered.
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Idea: (un)centered cross-covariance

Cly =B |7 ] Ch =By [(x—E) (y —Ey) 7],
Cly =By [ @U()], G = Bny [(0(x) ~ Exp() @ (¥(y) ~ Eyu(y))]

u: uncentered, c: centered.

Zoltan Szabé Structured Data: Dependency, Testing



Idea: (un)centered cross-covariance

Cly =B |7 ] Ch =By [(x—E) (y —Ey) 7],
Cly =By [ @U()], G = Bny [(0(x) ~ Exp() @ (¥(y) ~ Eyu(y))]

u: uncentered, c: centered. In short, xy " — ©(x) @ (y).
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Preview

Co = Exy [(p(x) = Exip(x)) ® ((y) — Eyib(y))]

encodes the dependency of x and y.
o C;, =0« x Ly forrich Hy, H,.
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Preview

Co = Exy [(p(x) = Exip(x)) ® ((y) — Eyib(y))]

encodes the dependency of x and y.
o C;, =0« x Ly forrich Hy, H,.
e HSIC(x,y) = | C)fyHHS. ||| ys: extension of Frobenius norm.
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Preview

Co = Exy [(p(x) = Exip(x)) ® ((y) — Eyib(y))]

encodes the dependency of x and y.
o C;, =0« x Ly forrich Hy, H,.
e HSIC(x,y) = | C)fyHHS. ||| ys: extension of Frobenius norm.
@ HSIC(x,y): It will be easy to estimate. KCCA alternative.
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Preview

Csy = Exy [(p(x) = Exo(x)) ® (¥(y) — Eyi(y))]

encodes the dependency of x and y.
o C;, =0« x Ly forrich Hy, H,.
e HSIC(x,y) = | C)fyHHS. ||| ys: extension of Frobenius norm.
@ HSIC(x,y): It will be easy to estimate. KCCA alternative.

What is ¢(x) ® ¢ (y) and |- 4s?
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Intuition of a® b, a := p(x) € Hy, b:

o If aec R, be R%, then ab’ € R%:*%,
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Intuition of a® b, a := p(x) € Hy, b:

o If aec R, be R%, then ab’ € R%:*%,

e For g e R®
(7) = 4(07)
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Intuition of a® b, a := p(x) € Hy, b:

o If aec R, be R%, then ab’ € R%:*%,

e For g e R®
(abT) g=a (ng) — a(b,g) e R%,

ab” : R% — R linear mapping.
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Intuition of a® b, a := p(x) € Hy, b:

o If aec R, be R%, then ab’ € R%:*%,

e For g e R®
(abT) g=a (ng) — a(b,g) e R%,

ab” : R% — R linear mapping.

o Alternatively
R>fT (abT> g = (fTa) (ng>

ab” i R% x R% — R bilinear form.
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Intuition of a® b, a := p(x) € Hy, b:

o If aec R, be R%, then ab’ € R%:*%,

e For g e R®
(abT) g=a (ng) — a(b,g) e R%,

ab” : R% — R linear mapping.

o Alternatively
RsfT (abT) g = (fTa) (ng) = (f,a) (g, b)

ab” i R% x R% — R bilinear form.
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Definition of a® b, H; ® H>,

o Given: Hy, H, Hilbert spaces.
@ a®b: (f,g) e Hy x Hp — R is the bilinear form:

(a®b)(f7g) = <f7 a)?ﬁ <g7 b>ﬂ{2 :
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Definition of a® b, H; ® H>,

o Given: Hy, H, Hilbert spaces.
@ a®b: (f,g) e Hy x Hp — R is the bilinear form:

(a®b)(f7g) = <f7 a)?ﬁ <g7 b>ﬂ{2 :

@ Finite linear combinations of a ® b-s:

L= {Z c,-(a,-@b,-),c,- eR,a; € Hq, b € g’fg} .
i=1
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Definition of a® b, H; ® H>,

Given: Hq, H, Hilbert spaces.
a®b: (f,g) e Hy x Hy — R is the bilinear form:

(a®b)(f7g) = <f7 a)?ﬁ <g7 b>ﬂ{2 :

Finite linear combinations of a ® b-s:

L= {Z c,-(a,-@b,-),c,- eR,a; € Hq, b € g’fg} .

i=1

Define inner product on £, extended by linearity

(a1 ® b1, a2 ® by) := (a1, a2)qq, (b1, b2) g, -
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Definition of a® b, H; ® H>,

Given: Hq, H, Hilbert spaces.
a®b: (f,g) e Hy x Hy — R is the bilinear form:

(a®b)(f7g) = <f7 a)?ﬁ <g7 b>ﬂ{2 :

Finite linear combinations of a ® b-s:

L= {Z c,-(a,-@b,-),c,- eR,a; € Hq, b € g’fg} .
i=1

Define inner product on £, extended by linearity

(a1 ® b1, a2 ® by) := (a1, a2)qq, (b1, b2) g, -

H1 ® Hy: completion of L.
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a®..Qay, Hi® ... Hy would work similarly

Tensor product of M Hilbert spaces:

M
(21®...®am) (hy,- - ) = | (am, A,

m=1
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a®..Qay, Hi® ... Hy would work similarly

Tensor product of M Hilbert spaces:

=

(01®...®@aw) (1, ) = [ | (@ b,

3
Il
—

=

(@M 12m ®1bm) = [ | (am: b, -

3
Il
fut

= HSIC for M-variables.
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(-,-): well-defined, pos. definite [Reed and Simon, 1980]

Well-defined: (), ') is expansion-independent, i.e.
M=) Gai®bi=X =) ca®b
i J

(0. XY 2 (20,X)
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(-,-): well-defined, pos. definite [Reed and Simon, 1980]

Well-defined: (), ') is expansion-independent, i.e.
M=) Gai®bi=X =) ca®b
i J

AL X)L 0 X) & (M =2, XY 20 (VN eL).
=0
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(-,-): well-defined, pos. definite [Reed and Simon,

Well-defined: (), ') is expansion-independent, i.e.
M=) Gai®bi=X =) ca®b
i J

AL X)L 0 X) & (M =2, XY 20 (VN eL).
=0

o In other words n = 0 = (n, Ny =0, VN e L.

Zoltan Szabé Structured Data: Dependency, Testing



(-,-): well-defined, pos. definite [Reed and Simon, 1980]

Well-defined: (), ') is expansion-independent, i.e.
M=) Gai®bi=X =) ca®b
i J

AL X)L 0 X) & (M =2, XY 20 (VN eL).
=0

o In other words n = 0 = (n, Ny =0, VN e L.
o N:=),die®f,

(0,\) = <O,Zd;e;® fi> = Zdi (0,ei®f;) = 0.

=0(e;,f;)=0
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(-,-) is positive definite

@ Goal: (\,\)=0=\X=0.
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(-,-) is positive definite

@ Goal: (\,\)=0=\X=0.
° \:i=>.¢a®bj, A:=span{(aj)} < Hy, B := span{(b;)} < Hy.
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(-,-) is positive definite

@ Goal: (\,\)=0=A=0.
° \:i=>.¢a®bj, A:=span{(aj)} < Hy, B := span{(b;)} < Hy.
@ (o) := ONB for A, (53;) := ONB for B.
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(-,-) is positive definite

@ Goal: (\,\)=0=A=0.

° \:i=>.¢a®bj, A:=span{(aj)} < Hy, B := span{(b;)} < Hy.
@ (o) := ONB for A, (53;) := ONB for B.

@ a; € A, bj € B hence

A= Zcijai®,3ja

i7j

<)\a >\> = <Z Cijxj @5]72 Cuv iy ®6v>

ij u,v
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(-,-) is positive definite

@ Goal: (\,\)=0=A=0.

A= Y,6a®b;, A:=span{(aj)} < Hy, B := span{(b;)} < Hy.
@ (o) := ONB for A, (53;) := ONB for B.
@ a; € A, bj € B hence

A= Zcijai®,3ja

iJ
<)\a >\> = <Z Cijxj @5]72 CuvQy ®6v>

= Z CijCuv al®617aU7®ﬁV>

7] u,v
<O‘hﬂu>j—(1 <ﬁj75v>9{2 =00,
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(-,-) is positive definite

@ Goal: (\,\)=0=A=0.

A= Y,6a®b;, A:=span{(aj)} < Hy, B := span{(b;)} < Hy.
@ (o) := ONB for A, (53;) := ONB for B.
@ a; € A, bj € B hence

A= Zcijai®,3ja

iJ
<)\a >\> = <Z Cijxj @5]72 CuvQy ®6v>

= Z CijCuv a,@BJyQU7®ﬁV> = ZC’?J'

ij
(aiau)gq <ﬁj75v>9{2 =6iudjy

7leV
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(-,-) is positive definite

@ Goal: (\,\)=0=A=0.

A= Y,6a®b;, A:=span{(aj)} < Hy, B := span{(b;)} < Hy.
@ (o) := ONB for A, (53;) := ONB for B.
@ a; € A, bj € B hence

A= Zcijai®,3ja

iJ
<)\a >\> = <Z Cijxj @5]72 CuvQy ®6v>

= Z CijCuv a,@BJyQU7®ﬁV> = ZC’?J'

ij
(aiau)gq <Bj76v>i}f2 =6iudjy

7leV

@ Inshort, (\,A\) = 0= ¢;; =0 (Vi,j), i.e. A\=0.
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Tensor product of RKHSs

Theorem ([Berlinet and Thomas-Agnan, 2004])
o Given: Hy1 = Hy, Ho = Hy RKHSs with kernel k and £.
@ Then Hi ® Ho is RKHS with kernel

k@L: (X xY)x (X x)Y) >R,
(k®£) ((X17y1)7 (X27y2)) = k(X17X2)£(YI7Y2)’
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Tensor product of RKHSs

Theorem ([Berlinet and Thomas-Agnan, 2004])
o Given: Hy1 = Hy, Ho = Hy RKHSs with kernel k and £.
@ Then Hi ® Ho is RKHS with kernel

k@L: (X xY)x (X x)Y) >R,
(k®£) ((X17y1)7 (X27y2)) = k(X17X2)£(YI7Y2)’

Intuition:
@ inner product on X and ) — inner product on X x ).

@ X = animal images, ) = descriptions of animals.
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@ a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
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@ a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
o It will descend to its expectation (Cy, = HSIC).
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a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
It will descend to its expectation (Cyj, = HSIC).

(e), (f): canonical basis in R%, R%.

HS operators: extensions of L € R%2*% with

L3 = Le, |2
IL)2 ZH e |

it" column of L
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a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
It will descend to its expectation (Cyj, = HSIC).

(e), (f): canonical basis in R%, R%.

HS operators: extensions of L € R%2*% with

=21 te, [z =22

it" column of L
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a® b: defined; 'nice’ operator (HS:=Hilbert-Schmidt).
It will descend to its expectation (Cyj, = HSIC).

(e), (f): canonical basis in R%, R%.

HS operators: extensions of L € R%2*% with

L)z = Z | Lt 5= Z ;uefﬁ = Z L3

it" column of L
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Hilbert-Schmidt operators: quick summary

@ An L : H; — H, bounded linear operator is called Hilbert-Schmidt if

2 2
ILIZs =), ILeily, <o
2
:ZJ.<LE,',6'>%2
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Hilbert-Schmidt operators: quick summary

@ J(1,H5: separable Hilbert spaces. (€;)ics, (f;)jes: ONB in Hy, Ho.
@ An L : H; — H, bounded linear operator is called Hilbert-Schmidt if

2 2
ILIZs =), ILeily, <o
2
:ZJ.<LE,',6'>%2

Zoltan Szabé Structured Data: Dependency, Testing



Hilbert-Schmidt operators: quick summary

@ J(1,H5: separable Hilbert spaces. (€;)ics, (f;)jes: ONB in Hy, Ho.
@ An L : H; — H, bounded linear operator is called Hilbert-Schmidt if

2 2
ILFs =), ILeild, <.
2
:ZJ.<LE,',6'>%2
@ Inner product on Ly, Ly € HS(3H;,H>)

<L1, L2>HS = Z <L1€,‘, L2€,’>9{2 .

1

Zoltan Szabé Structured Data: Dependency, Testing



Hilbert-Schmidt operators: quick summary

@ J(1,H5: separable Hilbert spaces. (€;)ics, (f;)jes: ONB in Hy, Ho.
@ An L : H; — H, bounded linear operator is called Hilbert-Schmidt if

2 2
ILIZs =), ILeily, <o
2
:ZJ.<LE,',6'>%2

@ Inner product on Ly, Ly € HS(3H;,H>)

(L1, Lo) s i= Z (Liei, Loei)gg, -

1

e HS(Hj,3H,): Hilbert space.
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Hilbert-Schmidt operators: notes

@ Hy,Hy: separable = I, J: countable, i.e. 'sums’.
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Hilbert-Schmidt operators: notes

@ Hy,Hy: separable = I, J: countable, i.e. 'sums’.

o (Ly,Lp)ys: well-defined (independent of the chosen basis).
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Hilbert-Schmidt operators: notes

@ Hy,Hy: separable = I, J: countable, i.e. 'sums’.
o (Ly,Lp)ys: well-defined (independent of the chosen basis).

o For RKHSs (%;): X separable, k: continuous = H:
separable [Steinwart and Christmann, 2008].
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a® b is Hilbert-Schmidt: linear & bounded

For a® b with ae€ Hy, be Hy:
@ linearity: v/

@ boundedness (c € H»):

[(@® b)cls, = [a (b, ), |,
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a® b is Hilbert-Schmidt: linear & bounded

For a® b with ae€ Hy, be Hy:
@ linearity: v/

@ boundedness (c € H»):

[(@® b)clge, = [a(b, s, g, = (b C)agy lalag,

Zoltan Szabdé Structured Data: Dependency, Testing



a® b is Hilbert-Schmidt: linear & bounded

For a® b with ae€ Hy, be Hy:
@ linearity: v/

@ boundedness (c € H»):
[(a®b)clly, = Ha b, S)ag, e, = (b, )ag, | lallsg,

< [Bll3¢, [ €lac, [ all 3¢,
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a® b is Hilbert-Schmidt: linear & bounded

For a® b with ae€ Hy, be Hy:
@ linearity: v/

@ boundedness (c € H»):
[(a®b)clly, = Ha b, S)ag, e, = (b, )ag, | lallsg,

< [Bll3¢, [ €lac, [ all 3¢,

Thus la® b]| < [afls, [bls, < .
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a® b is a Hilbert-Schmidt operator

Let (e,-),-e/ c H, ONB,

lo® blis = 3. |2 e,

Hy
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a® b is a Hilbert-Schmidt operator

Let (e,-),-e/ c H, ONB,

2

5 Z Ha(b, €i)se,

l2® bl%s = 3| (a® be 2

Ha
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a® b is a Hilbert-Schmidt operator

Let (e,-),-e/ c H, ONB,
2

5 Z Ha(b, €i)se,

2 2
= Jall5e, D, (b, €&)gq,|” < 0.
i

—_—
|6l

l2® bl%s = 3| (a® be 2

Ha
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Uncentered cross-covariance operator

C)?y = Exy[SO(X) ®@Z)(Y)] € HS (He, Hi) -
€HS (Hy,H1)
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Uncentered cross-covariance operator

C)?y = Exy[SO(X) ®@Z)(Y)] € HS (He, Hi) -
€HS (Hy,H1)

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
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Uncentered cross-covariance operator

C)?y = Exy[SO(X) ®@Z)(Y)] € HS (He, Hi) -
€HS (Hy,H1)

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
@ Bochner integral: 3C¢, < Ky [lo(x) @ (y)|ys < 0.
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Uncentered cross-covariance operator

C)?y = Exy[SO(X) ®@Z)(Y)] € HS (He, Hi) -
€HS (Hy,H1)

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
@ Bochner integral: 3C¢, < Ky [lo(x) @ (y)|ys < 0.

° [w(x) @Y(W)lns = le()lae, [¥ ()]s,
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Uncentered cross-covariance operator

Cry = Exy [ p(x) @ ¢(y) | € HS (3o, Hi) -
€HS (30, 3x)

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
o Bochner integral: 3Cy, < Eyy[lo(x) @ 1(y)|ys < 0.

o () @v(¥)lns = le(¥)lag, [ )lse, = v/ k6 )1/ Uy, y)-
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Uncentered cross-covariance operator

Cry = Exy [ p(x) @ ¢(y) | € HS (3o, Hi) -
€HS (30, 3x)

@ 'Same’ construction as up: we changed Hy to HS (H,, Hy).
o Bochner integral: 3Cy, < Eyy[lo(x) @ 1(y)|ys < 0.

o () @v(¥)lns = le(¥)lag, [ )lse, = v/ k6 )1/ Uy, y)-

@ Sufficient condition: k and ¢ are bounded.
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Centered covariance operator [Baker, 1973]

Let fix = pp,, py 1= pp,.

G5 = Euy| (#0) ~ Bxplx)) ® (0(0) - B0 (1) )|
Hx Hy
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Centered covariance operator [Baker, 1973]

Let fix = pp,, py 1= pp,.

€5 = By | (9(x) — Exp(x)) ® (4(y) — Eyv(y)) |

N—— ¥VJ
Hx Iy
=Ey [e(x) @U(y)] — px @y € HS(Hy, Hy).
v~ %/—/
C;’YEHS(J‘CQ,J{;() eHS(H,Hk)
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Hilbert-Schmidt independence criterion (HSIC)

HSIC [Fukumizu et al., 2004, Gretton et al., 2005a]:

HSIC (x,y; Hi, Hye) == | C y“HS
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Hilbert-Schmidt independence criterion (HSIC)

HSIC [Fukumizu et al., 2004, Gretton et al., 2005a]:

HSIC (x,y; Hi, Hye) == | C y“HS

It characterizes independence:
o X.Y: compact metric,
@ k, ¢: universal.
@ Then HSIC(x,y; Hy,Hy) =0< x L y.
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How do covariance operators encode covariance?

Let ge Hy, f e Hyg, HS = HS(U‘C(,J‘C;().

(f, Cxuyg>f}{k: (Co F®E)ps

Cheating:
@ next slide.
@ Enough f € Hq, g€ Hp, Le HS (Hy, Hy)

(f,L&)se, = (L, f ® &) s (3e,.900)
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How do covariance operators encode covariance?

Let ge Hy, f e Hyg, HS = HS(U‘C(,J‘C;().

(f, Co8)a, = (Co T ®8) s = (Bxylo(x) ®U(Y)], f @ &) s

Cheating:
@ next slide.
@ Enough f e Hq, g€ Hp, Le HS (Hy, Hy)

(f,L&)se, = (L, f ® &) ns(3e,.900)

Zoltan Szabé Structured Data: Dependency, Testing



How do covariance operators encode covariance?

Let ge Hy, f e Hyg, HS = HS(U‘C(,J‘C;().

(f, Co8)a, = (Co T ®8) s = (Bxylo(x) ®U(Y)], f @ &) s
=Eqy (p(x) ®@Y(y), f ® &) s

=f(x)g(y)

Cheating:
@ next slide.
@ Enough f e Hq, g€ Hp, Le HS (Hy, Hy)

(f,L&)se, = (L, f ® &) ns(3e,.900)
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How do covariance operators encode covariance?

Let ge Hy, f e Hyg, HS = HS(U‘C(,J‘C;().

(f, Co8)a, = (Co T ®8) s = (Bxylo(x) ®U(Y)], f @ &) s
=By (p(x) @Y(y), f ® &) ps = Exy [F(x)g(y)].

=f(x)g(y)

Cheating:
@ next slide.
@ Enough f e Hq, g€ Hp, Le HS (Hy, Hy)

(f,L&)se, = (L, f ® &) ns(3e,.900)
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Statement: with f € H1, g € Hp, L e HS (Hy, Hy)

(f,Lg)ge, = (L. f ® &) s (3¢, 30,)-

Proof: (b;j)je; ONB in Hy,

(F, Lo, = (F. LZ (g, b >
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Statement: with f € H1, g € Hp, L e HS (Hy, Hy)
(f,Lg)ge, = (L. f ® &) s (3¢, 30,)-

Proof: (b;j)je; ONB in Hy,

(F, Lo, = (F. L3 et s, 1), = D8 B (F Lok,

i
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Statement: with f € H1, g € Hp, L e HS (Hy, Hy)

(f,Lg)ge, = (L. f ® &) s (3¢, 30,)-

Proof: (b;j)je; ONB in Hy,
(F, Lo, = (F. LZ (8. bi)uc, bi), = D (& bidae, (F. Lbibyg

=2 (Lbi, (F @ 8)bi) s
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Statement: with f € H1, g € Hp, L e HS (Hy, Hy)

(f,Lg)ge, = (L. f ® &) s (3¢, 30,)-

Proof: (b;j)je; ONB in Hy,
(F, Lo, = (F. LZ (8. bi)uc, bi), = D (& bidae, (F. Lbibyg

2 3Ly (FO@)bus X (L F®8)us
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Statement: with f € H1, g € Hp, L e HS (Hy, Hy)

(f,Lg)ge, = (L. f ® &) s (3¢, 30,)-

With L:=a® b

(a® b, f @ &) ps(,30) = (F(a® b)g)g,
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Statement: with f € H1, g € Hp, L e HS (Hy, Hy)

(f,Lg)ge, = (L. f ® &) s (3¢, 30,)-

With L:=a® b
(a® b, f ® &) pse,90) = (F- (@@ b)g)y, 2 (a, flac, (b:8)gc, -

Remember: we have seen this fora=f, b =g.
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Effect of the centered cross-covariance operator

Using that C5, = Cj — ux ® py

<f’ C)fyg>j{k = <f7 C)?yg>g.(k - <f7 (:U’X ® My)g>{}fk
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Effect of the centered cross-covariance operator

Using that C5, = Cj — ux ® py

(£, C58) 0, = (F, Co8)ag, — (F (1ix ® p1y)g)ag,
© By [F()g(y)] = (F 1), (& 1ty s,

Exf(x) Eyg(y)
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Effect of the centered cross-covariance operator

Using that C5, = Cj — ux ® py

(£, C58) 0, = (F, Co8)ag, — (F (1ix ® p1y)g)ag,
© By [F()g(y)] = (F 1), (& 1ty s,

Exf(x) Eyg(y)
= cov(f(x),g(y))-
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o KCCA formulation: using C§,, C§

(o}
Xy =xx ny'
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e KCCA formulation: using Cg,, Cg., CJ.

o HSIC: captures Py, < PP, in 3 @ H,.
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e KCCA formulation: using Cg,, Cg., CJ.
o HSIC: captures Py, < PP, in 3 @ H,.

@ Link to distance covariance, energy distance.

In other words, ... )
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KCCA formulation with cross-covariance operators

prccal(x,y) = sup  corr(f(x),g(y))
feﬂ-fk,geﬂ-fg
f,CE f =1,
sup <f, nyg>j{ s.t. < X:: >j{k
feH,geH, k <g’ nyg>j{£ = 1
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KCCA: with k-regularization

prcca(x,y,k) = sup  corr(f(x),g(y); k),
feﬂ{k,geﬂ{g

COVXy(f(X)7 g(y))
2 a2
var £(x) + 15 ||\ /vary g(y) + s el

corr(f(x), g(y); k) = \/
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KCCA: with k-regularization

prcca(x,y,k) = sup  corr(f(x),g(y); k),
feﬂ{k,geﬂ{g

COVXy(f(X)7 g(y))
2 a2
var £(x) + 15 ||\ /vary g(y) + s el

corr(f(x), g(y); k) = \/

Empirically,
. (£ (Carn)f) =1,
sup <f, C)fyg> s.t. — T
FEH g€, Hi <g, (C;y + ml) g>}f =1
¢
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KCCA: with k-regularization

prcca(x,y,k) = sup  corr(f(x),g(y); k),
feﬂ{k,geﬂ{g

COVXy(f(X)a g(y))
2 a2
var £(x) + 15 ||\ /vary g(y) + s el

corr(f(x), g(y); k) = \/

Empirically,

<f, (Exc: n m/) f>g{ _1,
k

<g, (E}f\y + /@I) g> =1

He

sup <f ch> s.t.
Fett,gett, N 09

KCCA consistency analysis [Fukumizu et al., 2007]

using this formulation & the convergence of C5,, Cg, Cy,.
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HSIC: P,, = PP, in 3, ® H;

We saw
o h((x,y),(xX,y") = k(x,x")l(y,y’) is a kernel on H; ® H,. Let

HMPXy B “Pxpy H'Hh
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HSIC: P,, = PP, in 3, ® H;

We saw
o h((x,y),(xX,y") = k(x,x")l(y,y’) is a kernel on H; ® H,. Let

iy = 1122, 5, = | By [k (1,30 £(2,9)] = Bap, [K (1,%) £ (2,y)]

J

Hhp

~—

Evy [0(0)@0(y)] Bk (- X)®Ey £(-,y)
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HSIC: P,, = PP, in 3, ® H;

We saw
o h((x,y),(xX,y") = k(x,x")l(y,y’) is a kernel on H; ® H,. Let

iy = 1122, 5, = | By [k (1,30 £(2,9)] = Bap, [K (1,%) £ (2,y)]

J

Hhp

~— ~—

Exy [p(x)@(y)] Exk(-x)®E,£(-.y)
= HExy [SD(X) ® ¢(Y)] — Hx ® /‘y”g{h
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HSIC: P,, = PP, in 3, ® H;

We saw
o h((x,y),(xX,y") = k(x,x")l(y,y’) is a kernel on H; ® H,. Let

i, = 15, [gg, = | By U (1,%) £ (2, )] =B, Tk (1,0 € (2,0)] |

b
~ ~ h

Exy [0 (x)@(y)] Exk(-x)®E,£(-y)
= |Exy [(x) @ ¥(y)] — 1x ® by [, = HSIC(x, y)

using Hy ® Ho ~ HS(Ho, H;y).
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HSIC: P,, = PP, in 3, ® H;

We saw
o h((x,y),(xX,y") = k(x,x")l(y,y’) is a kernel on H; ® H,. Let

i, = 15, [gg, = | By U (1,%) £ (2, )] =B, Tk (1,0 € (2,0)] |

~" - h

Evy [0(0)@0(y)] Bk (- X)®Ey £(-,y)
= |Exy [(x) @ ¥(y)] — 1x ® by [, = HSIC(x, y)

using Hy ® Ho ~ HS(Ho, H;y).
@ We saw: universal k and ¢ capture independence.
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HSIC: P,, = PP, in 3, ® H;

We saw
o h((x,y),(xX,y") = k(x,x")l(y,y’) is a kernel on H; ® H,. Let

i, = 15, [gg, = | By U (1,%) £ (2, )] =B, Tk (1,0 € (2,0)] |

~" - h

Evy [0(0)@0(y)] Bk (- X)®Ey £(-,y)
= |Exy [(x) @ ¥(y)] — 1x ® by [, = HSIC(x, y)

using Hy ® Ho ~ HS(Ho, H;y).
@ We saw: universal k and ¢ capture independence.
@ Above = h = k ® /¢ characteristic is enough.
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HSIC: P,, = PP, in 3, ® H;

We saw
o h((x,y),(xX,y") = k(x,x")l(y,y’) is a kernel on H; ® H,. Let

i, = 15, [gg, = | By U (1,%) £ (2, )] =B, Tk (1,0 € (2,0)] |

~" - h

Evy [0(0)@0(y)] Bk (- X)®Ey £(-,y)
= |Exy [(x) @ ¥(y)] — 1x ® by [, = HSIC(x, y)

using Hy ® Ho ~ HS(Ho, H;y).

@ We saw: universal k and ¢ capture independence.

@ Above = h = k ® /¢ characteristic is enough.

o [Gretton, 2015] (a bit weaker result): k, ¢ characteristic,
translation-invariant, cp-kernels = HSIC: v
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢ .
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢ .
o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:

xly<e ¢y =0odcdy, (xe Rdl,ye Rd2).
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢ .
o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:

xly<e ¢y =0odcdy, (xe Rdl,ye Rd2).

o L2, norm of ¢y, and ¢x¢y:

dCov(x,y) = H(bxy - ¢x¢yHL§V
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢ .
o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:

xly<e ¢y =0odcdy, (xe Rdl,y € Rd2).
e [2 norm of bxy and oy, a € (0,2):

dCov(x,y) = |¢xy — ¢x¢yHL§V
1

c(di, @)c(da, a) a5 bl

w (a, b) =
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢ .
o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:

xly<e ¢y =0odcdy, (xe Rdl,y € Rd2).
e [2 norm of bxy and oy, a € (0,2):
dCov(x,y) = ||xy — ¢X¢yHL3V

(a,b) !

wia, = e a’
c(di, a)c(do, ) |a| ST b & *

2rar (1—9)

a2eT (452)

c(d,a) =
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Distance covariance

o Characteristic functions: ¢y, ¢x, ¢ .
o Idea [Székely et al., 2007, Székely and Rizzo, 2009]:

xly<e ¢y =0odcdy, (xe Rdl,y € Rd2).
e [2 norm of bxy and oy, a € (0,2):
dCov(x,y) = ||xy — ¢X¢yHL3V

(a,b) !

wia, = e a’
c(di, a)c(do, ) |a| ST b & *

2rar (1—9)

a2eT (452)

C(d7 Oé) =
e x Ly iff. dCov(x,y) =0.
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Distance covariance: a =1

Alternative form in terms of pairwise distances:

dC0V2(X,Y) = ExyExy ‘X - X/HzHy - y/H2 + B
—2E,y [Ex y — y’H2] )

X_X/H2EW’ y—y’“z

X — XIHQEy’
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Distance covariance: a =1

Alternative form in terms of pairwise distances:

dC0V2(X,Y) = ExyExy ‘X - X/HzHy - y/H2 + B
—2E,y [Ex y — y’H2] )

X = Xl”z By

y =1,

X — XIHQEy’

Extension [Lyons, 2013]:

dCov®(x,y) = ExyByryipr (x,X ) p2 (v.y') + B (%, X) Eyyr (v, ')
- 2IExy [Ex’pl (X7X/) ]E’y’p2 (yay/)] )
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Distance covariance: a =1

Alternative form in terms of pairwise distances:

dC0V2(X,Y) = ExyExy ‘X - X/HzHy - y/H2 + B
—2E,y [Ex y — y’H2] )

X = Xl”z By

y =1,

X — XIHQEy’

Extension [Lyons, 2013]:

dCov®(x,y) = ExyByryipr (x,X ) p2 (v.y') + B (%, X) Eyyr (v, ')
- 2IExy [Ex’pl (X7X/) ]E’y’p2 (yay/)] )

(X, p1), (¥, p2): metric spaces of negative type.
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Distance covariance vs. HSIC

dCov? (x,y) = IEXyIEX'y’:Ol (X7 X,) P2 (Y7 y/) + Exx p1 <X7 X/) Eyy’p2 (% y/)
— 2By [Expr (x, %) Eyrp2 (v,¥')] -
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Distance covariance vs. HSIC

dCov? (x,y) = IEXyIEX'y’:Ol (X7 X,) P2 (Y7 y/) + Exx p1 <X7 X/) Eyy’p2 (% y/)
— 2By [Expr (x, %) Eyrp2 (v,¥')] -

Recall:

HS/CZ(X, )/) = Il“—-ﬂxyIE:x’y’k(Xa X/)E(Ya y/) + IEXx’k(x’ X/)Eyy’g()/a y/)
— 2E,, [Ex/k(x, X’)Eylﬁ(y,y')] )

Zoltan Szabé Structured Data: Dependency, Testing



spec. - .
HSIC = distance covariance

~+extension to semi-metric spaces of negative type:

Theorem ([Sejdinovic et al., 2013b])

dCov?(x,y; p1, p2) = 4HSIC?(x, y; Hy, Hy), where

p1(x,x') = k(x,x) + k(x', x") — 2k(x, x"),
p2(y,y') = Uy, y) + Ly, y') = 2Ly, y').
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Metric space

p: X x X —[0,400) is a metric on X if
° p(x,y) =0 x=y.
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Metric space

p: X x X —[0,400) is a metric on X if

° p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.
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Metric space

p: X x X —[0,400) is a metric on X if

° p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.

e Triangle inequality: p(x,z) < p(x,y) + p(y, z) for
Vx,y,ze X.
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Metric space

p: X x X —[0,400) is a metric on X if

° p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.

e Triangle inequality: p(x,z) < p(x,y) + p(y, z) for
Vx,y,ze X.

Examples:
1

d
o X =R p(x,y) = HX—YHP = (Zi:l ‘Xi—yi’p>pv p=1
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Metric space

p: X x X —[0,400) is a metric on X if

° p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.

e Triangle inequality: p(x,z) < p(x,y) + p(y, z) for
Vx,y,ze X.

Examples:
1

o X =R, p(x,y) = Ix = yl, = (Liy v - yilP) ", p > 1.
o X = C[a,b], plx,y) = max,epap Ix(2) — y(2).
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Metric space

p: X x X —[0,400) is a metric on X if

° p(x,y) =0 x=y.
e Symmetry: p(x,y) = p(y, x) for Vx,y € X.

e Triangle inequality: p(x,z) < p(x,y) + p(y, z) for
Vx,y,ze X.

Examples:
1

d
o X =R p(x,y) = HX—YHP = (Zi:l ‘Xi—yi’p>pv p=1

o X = Clab], p(x,y) = maxzefap X(2) = ¥(2)].
® X any set. p(x,y) = Ox—y.
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Semi-metric space: no triangle inequality

p: X xX —[0,400) is a semi-metric on X if

° p(x,y) =0ex=y.
e symmetry: p(x,y) = p(y,x), for Vx,y € X.
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Semi-metric space: no triangle inequality

p: X xX —[0,400) is a semi-metric on X if

° p(x,y) =0ex=y.
e symmetry: p(x,y) = p(y,x), for Vx,y € X.

It is called negative type if in addition

Z Z ajajp(xi,xj) <0

i=1j=1

for Vn =2, ¥x1,...,x, € X and Vay,...,a, € R with 7 ; a; = 0.
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
@ < description: dm : X — H (ilbert) injective mapping such
that

p(x,y) = [m(x) — m(y)|3.
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
@ < description: dm : X — H (ilbert) injective mapping such
that

p(x,y) = [m(x) — m(y)|3.

Thus,
@ 2nd part = (Rda HH%) v
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
@ < description: dm : X — H (ilbert) injective mapping such
that

p(x,y) = [m(x) — m(y)|3.
Thus,

@ 2nd part = (Rda HH%) v
o +1st part = p(x,y) = |x — y|] v with g€ (0,2].
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Semi-metric space of negative type

[Berg et al., 1984]:
@ p:v = p?: v forVae (0,1).
@ < description: dm : X — H (ilbert) injective mapping such

that

p(x,y) = [m(x) — m(y)|3.

Thus,
@ 2nd part = (Rd, HH%) v
o +1st part = p(x,y) =[x — y|] v with g € (0,2].
e Specifically: p(x,y) =[x — y|, is OK.

Zoltan Szabé Structured Data: Dependency, Testing



Energy distance [Székely and Rizzo, 2004,

Baringhaus and Franz, 2004, Székely and Rizzo, 2005]

X, X' ~P,y,y ~Q:

EnDist(P,Q) = 2E,, |[x — y|, — Exe

y—y

X_X/Hz_Eyy’ 2
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Energy distance [Székely and Rizzo, 2004,

Baringhaus and Franz, 2004, Székely and Rizzo, 2005]

X, X' ~P,y,y ~Q:

EnDist(P,Q) = 2E,, |[x — y|, — Exe y — y’!
EnDist(P,Q) = 2E,,p (x,y) — Exp (x, x’) —Ey,p (y,y’) )

X_X/Hz_Eyy’ 2
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Energy distance [Székely and Rizzo, 2004,

Baringhaus and Franz, 2004, Székely and Rizzo, 2005]

X, X' ~P,y,y ~Q:

EnDist(P,Q) = 2E,, |[x — y|, — Exe y — y’!
EnDist(P,Q) = 2E,,p (x,y) — Exp (x, x’) —Ey,p (y,y’) )

X_X/Hz_Eyy’ 2

Properties:

e EnDist(P,Q) = 0 with p metric of negative-type.
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Energy distance [Székely and Rizzo, 2004,

Baringhaus and Franz, 2004, Székely and Rizzo, 2005]

X, X' ~P,y,y ~Q:

EnDist(P,Q) = 2E,, |[x — y|, — Exe y — y’!
EnDist(P,Q) = 2E,,p (x,y) — Exp (x, x’) —Ey,p (y,y’) )

X_X/Hz_Eyy’ 2

Properties:
e EnDist(P,Q) = 0 with p metric of negative-type.

e EnDist(P,Q) =0 < P = Q for (X, p) strictly negative
spaces; example: (R?,||-],).
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Strict negativity

In addition:

n n
D1 aiapp(xi, x) < 0

i=1j=1

if x;-s are distinct and Ja; # 0.
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Energy distance vs. MMD

Energy distance:

EnDist(P, Q) = 2Eyyp (x,y) — Exep (x,x") = Eyyp (v, ') -
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Energy distance vs. MMD

Energy distance:
EnDist(P, Q) = 2Eyyp (x,y) — Exep (x,x") = Eyyp (v, ') -
MMD (recall):

MMD?(P,Q) = E, wk(x,x') + E, ,/k(y,y") — 2B,y k(x, ).
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MMD =5 energy distance

Theorem ([Sejdinovic et al., 2013b])

EnDist(P,Q; p) = 2MMD?(P, Q; (),
where

p(x,y) = k(x,x) + k(y,y) — 2k(x, y).

Zoltan Szabé Structured Data: Dependency, Testing



Covariance operator: finished.
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Recall

@ KCCA: independence measure,

prccal(x,y) = sup  corr(f(x),g(y)).
feﬂ{k,geﬂg
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Recall

@ KCCA: independence measure,

prccal(x,y) = sup  corr(f(x),g(y)).
feﬂ{k,geﬂg

@ Mean embedding: distribution representation,

pp = L{ k(-, x)dP(x).

Zoltan Szabé Structured Data: Dependency, Testing



Recall

@ KCCA: independence measure,

prccal(x,y) = sup  corr(f(x),g(y)).
feﬂ{k,geﬂg

@ Mean embedding: distribution representation,
pe = [ KCx)dB ().
X

e MMD: (semi)-metric defined by mean embedding,
MMD(P, Q) = ljue — iglly, -
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Recall

@ KCCA: independence measure,

prccal(x,y) = sup  corr(f(x),g(y)).
feﬂ{k,geﬂg

@ Mean embedding: distribution representation,
pe = [ KCx)dB ().
X

e MMD: (semi)-metric defined by mean embedding,
MMD(P, Q) = ljue — iglly, -

@ Cross-covariance operator:

Co = Exy [0(x) @Y (¥)] — pix ® py-
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Recall

@ KCCA: independence measure,

prccal(x,y) = sup  corr(f(x),g(y)).
feﬂ{k,geﬂg

@ Mean embedding: distribution representation,
pe = [ KCx)dB ().
X

e MMD: (semi)-metric defined by mean embedding,
MMD(P, Q) = ljue — iglly, -

Cross-covariance operator:

Co = Exy [0(x) @ ()] — p1x @ 11y
HSIC: independence measure,

HSIC(x,y) = |

Cols -

Zoltan Szabé Structured Data: Dependency, Testing



No density estimation

Thus,
@ independence measure,
@ distance,
@ inner product

measures/estimates on probability distributions

without density estimation!
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HSIC estimators
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Recall: MMD estimator
LR

’D,‘( .

H

MMDZ(P, Q) =

k(dog;, dOgJ,) k(dog;, fish;)
—

k(fish;, dog;)

12, M ¢

Gpp + Goo — 2Gpg (without diagonals in Gpp, Go.o)
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Text from dogtime.com and petfinder.com

Their noses guide them through life, and
they're never happier than when following
an interesting scent. They need plenty of
exercise, about an hour a day if possible.

A large animal who slings slobber, exudes a
distinctive houndy odor, and wants nothing more
than to follow his nose. They need a significant
amount of exercise and mental stimulation.

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.

Zoltan Szabd
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HSIC intuition: Gram matrices

3
.
‘ J —~ Their noses guide them through life, and ~
they're never happier than when following
X an interesting scent. They need plenty of y

exercise, about an hour a day if possible.

A large animal who slings sloh
distinctive houndy odor, and
than to follow his nose. They
amount of exercise and ment;

v r = Known for their curiosity, intelligence, and
> excellent communication skills, the Javanese
" breed is perfect if you want a responsive,
} interactive pet, one that will blow in your ear
and follow you everywhere.
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HSIC intuition: Gram matrices

3
.
‘ J —~ Their noses guide them through life, and ~
they're never happier than when following
X an interesting scent. They need plenty of y

exercise, about an hour a day if possible.

A large animal who slings sloh
distinctive houndy odor, and
than to follow his nose. They
amount of exercise and ment;

v r = Known for their curiosity, intelligence, and
> excellent communication skills, the Javanese
" breed is perfect if you want a responsive,
} interactive pet, one that will blow in your ear
and follow you everywhere.

Empirical estimate:

S 1 /-~ .
HSIC? = - (G, Gy) .
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Cocktail party: HSIC demo
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ISA reminder

x = As, s=[sl;...;sM],

where s™-s are non-Gaussian & independent.
o Goal: {x;}_; ->W=A""1{s}],,

Zoltan Szabé Structured Data: Dependency, Testing



ISA reminder

x = As, s=[sl;...;sM],

where s™-s are non-Gaussian & independent.
o Goal: {x;}_; ->W=A""1{s}],,

@ Objective function:
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ISA: source, observation

e Hidden sources (s

ARCDEF
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ISA: source, observation

e Hidden sources (

A}'

@ Observation (x):
.:’:';" X3 .""‘. = ::"'-\
. kD ‘f". A
?3.‘& ';.v: ,,\‘@' Ex 1
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ISA: estimated sources using HSIC, ambiguity

e Estimated sources (

%%’* 04DV
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ISA: estimated sources using HSIC, ambiguity

e Estimated sources (

BLO4ADN

o Performance (WA), ambiguity:
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Conjecture: ISA separation theorem [Cardoso, 1998|

@ ISA = ICA + permutation.
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Conjecture: ISA separation theorem [Cardoso, 1998]

o ISA = ICA + permutation. HSIC(5;,5),

Zoltdn Szabé Structured Data: Dependency, Testing



Conjecture: ISA separation theorem [Cardoso, 1998]

o ISA = ICA + permutation. HSIC(5;,5),
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Conjecture: ISA separation theorem [Cardoso, 1998]

o ISA = ICA + permutation. HSIC(5;,5),

@ Basis of the state-of-the-art ISA solvers.
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Conjecture: ISA separation theorem [Cardoso,

o ISA = ICA + permutation. HSIC(5;,5),

@ Basis of the state-of-the-art ISA solvers.
e Sufficient conditions [Szabé et al., 2012]:
o s™: spherical [Fang et al., 1990].
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ISA separation theorem
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Invariance to

@ 90° rotation: f(uy,up) = f(—up,u1) = f(—u1,—uwp) = f(u, —u1).
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ISA separation theorem
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Invariance to

@ 90° rotation: f(uy,up) = f(—up,u1) = f(—u1,—uwp) = f(u, —u1).
@ permutation and sign: f(tu, tup) = f(tu, +uq).
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ISA separation theorem
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Invariance to

@ 90° rotation: f(uy,up) = f(—up,u1) = f(—u1,—uwp) = f(u, —u1).
@ permutation and sign: f(tu, tup) = f(tu, +uq).
o [P-spherical: f(uy,uz) = h (Y, |uilP)

(p>0).
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Another HSIC demo: translation

@ 5-line extracts.
@ kernel: bag-of-words, r-spectrum (r = 5)
@ sample size: n = 10. repetitions: 300.

| =HSIC«= T

= -= = .
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Another HSIC demo: translation

@ 5-line extracts.
@ kernel: bag-of-words, r-spectrum (r = 5)
@ sample size: n = 10. repetitions: 300.

Results:
@ r-spectrum: average Type-ll error = 0 (a = 0.05),
@ bag-of-words: 0.18.

= = = .
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Recall: MMD in terms of kernel evaluations

MMD?(P, Q) = | e — pgl%, =
= EX~P,X’~Pk(Xa X/) + Ey~@,y/~~@k(ya y/)
— 2B« py~0k(X,y).
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Recall: MMD in terms of kernel evaluations

MMD?(P, Q) = | e — pgl%, =
= EX~IF’,X’~IPk(Xa X/) + Ey~@,y/~~@k(ya y/)
— 2B« py~0k(X,y).

Can we rewrite HSIC in terms of expected kernel values?
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HSIC in terms of kernel evaluations [Gretton et al., 2005a]

2
HSIC2(XV _H y“,l-/s ” MX@:“)/HHS
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HSIC in terms of kernel evaluations [Gretton et al., 2005a]

cu 2
HSIC2 (x,¥) H y“,l-/s ” — Mx ®:“)/HH5
=|C yHHs + [ px ®:U’}/HHS <C>?y=MX ®Ny>H5-
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HSIC in terms of kernel evaluations [Gretton et al., 2005a]

cu 2
HSIC2 (x,¥) H y“,l-/s ” — Mx ®:“)/HH5
=|C yHHs + [ px ®:U’}/HHS <C>?y=MX ®Ny>H5-

First term:

1G4 I = (B [(x) @ ()], By [0() @ V()] s

Zoltan Szabé Structured Data: Dependency, Testing



HSIC in terms of kernel evaluations [Gretton et al., 2005a]

cu 2
HSIC2 (x,¥) H y“,l-/s ” — Mx ®:“)/HH5
=|C yHHs + [ px ®:U’YHHS <C>?yvﬂx ®Ny>H5-

First term:
||Cy||H5 (Exy [0(x) @ ¥(y)], Exryr [(x )@tb(y ) s
—ExyEx’y’S ( )®¢( )a ( /> >HS
(0 (x)) g, (D) e,
<el®f17e2®f2>H5(ﬂ'f2,}f1) = <elve2>ﬂ{1 <f17f2>f]-f2 . J
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HSIC in terms of kernel evaluations [Gretton et al., 2005a]

2
HSIC?(x, y) HCyHHs [[e? Mx®MyHH5
= HCyHHstHMx@)NyHHs <C>?vaX®Ny>H5-

First term:
[Ca 12 s = (Exy [0(x) @ V()] Exryr [s0(x )®¢(y ) s
= ExyExryr SSO(X) ®Y(y), p(x /> >HS
() (g, () () ae,
= E,yEyyk(x,x)(y,y").
<el®f17e2®f2>H5(ﬂ'f2,}f1) = <elve2>ﬂ{1 <f17f2>f]-f2 . J
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HSIC: second term

2
lpx ® NyHHS = (ux ® Ly, fx @ Ny>/—/s
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HSIC: second term

2
HMX ®,LLyHHS = <,fo ®Nyvux ®Ny>HS
= <MX7MX>U{/(<M}/TIU‘Y>U‘Q

Zoltan Szabé Structured Data: Dependency, Testing



HSIC: second term

2
HMX ®,LLyHHS = <,fo ®Nyvux ®Ny>HS
= <MX7MX>U{/(<M}/TIU‘Y>U‘Q
= EXX/k(X, X,)Eyylg()/?y,)'
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HSIC: third term

<C)gynu’x ®Hy>H5 = <Exy [@(X) ®¢(_V)], Hx ®:U’)/>H5
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HSIC: third term

<C)gynu’x ®Hy>H5 = <Exy [@(X) ®¢(_V)], Hx ®:U’)/>H5
= Exy (0(x) @Y (y), px ®My>H5

~~

~_ | —

’ NX)j{k <d}()/)a M}’>J-(e

~
E, s k(x,x") ]Eylf(yy}//)

(p(x

-
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HSIC: third term

<C)gynu’x ®Hy>H5 = <Exy [@(X) ®¢(_V)], Hx ®:U’)/>H5
= Exy (0(x) @Y (y), px ®My>H5

’ NX)j{k <d}()/)a M}’>J-(e

~
E, s k(x,x") ]Eylf(yy}//)

= Exy [Ex’k(X7 X/)Ey’e(y7 y/)] .

~_ | —

(p(x

-
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HSIC: after gathering the terms

HSIC?(x,y) = ExyExryrk(x, X )y, y') + Exurk(x, X" )Eyy l(y, y")
— 2B,y [Exk(x,x"E,L(y,y")].
=:a+ b—2c.

Zoltan Szabé Structured Data: Dependency, Testing



HSIC: after gathering the terms

HSIC?(x,y) = ExyExryrk(x, X )y, y') + Exurk(x, X" )Eyy l(y, y")
— 2B,y [Exk(x,x"E,L(y,y")].
=:a+ b—2c.

Idea: given {(x;,yi)}"_; hid Py,

o Let us estimate Cg,, fix, py empirically.
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HSIC: after gathering the terms

HSICz(x,y) =By By k(x,xV(y,y") + Exr k(x, X" )Ey l(y, y')
- 2Exy [Ex’k(xv X,)Ey’e(ya y/)] :
=1a+b—2c.
Idea: given {(x;,yi)}"_; Hid Py,
o Let us estimate Cg,, fix, py empirically.

G >F: see the intuition.
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HSIC estimation: from CY, fix, fi,

First term:

a=CY 2 = ExyErryk(x, )0y, y"),

2

A —
az‘C“

Xy

HS
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HSIC estimation: from CY, fix, fi,

First term:
a= HCyHHs = ExyExy rk(x, x')E(y y/)
2 n n
=159, < Y, elx) ©v(yi), Zw(&)®¢()ﬁ)>
i=1 J:]_

HS
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HSIC estimation: from CY, fix, fi,

First term:

a=CY 2 = ExyErryk(x, )0y, y"),

2 1< 1<
5= ‘ o <n D) ®@u(y), — D e(x) ®¢(YJ)>
i=1 Jj=1 HS
1 n
= ? Z (GX)U(G)/)U
ij=1
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HSIC estimation: from CY, fix, fi,

First term:

a=CY 2 = ExyErryk(x, )0y, y"),

R — 2 1 n 1 n
a= ‘ Coll s = <n Do) ®v(yi), - Do) ®1/J(yj)>
i=1 i=1
J HS
1 " 1 1
= - 2. (Gj(Gy)i = 5 (G, Gy)p = 5 tr(G,Gy).
ij=1
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HSIC estimation: 2nd term

b = |ux ®Ny”i[5 = Exx’k<X7X,)Eyy’€(Yay,)-
b =[x ® iyl
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HSIC estimation: 2nd term

2
b = |ux ®NyHH5 = Exx’k<X7X,)Eyy’€(Yay,)-
~ ~ . D ~ o ~
b= ||:Ux®,uyHH5 = </1/x®/lyaﬂx®#y>/-/5
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HSIC estimation: 2nd term

2
b = |ux ®NyHH5 = Exx’k<X7X,)Eyy’€(Yay,)-
~ ~ . D ~ o ~
b= ||:Ux®,uyHH5 = </1/x®/lyaﬂx®#y>/-/5

(oo ol
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HSIC estimation: 2nd term

2
b = |ux ®NyHH5 = Exx’k<X7X,)Eyy’€(Yay,)-
~ ~ . D ~ o ~
b= ||:Ux®,uyHH5 = </1/x®/lyaﬂx®#y>/-/5

_ <[,1,_2«,o<x,->] ® [fjwm], [f,Zso(x,-)] ® [1 y w<yj>]>
i=1 j=1 i=1 j=1 HS
= [,}2 > k(XhXj)] [,32 Z

ij=1
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HSIC estimation: 2nd term

2
b = |ux ®NyHH5 = Exx’k<X7X,)Eyy’€(Yay,)-
~ ~ . D ~ o ~
b= ||:Ux®,uyHH5 = </1/x®/lyaﬂx®#y>/-/5

- <[1 3 «p(x,-)] ® [1 3 ww], [1 3 so(xo] ® [1 ) w<yj>]>
i-1 j=1 i-1 j=1
_ [nlz 3 k(x,-,xj)] [nlz > E(X,-7><j)] _ % (176.1) (176,1).

ij=1 ij=1

HS
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HSIC estimation: 3rd term (without '—2')

c= <C)l<1y7MX ®ﬂy>H57
= (o1,
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HSIC estimation: 3rd term (without '—

c= <C)l<1y7,U/X ®ﬂy>H57
e~ (@non),

1 1y 1y
= ( = X, ® i y, — SO(Xa)] ® [ l/)( )]>
<”,_1 [n:;l =1 % HS
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HSIC estimation: 3rd term (without '—2')
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HSIC estimation: 3rd term (without '—2')
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HSIC estimation: 3rd term (without '—2')

% 22:1 k(xi,xa) % 2221 £(yi,yb)
1 n n
-3 Z [ k(Xth)g(YhYb)]
a,b=1 Li=1 |
(GxGy)a,b
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HSIC estimation: 3rd term (without '—2')

% Ya=1 k(xixa) % Db=1 £(yisyp)

1
k(Xth)g(YhYb)] = ﬁlTGXGyI-

_

(GxGy)a,p

Zoltan Szabé Structured Data: Dependency, Testing



HSIC estimation: putting together
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HSIC estimation: putting together

/‘TSEE(X,)/) 4+ b—2¢

%tr(GXGy) + %(ITGA) (176,1) - %ITGXGyl
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HSIC estimation: putting together

/‘TSEE(X,)/) 4+ b—2¢

- tr(G,G )+ni(1TG 1) (1TG 1) —nngG G,1

1
tr(G G, ——llTG G, —711TG <Gy + S LGt )

(1=52)Gx (1 —52) Gy

n
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HSIC estimation: putting together

/‘TSEE(X,y)Zié-FB—Qé
— 1 1 T T 2 T
—n—tr(GG)—i—n—(l G1>(1 G 1)—71 G«G,1
_ 1 tr(G G, ——llTG G, —711TG <Gy + S LGt )

~~

(1=52)Gx (1 —52) Gy

n

1
= ﬁ tr (HGXHGy)
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HSIC estimation: putting together

/‘TSEE(X,y)Zié-FB—Qé
— 1 1 T T 2 T
—n—tr(GG)—i—n—(l G1>(1 G 1)—71 G«G,1
_ 1 tr(G G, ——llTG G, —711TG <Gy + S LGt )

~~

(1=52)Gx (1 —52) Gy

1 1
= 5 tr(HGHG,) = —tr (HG.HHG,H )
& &
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HSIC estimation: putting together

/‘TSEE(X,y)Zié-FB—Qé
— 1 1 T T 2 T
—n—tr(GG)—i—n—(l G1>(1 G 1)—71 G«G,1
_ 1 tr(G G, ——llTG G, —711TG <Gy + S LGt )

~~

(1h—52)Gx (1= 52)Gy
_ L HGHG,) — L+ (HG HHG H)—i<é é>
ey Ay) = D S\ E

& &
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HSIC estimation: putting together

/‘TSEE(X,y)Zié-FB—Qé
— 1 1 T T 2 T
—n—tr(GG)—i—n—(l G1>(1 G 1)—71 G«G,1
_ 1 tr(G G, ——llTG G, —711TG <Gy + S LGt )

~~

(1h—52)Gx (1= 52)Gy
_ L HGHG,) — L+ (HG HHG H)—i<é é>
ey Ay) = D S\ E

& &

Bias: O (%)
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Reminder: MMD?, MMD?, MMD?

MMD2(P Q) _Exx k( )+Eyy/k(

) -
m m 1 n n
MMD2 (P, Q) — ZZ ) —QZZ 787

2By k(x,y),

MMD2 (P, Q) = Zka,xJ n—l 22 (i %)

2 m
%ZZ’“@’YJ

i=1j=1
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HSICg until now

HSIC?(x,y) = ExyEsryrk(x, X )0(y, y') + Exxr k(x, X' )Eyy £(y, y')
—2Exy [Exk(x,x)E, Ly, y"],

HSIC2(x, ) Z k(xi, %) Eyis yj) +
ij=1
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HSICg until now

HSIC?(x,y) = ExyEsryrk(x, X )0(y, y') + Exxr k(x, X' )Eyy £(y, y')
—2Exy [Exk(x,x)E, Ly, y"],

HSIC2(x, ) Z k(xi, %) Eyis yj) +
ij=1

@ x,x’ should be independent, but

@ with plug-in: 7 = j, it introduces bias.
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), £ij := £(yi, ¥;).
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), £ij := £(yi, ¥;).

.1 ¢ . 1
dp = ? Z k,‘jf,‘j, ay = 7,7(” — 1) ;k,'jf,'j
17)
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), £ij := £(yi, ¥;)

.1 5
dp = P 2 kiili, dy Z kijlij,
ij=1 I#J
kil
(n)z (,-71%,5 vy
17 ={(i,...,ip) - ij € {1,..., n} without replacement}, ( |/”‘

Zoltan Szabé Structured Data: Dependency, Testing



HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), £ij := £(yi, ¥;)

1 n
db =5 >, kity, 3 Z kijls,
ij=1 l;éj
Ly ke
n L
(n)2 e
n
éb =73 Z quelr7
i,q,r=1
17 ={(i1,...,ip) - ij € {1,..., n} without replacement}, (n), = |/7].
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), £ij := £(yi, ¥;)

1 n
=3 2 kil
ij=1
n
é\.b - 3 Z quelh
i,q,r=1

17 = (i, ip) € {1, ..

4y Z kiilii,

., n} without replacement}, ( |/”‘
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), £ij := £(yi, ¥;)

n
8= — > kil 4y Z kiilii,

2
n
ij=1 l;éj
" Z kfjffj
( )2 (g
.1y »_ 1§
Cp = 3 Z kiglir, Cu = W Z kiglir,
i,q,r=1 3 (i,q,r)elf
- 1 ¢
by=— D1 kitlar,
iJ,q,r=1
17 ={(i1,...,ip) - ij € {1,..., n} without replacement}, (n), = |/7].
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HSIC: unbiased estimator

Idea: get rid of the i = j-type terms. Let kjj := k(x;, x;), £ij := £(yi, ¥;)
1 n
p 2 kiilii, 4y Z kiilii,
ij=1 l;éj
L v ki¢;
()2 (,-Eé,; Y
1 ¢ . 1 4
_ ﬁ | 2 kiqeira Cy = 7(,7)3 ' 2 k,'qg,'r,
i,q,r=1 (i,q,r)elf
1 ¢ 1
F Z k"quﬁ bu = (n) Z k,‘j@qr.
i’-j7q7r:1 4 (izjvq»r)ew
.., 0p) ;€ {1,..., n} without replacement}, ( |/”‘
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HSIC: resulting unbiased estimator

After some linear algebra [Gretton et al., 2005a], (M) := >, ; Mj;,

H/S—IE%(X’Y) - n(nl— 3) {<éx’éy>F T n E 2(6;)(N}/)+Jr
1 - -
+ (n—1)(n—2) (Gx)++(Gy)++] .
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Estimation in practice: few ITE examples
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KCCA estimation: Matlab

Goal: estimate KCCA,

>ds = [2;3;4]; Y = rand(sum(ds) ,5000);
>mult = 1

>co = IKCCA_initialization(mult);
>KCCA = IKCCA_estimation(Y,ds,co);
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KCCA estimation: Matlab

Goal: estimate KCCA,

>ds = [2;3;4]; Y = rand(sum(ds) ,5000);
>mult = 1

>co = IKCCA_initialization(mult);
>KCCA = IKCCA_estimation(Y,ds,co);

Alternative initialization:

>co = IKCCA_initialization(mult,{’kappa’,0.01,’eta’,0.001});
where k: regularization constant, n: low-rank approximation.
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KCCA estimation: Matlab

Goal: estimate KCCA,

>ds = [2;3;4]; Y = rand(sum(ds) ,5000);
>mult = 1

>co = IKCCA_initialization(mult);
>KCCA = IKCCA_estimation(Y,ds,co);

Alternative initialization:
>co = IKCCA_initialization(mult,{’kappa’,0.01,’eta’,0.001});

where k: regularization constant, n: low-rank approximation.

Note: HSIC similarly.
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MMD estimation: Matlab

Using for example U-statistic:

>X1 = randn(3,2000); X2 = randn(3,3000);
>mult = 1;

>co = DMMD _Ustat_initialization(mult);
>MMD = DMMD_Ustat_estimation(X1,X2,co);
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MMD estimation: Matlab

Using for example U-statistic:

>X1 = randn(3,2000); X2 = randn(3,3000);
>mult = 1;

>co = DMMD _Ustat_initialization(mult);
>MMD = DMMD_Ustat_estimation(X1,X2,co);

With low-rank approximation, and setting some parameters:

co2 = DMMD_Ustat_iChol_initialization(mult)
co3 = DMMD,Ustat,iChol,initialization(mult,{’sigma’,0.2,
’eta’,0.01})
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HSIC estimation: Python

Import ITE (1x), generate observations:
>>> import ite

>>> from numpy.random import randn
>>> from numpy import array

>>> ds = array([2, 3, 4])

>>> t = 1000

>>> y = randn(t, sum(ds))
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HSIC estimation: Python

Import ITE (1x), generate observations:
>>> import ite

>>> from numpy.random import randn
>>> from numpy import array

>>> ds = array([2, 3, 4])

>>> ¢t = 1000

>>> y = randn(t, sum(ds))

Estimate HSIC:;
>>> co = ite.cost.BIHSIC_IChol()
>>> hsic = co.estimation(y, ds)
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HSIC estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BIHSIC_IChol(eta=1e-3)
>>> hsic2 = co2.estimation(y, ds)
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HSIC estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BIHSIC_IChol(eta=1e-3)
>>> hsic2 = co2.estimation(y, ds)

Alternative-2:

>>> from ite.cost.x_kernel import Kernel

>>> k = Kernel({’name’: ’RBF’,’sigma’: 1})

>>> co3 = ite.cost.BIHSIC_IChol(kernel=k, eta=le-3)
>>> hsic3 = co3.estimation(y, ds)
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HSIC estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BIHSIC_IChol(eta=1e-3)
>>> hsic2 = co2.estimation(y, ds)

Alternative-2:

>>> from ite.cost.x_kernel import Kernel

>>> k = Kernel({’name’: ’RBF’,’sigma’: 1})

>>> co3 = ite.cost.BIHSIC_IChol(kernel=k, eta=le-3)
>>> hsic3 = co3.estimation(y, ds)

Note: KCCA similarly.
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MMD estimation: Python

Import ITE, generate observations:

>>> import ite

>>> from numpy.random import randn
>>> dim = 3

>>> t1, t2 = 2000, 3000

>>> y1 = randn(tl, dim)

>>> y2 = randn(t2, dim)
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MMD estimation: Python

Import ITE, generate observations:

>>> import ite

>>> from numpy.random import randn
>>> dim = 3

>>> t1, t2 = 2000, 3000

>>> y1 = randn(tl, dim)

>>> y2 = randn(t2, dim)

Estimate MMD:

>>> co = ite.cost.BDMMD_UStat_IChol()
>>> mmd = co.estimation(yl, y2)
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MMD estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BDMMD UStat_IChol(eta=1le-2)
>>> mmd2 = co2.estimation(yl, y2)
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MMD estimation: Python

Alternative initialization-1:

>>> co2 = ite.cost.BDMMD UStat_IChol(eta=1le-2)
>>> mmd2 = co2.estimation(yl, y2)

Alternative-2:

>>> k = Kernel(’name’: ’RBF’,’sigma’: 1)
>>> co3 = ite.cost.BDMMD _UStat_IChol(kernel=k,eta=1le-2)
>>> mmd3 = co3.estimation(yl, y2)

Zoltan Szabdé Structured Data: Dependency, Testing



Towards unbiased estimators

e MMD, HSIC: E, . k(x, x')-type quantities.
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Towards unbiased estimators

e MMD, HSIC: E, . k(x, x')-type quantities.

e x,x’: independence.
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Towards unbiased estimators

e MMD, HSIC: E, . k(x, x')-type quantities.
e x,x’: independence.

@ Plugin methods: i = j, biased.
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Towards unbiased estimators

e MMD, HSIC: E, . k(x, x')-type quantities.
e x,x’: independence.
@ Plugin methods: i = j, biased.

@ If we restrict to / # j, we got unbiased estimators.
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Towards unbiased estimators

e MMD, HSIC: E, . k(x, x')-type quantities.
e x,x’: independence.
@ Plugin methods: i = j, biased.

@ If we restrict to / # j, we got unbiased estimators.

What is happening here? Concentration of the estimators?
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Unbiased estimators for E, ,/k(x, x’)-type
quantities — extensions of average
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@ Goal: estimate

9(]?)2: Eph (Xl, v ,Xm) .
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@ Goal: estimate

o Given: x1,..., X, ~ P, n=m.

Zoltan Szabdé Structured Data: Dependency, Testing



o Goal: estimate
9(]?)2: Eph (Xl, v ,Xm) .
. i.id.
o Given: x1,..., X, ~ P, n=m.
@ Assume (w.l.o.g.): his symmetric,

h(xi,...,Xm) =h (xw(l), e 7X7r(m)) Y 7 permutations.

Example: k(x,x") = k(x', x).
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o Goal: estimate
9(]?)2: Eph (Xl, v ,Xm) .
. i.id.
o Given: x1,..., X, ~ P, n=m.
@ Assume (w.l.o.g.): his symmetric,

h(xi,...,Xm) =h (xw(l), e 7X7r(m)) Y 7 permutations.

Example: k(x,x") = k(x', x).
@ Otherwise: change hto h = % D h (x,r(l), . ,x,r(m)).
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U-statistic

e Estimator for Eph(Xy,..., Xpn):
1
Upy=U(x,...,xp) = mZh(x,-l,...,x,-m),
m c

Y. m-tuples without replacement.
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U-statistic

e Estimator for Eph(Xy,..., Xpn):
1
Upy=U(x,...,xp) = mZh(x,-l,...,x,-m),
m c

Y. m-tuples without replacement.
@ U,: unbiased, i.e. Ep(U,) = 0.
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V-statistic

e Estimator for Eph(Xy,..., Xpn):

n

VnZV(Xl,..., imZ Z X,'l,...,X,'m).

im=1
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V-statistic

e Estimator for Eph(Xy,..., Xpn):
1 m
VnZV(Xl,..., ?Z ZhX,'l,...,X,'m).

@ Samples with replacement.
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U-statistic: examples

e O(P) = EpX. Sample average:

h(X): X, U<X1,---,Xn) = %ZX[.
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U-statistic: examples

e 9(P) = EpX. Sample average:
1 n
h(x)= Ulxt,y ... %n) = = i
(X) X, <X17 y X ) n Z X
o O(P) = EpXk. Sample k" moment:

h(x):xk, Ulxt,...,xn) =
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U-statistic: examples

e O(P) = EpX. Sample average:

o O(P) = EpXk. Sample k" moment:
h(x)= xX, U(xi, ..., xn) =
o O(P) = 0?(P) = {(x — p)?dP(x), p = EpX. Sample variance:

o?(P) = EX? — E?X
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U-statistic: examples

e O(P) = EpX. Sample average:

o O(P) = EpXk. Sample k" moment:
h(x)= xX, U(xi, ..., xn) =

o O(P) = 0?(P) = {(x — p)?dP(x), p = EpX. Sample variance:
EX2 + EX3

—EX;EX
5 1AX2

o?(P) = EX? —E?X =
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U-statistic: examples

e O(P) = EpX. Sample average:

o O(P) = EpXk. Sample k" moment:
h(x)= xX, U(xi, ..., xn) =

o O(P) = 0?(P) = {(x — p)?dP(x), p = EpX. Sample variance:
EX2 + EX3

5 — EXiEX> = Eh(X1, X2),

o?(P) = EX? —E?X =

2 2
X{ + x5 — 2x1x2
2

h(X]_,Xz)Z
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U-statistic: examples

e O(P) = EpX. Sample average:

o O(P) = EpXk. Sample k" moment:
h(x)= xX, U(xi, ..., xn) =

o O(P) = 0?(P) = {(x — p)?dP(x), p = EpX. Sample variance:

EX2 + EX?
o2(P) = EX? — E2X — % _EX;EX> = EA(X1, X0),
X2 4+ x2 — 2x1x: X1 — x5)2
h(X]_,Xz)Z 1 22 1X2 _ ( 1 > 2) ’

Zoltan Szabé Structured Data: Dependency, Testing



U-statistic: examples

e O(P) = EpX. Sample average:

o O(P) = EpXk. Sample k" moment:
h(x)= xX, U(xi, ..., xn) =

o O(P) = 0?(P) = {(x — p)?dP(x), p = EpX. Sample variance:

EX? + EX?
o2(P) = EX? — E2X — % _EX;EX> = EA(X1, X0),
X2 4 x2 — 2x1x x| — x2)2
h(x1, %)= = 22 ve _ b 5 2) ;
2
Uxt, ... Xn) = ————— h(x;, xi
(X17 5 X ) n(n_ 1) 1<;j<n (X XJ)
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U-statistic: examples

e 9(P) = EpX. Sample average:
1 n
h(x)= Ulxt,y ... %n) = = i
(X) X, <X17 y X ) n Z X
o O(P) = EpXk. Sample k" moment:
h(x)= xX, U(xi, ..., xn) =

o O(P) = 0?(P) = {(x — p)?dP(x), p = EpX. Sample variance:

EXZ + EX?
o%(P) = EX? — E2X = % ~EXiEXo = Eh(X1, Xo),
2 2 _ 9 ERVRY
hxt, %) Xi +X22 x1x2 _ (x1 2X2) ’
U(Xla"'7Xn) Z hXMXj = thlaxj
1</<J<n n 175_]
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U-statistic: examples

e 9(P) = EpX. Sample average:
1 n
h(x)= Ulxt,y ... %n) = = i
(X) X, <X17 y X ) n Z X
o O(P) = EpXk. Sample k" moment:
h(x)= xX, U(xi, ..., xn) =

o O(P) = 0?(P) = {(x — p)?dP(x), p = EpX. Sample variance:

EXZ + EX?
o2(P) = EX? — E2X — % _EX;EX> = EA(X1, X0),
2 2 _ 5 U2
hxt, x0) = Xi +X22 x1x2 _ (x1 2X2) ’
U(Xla"'7Xn) Z hXMXj = thlaxj =
1</<J<n n ’#J
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U-statistic: examples+

Q(P) = Fp(to) = IP)(X < to)
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U-statistic: examples+

0(P) = Fp(to) = P(X < t0) = EpX(—oo,10]
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U-statistic: examples+

0(P) = Fp(to) = P(X < t0) = EpX(—oo,10]
h<X): X{XSto}7

1 n
Ulxty ... Xn) = - Z X{x;j<to}
i=1

Zoltan Szabé Structured Data: Dependency, Testing



U-statistic: examples+

0(P) = Fp(to) = P(X < t0) = EpX(—oo,10]
h<X): X{XSto}7

1 n
U(Xla e 7Xn) = E Z X{X,'Sto} = Fn(t0)7
i=1

F,: empirical cdf.
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Extension: if we have L independent samples

e Given: x{j), .. ,x%) id- P, j=1,...,L), ni = m;.
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Extension: if we have L independent samples

e Given: x(j), .. ,x%) id- P, j=1,...,L), ni = m;.

@ Goal: estimate: # = Eh (Xl(l),...,X,(nll),...,XI(L),...,X,(,,L)).
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Extension: if we have L independent samples

e Given: x(j), .. ,x%) id- P, j=1,...,L), ni = m;.
@ Goal: estimate: # = Eh (Xl(l), . ,X,(nll), . .,Xl(l'), e ,X,(T,L)).

@ Assumption: symmetry for each block.
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Extension: if we have L independent samples

Given: x .. x4 KB (=1, L), > my

°
@ Goal: estimate: # = Eh (Xl(l), . ,X,(nll), . .,Xl(l'), cees mLL)).
@ Assumption: symmetry for each block.

L-sample U-statistic
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator.
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

e Asymptotics: depend on var # 0 condition (martingales).

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y- -y Xm) ,
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

e Asymptotics: depend on var # 0 condition (martingales).

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y- -y Xm) ,
Ve i=var he (X1,...,Xc), v =0.
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

e Asymptotics: depend on var # 0 condition (martingales).

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y- -y Xm) ,
Ve i=var he (X1,...,Xc), v =0.

o FEN(X1,...,Xm) < o0

O=w<w<...<vp=varh(Xy,...,Xy) < .
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

e Asymptotics: depend on var # 0 condition (martingales).

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y- -y Xm) ,
Ve i=var he (X1,...,Xc), v =0.

o If ER2(Xq,..., Xm) < o0
O=w<w<...<vp=varh(Xy,...,Xy) < .

0 c.0=vi=...=v.1<V. c=1: non-degenerate, c = 2:
degenerate U-statistic.
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Results [Serfling, 1980]

U,: minimum variance unbiased estimator. Notation:

e Asymptotics: depend on var # 0 condition (martingales).

he(x1, ..., xc) :=Eh(x1,...,xc, Xex1y- -y Xm) ,
Ve i=var he (X1,...,Xc), v =0.

o If ER2(Xq,..., Xm) < o0
O=w<w<...<vp=varh(Xy,...,Xy) < .

0 c.0=vi=...=v.1<V. c=1: non-degenerate, c = 2:
degenerate U-statistic.

In most applications
c=1lorc=2.
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Asymptotics for c =1

Assume: Eph? < o0, ¢ = 1.

n2(Uy—0) S N(0,mvy)

2
U, is AN <9, m "1> ,
n

AN = asymptotically normal.
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Asymptotics for ¢ = 2

Assume: Eph? < o0, ¢ = 2.

m(m—1)

n(U, — 0) % >

where
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Asymptotics for ¢ = 2

Assume: Eph? < o0, ¢ = 2.

m(m—1) =
n(Un—0) & =5—=Y, Y =3 004 1),

where
° XJ?: i.i.d. N2(0,1) variables,
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Asymptotics for ¢ = 2

Assume: Eph? < o0, ¢ = 2.

m(m—1)

a0
n(Un—0) & =5—=Y, Y =3 004 1),

where
° XJ?: i.i.d. N2(0,1) variables,

@ )\;: R-eigenvalues of T = T(/Nu), 772 =hy— 0

(Eﬂ@=f%@mmwﬂmm,geﬁ
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Exponential bound for U-statistic

Theorem (Hoeffding inequality)

Let h(x1,...,xm) € [a,b]. If 6® = var h, then for any t > 0

2[n/m]t2

IFD(U” —0= t) < e (b—a?Z

Zoltan Szabé Structured Data: Dependency, Testing



U-statistic: local summary

Minimum variance unbiased estimator.

¢ = 1: asymptotically normal.

¢ = 2: asymptotically co-sum of weighted 2.
For bounded h: Hoeffding inequality.

Application

Hypothesis testing!
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Hypothesis testing
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What is a two-sample test?

e Given:
m iid. n iid.
o X={x}L, ~'P VY= {YJ'}j:1 ~

o Example: x; = i" happy face, y; = j

sad face.
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What is a two-sample test?

e Given:
m iid. n iid.
o X ={x}l; ~P Y= {YJ'}j:1 ~

o Example: x; = i" happy face, y; = j

sad face.

@ Problem: using X, Y test

Hy:P=Q, vs
Hlipsé@.
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What is a two-sample test?

e Given:
d d

o X ={x}’; P Y = {yj}le R

ith

o Example: x; = i" happy face, y; = j™ sad face.

@ Problem: using X, Y test

Hy:P=Q, vs
Hlipsé@.

@ Assumption: x,y € X. (X, k): kernel-endowed domain.
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What is a two-sample test?

e Given:
m iid. n iid.
o X ={x}l; ~P Y= {YJ'}j:1 ~

o Example: x; = i" happy face, y; = j

sad face.

@ Problem: using X, Y test

Ho :P=Q, vs
Hlipsé@.

@ Assumption: x,y € X. (X, k): kernel-endowed domain.
Discrepancy measure
Example: MMD
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What is an independence test?

@ Given: paired samples

n idd.
o Z={(x,yi)}l_1 "~ Py.
o Example:

o x;: i*M text in English, y;: i*" text translated to French.
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What is an independence test?

@ Given: paired samples

n idd.
o Z={(x,yi)}l_1 "~ Py.
o Example:

o x;: i*M text in English, y;: i*" text translated to French.

@ Problem: using data Z test

Ho : P,, = PPy, Hy :P,, # PP,
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What is an independence test?

@ Given: paired samples

n idd.
o Z={(x,yi)}l_1 "~ Py.
o Example:

o x;: i*M text in English, y;: i*" text translated to French.

@ Problem: using data Z test
Ho : P,, = PPy, Hy : Py, # PP,

@ Assumption: (x,y) e X x Y. (X, k), (¥,£): with kernels.
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What is an independence test?

@ Given: paired samples

n idd.
o Z={(x,yi)}l_1 "~ Py.
o Example:

o x;: i*M text in English, y;: i*" text translated to French.

@ Problem: using data Z test
Ho : P,, = PPy, Hy : Py, # PP,

@ Assumption: (x,y) e X x Y. (X, k), (¥,£): with kernels.

Discrepancy measure
Example: HSIC
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Concepts in hypothesis testing

o Test statistic: \, = X,,(X, Y), random.
@ Significance level: o = 0.01.

~

e Under Hyp: Pyy( An < Ty ) =1—cu
—_——

correctly accepting Hp

0.06

0.057

0.04r

0.03f

0.02f

0.01

0 20 40 60 80
)\71
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Concepts in hypothesis testing

o Test statistic: \, = X,,(X, Y), random.
@ Significance level: o = 0.01.

~

e Under Hyp: Pyy( An < Ty ) =1—cu
—_——
correctly accepting Hp
e Under Hi: Py, (To < An) = P(correctly rejecting Hp) =: power.
0.06

0.057

0.04r

0.03f

0.02f

0.01

0 20 40 60 80
)\71
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Two-sample testing (aka homogeneity
testing) — details.
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Two-sample testing with MMD
[Gretton et al., 2007, Gretton et al., 2012]

o Statistic: \, = MMD2 or MMD2.
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Two-sample testing with MMD

[Gretton et al., 2007, Gretton et al., 2012]

o Statistic: \, = MMD2 or MMD2.
@ Reject Hy: if A\, is 'large’.
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Two-sample testing with MMD

[Gretton et al., 2007, Gretton et al., 2012]

o Statistic: \, = MMD2 or MMD2.
@ Reject Hy: if A\, is 'large’.

@ We need to control A,.
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Two-sample testing with MMD

[Gretton et al., 2007, Gretton et al., 2012]

o Statistic: \, = MMD2 or MMD2.
@ Reject Hy: if A\, is 'large’.
@ We need to control A

o We will use U-statistic theory.
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Finite-sample control

o Large deviation inequalities.
o P (H/W/\/TD(P,@) - I\/II\/ID(IP’,Q)‘ > e) < f(e, m, n)

m,n—ao0
B —

0.
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Finite-sample control

o Large deviation inequalities.
o P (H/W/\/TD(P,@) - I\/II\/ID(IP’,Q)‘ > e) < f(e, m, n)

@ => tests: consistent against fixed alternative.

m,n—ao0
B —

0.
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Finite-sample control

@ Distribution-free tests

e quantile: P, Q-independent!
o less sensitive to detecting differences.
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Finite-sample control

@ Distribution-free tests

e quantile: P, Q-independent!
o less sensitive to detecting differences.

@ Proof idea:
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Finite-sample control

@ Distribution-free tests

e quantile: P, Q-independent!
o less sensitive to detecting differences.

@ Proof idea:
o MMD?: bounded difference property, McDiarmid inequality.
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Finite-sample control

@ Distribution-free tests

e quantile: P, Q-independent!
o less sensitive to detecting differences.

o Proof idea:
o MMD?: bounded difference property, McDiarmid inequality.
o MMD?: large deviation bound of U-statistics.
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based test

Goal: Asymptotic distribution of I\/I/I\/BE

- 1 m m 1 n
MMD2(P,Q) = — x) A Ly
u( aQ) m(m—l) ;;k(xnxj)‘F n(n—l) ;;k(%,yj)
2 m n
_%Z k(X,',yj).
i=1j=1
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based test

Goal: Asymptotic distribution of I\/I/I\/BE

P 1 m m 1 n
MMD2(P,Q) = ——— k(xi,xj) + —— k(yi,yi
u m(m—l);; / n(n—l)i;; (o)
2 m n
— % Z Z k(X,',yj).
i=1j=1
Let us see the results first! )
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Two-sample test using MMD asymptotics: H;

Under H; (P # Q): asymptotic distribution of WBg is Gaussian.

Laplacian variables: different variances
. : : w : : 60 ‘ :

—_P Il Empirical pdf
1.0} —Q 50! = Gaussian fit

0.8¢

pdf

0.67

0.4¢

0.2p

MMD?
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Two-sample test using MMD asymptotics: Hy

Under Hyp (P = Q): asymptotic distribution is
nMMD2 (P, P) 2)\ z2 - 2),
where z; ~ N(0,2) i.i.d.,
| Rexx w20 = A, Kxx') = o = oo = oo

35 T ! .
Il Empirical pdf| |

301

25
_ 20
el
Qo
15
10f

5"

0

-0.04 -0.02 0 0.02

MMD?
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Two-sample test: asymptotics

@ Goal: Asymptotic distribution of M//\Eg under the null (P = Q).

S 1 m m n
MMDj(P, Q) = m(rn_l)zigk(xia&)+n(nl_l)2;2k(ﬂ)ﬁ)
1=171 1=1j%#1
2 m n
_ﬁzzk(xivyj)
i—1j—1

@ up = g since P = Q.
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Two-sample test: asymptotics

@ Goal: Asymptotic distribution of M//\Eg under the null (P = Q).

S 1 m m n
MMDj(P, Q) = m(rn_l)zigk(xia&)+n(nl_l)2;2k(ﬂ)ﬁ)
1=171 1=1j%#1
2 m n
_ﬁzzk(xivyj)
i—1j—1

@ up = g since P = Q.
@ 1-2nd terms: U-statistics = h(x1, x2) = k(x1,x2), ¢ =7
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Two-sample test: asymptotics

@ Goal: Asymptotic distribution of M//\Eg under the null (P = Q).

S 1 m m n
MMDj(P, Q) = m(rn_l)zigk(xia&)+n(nl_l)2;2k(ﬂ)ﬁ)
1=171 1=1j%#1
2 m n
_ﬁzzk(xivyj)
i—1j—1

@ up = g since P = Q.
@ 1-2nd terms: U-statistics = h(x1, x2) = k(x1,x2), ¢ =7

o h1<X1) = Ek(xl,X2)
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Two-sample test: asymptotics

@ Goal: Asymptotic distribution of M//\Eg under the null (P = Q).

S 1 m m n
MMDj(P, Q) = m(rn_l)zigk(xia&)+n(nl_l)2;2k(ﬂ)ﬁ)
1=171 1=1j%#1
2 m n
_ﬁzzk(xivyj)
i—1j—1

@ up = g since P = Q.
@ 1-2nd terms: U-statistics = h(x1, x2) = k(x1,x2), ¢ =7

(] h1<X1) = Ek(xl,X2) = ,U]P’(Xl)
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Two-sample test: asymptotics

@ Goal: Asymptotic distribution of M//\Eg under the null (P = Q).

S 1 m m n
MMDj(P, Q) = m(rn_l)zigk(xia&)+n(nl_l)2;2k(ﬂ)ﬁ)
1=171 1=1j%#1
2 m n
_ﬁzzk(xivyj)
i—1j—1

@ up = g since P = Q.
@ 1-2nd terms: U-statistics = h(x1, x2) = k(x1,x2), ¢ =7
777

o h1<X1) = Ek(xl,X2) = ,U]P’(Xl) , V1 = var hl(Xl) = 0
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Asymptotics based test

o |dea: we center by up = p1g, and get h1(X1) = 0.

k(x,y) == {p(x) — pp, o(¥) — pp)g,
= k(x,y) —Ek(Y,x) —Ek(X,y) —Ek(X,Y).
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Asymptotics based test

o |dea: we center by up = p1g, and get h1(X1) = 0.

k(x,y) == {p(x) — pp, o(¥) — pp)g,
= k(x,y) —Ek(Y,x) —Ek(X,y) —Ek(X,Y).

@ Since we shift points with up = pg

MMD2 (P, Q) = Z‘ k(xi, %) 1_1 1> ki y)
) Sz n(n—1) 54
2 m n .
= o 20 20 KO ).
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Asymptotics based test: details

So h(x1,x2) == k(x1,x2). ¢ =?

o Test hy:

hl(Xl) = Eh(Xl, Xz) = E/;(Xl, XQ)
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Asymptotics based test: details

So h(x1,x2) == k(x1,x2). ¢ =?

o Test hy:

hl(Xl) = Eh(Xl, Xz) = E/;(Xl, XQ)
= Ek(Xl, Xg) — Ek(Xl, X2> + Ek(Xl, XQ)
— Ek(X1, X2)
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Asymptotics based test: details

So h(x1,x2) == k(x1,x2). ¢ =?

o Test hy:

hi(x1) = Eh(x1, X2) = Ek(x1, X2)
= Ek(Xl, Xg) — Ek(Xl, XQ) + Ek(Xl, XQ)
—Ek(X1,X2)=0. =

vi =var hi(X1) =0, and 0 = E/;(X;X/> =0.

Conclusion: ¢ > 1. J
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Asymptotics based test: details

o Test hy:
hg(Xl,XQ) = /;(Xl,Xz), Vo = varl;(Xl,Xg)> 0

since k # 0.
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Asymptotics based test: details

o Test hy:
hg(Xl,XQ) = /;(Xl,Xz), Vo = varl;(Xl,Xg)> 0

since k # 0.
° EI?Z(Xl,Xg) < o0; example: bounded kernel.

Zoltan Szabé Structured Data: Dependency, Testing



Asymptotics based test: details

o Test hy:
hg(Xl,XQ) = /;(Xl,Xz), Vo = varl;(Xl,Xg)> 0

since k # 0.
° E/?2(X1,X2) < o0; example: bounded kernel.
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Degenerate U-statistic

¢ = 2 = infinite weighted sum of x? limit kicks in!
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Degenerate U-statistic

¢ = 2 = infinite weighted sum of x? limit kicks in!

m [m(ml—l)ZEk(X”XJ)] = ﬁlez(x,,xj) 4, Z/\i (312 _ 1)’

n [,7(,71—1)22./((”’”)] = nil ZZ/;(y,-,yj) d, Z)\i (bi2_1)7

aj = N(0,1), b; = N(0,1); and \;: eigenvalues of the T; integral
operator.
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Degenerate U-statistic

¢ = 2 = infinite weighted sum of x? limit kicks in!

[ m—1) ZE’”‘HXJ]:LZZI?(Xf,&)iEA,(a,?—Q,
=LA i=1j#i i-1
n n n 0
=1 i=1j#i i-1

aj = N(0,1), b; = N(0,1); and \;: eigenvalues of the T; integral
operator. Characteristic function technique =

1 - d
7#2 k(xi, yj) = ) Aaib.
mn i1
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m

] |imm?n4,oo mtn =!px € (0,1), |imm7,,ﬁoo mLHI =: Py, t=m+ n.

— m-+n m-+n m-+n
(m+ W MMD3(P, Q) = -2+ TR 2 T
—>1 —>L 1
Px Py "W
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m

] |imm?n4,oo mtn =!px € (0,1), |imm7,,ﬁoo #ﬂ =: Py, t=m+ n.

——— m+n m+n m+n

(m + MMMDE(, Q) = = =0 + = =0 =2 720
—>1 —>L 1
Px Py *)\/W

9, Z Ai [(P;1/2ai — P;lpbi)z - (Px/’y)_l]'
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] ||mm?n4,oo mn - Px € (0, ].), Ilmm7ni>oo

o =Py, t=m+n.

— m-+n m-+n m-+n
(m+ W MMD3(P, Q) = -2+ TR 2 T
—>1 —>L 1
Px Py "W

HZA [( Pa P;lpbi)z_ (pxpy)‘l}.

o If py =p, = % (m = n asymptotically):
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] ||mm?n4,oo mn - Px € (0, ].), Ilmm7ni>oo

o =Py, t=m+n.

— — m-+n m-+n m-+n
—>1 —>L 1
Px Py *)\/W

HZA [( ek i_p;1/2bi)2_(/)xpy)_1:|.

o If py =p, = % (m = n asymptotically):

—>Z/\[ ai— by )2—4]

/v(0+0 141)
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] ||mm?n4,oo mn - Px € (0, ].), Ilmm7ni>oo

o =Py, t=m+n.

——— m+n m+n m+n

(m + MMMDE(, Q) = = =0 + = =0 =2 720
—>1 —>L 1
Px Py *)\/W

HZA [( Pa P;lpbi)z_ (pxpy)‘l}.

o If py =p, = % (m = n asymptotically):

4, ZA [ ai—b V- 4]
/v(0+0 1+1)

by N(my,0%) + N(m2,03) = N (my + ma, 0% + 03).
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In practice

Approximate the null by

@ permutation-test: slow.
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In practice

Approximate the null by
@ permutation-test: slow.

@ two-parameter gamma distribution [Johnson et al., 1994]:

Q\X

x~1le™

Pa,g(x) = BT a) (x > 0,a: shape > 0, 3: scale > 0).
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Gamma distribution: demo

0.4

— a=2,B=1

0.3}

0.1

‘ |
0 5 10 15
X



Gamma distribution: demo

0.4
—o=2,p=1
- - - 0=4,3=1
0.3f 1
g3
%02 1
o
0.1 1
0 Il
0 10 15
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Gamma distribution: demo

0.4
—o=2,p=1
- - -0=4,p=1
0.3f —0=2,B=3 |

0 5 10 15
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Gamma approximation

@ Assumption: statistic T ~ p, 3.
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Gamma approximation

@ Assumption: statistic T ~ p, 3.

e For p, 3 gamma distribution:

ET=ap, var(T)= af?
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Gamma approximation

@ Assumption: statistic T ~ p, 3.

e For p, 3 gamma distribution:

var(T) E2T
ET var(T)’

ET=ap, var(T)=aB® = 3=
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Gamma approximation

@ Assumption: statistic T ~ p, 3.

e For p, 3 gamma distribution:

var(T) E2T

ET=ap, var(T)=aB® = 3= BT var(T)°

o Thus, ET and var(T) — &, f.
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Gamma approximation

@ Assumption: statistic T ~ p, 3.

e For p, 3 gamma distribution:

var(T) E2T
ET var(T)’

ET=ap, var(T)=aB® = 3=

o Thus, ET and var(T) — &, f.

o Consistency of the test is lost.
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Which null approximation to use?

Rules-of-thumb:

@ Small sample size: permutation test.
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Which null approximation to use?

Rules-of-thumb:
@ Small sample size: permutation test.

@ Medium sample size: gamma approximation, truncated
expansion [Gretton et al., 2009],
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Which null approximation to use?

Rules-of-thumb:
@ Small sample size: permutation test.

@ Medium sample size: gamma approximation, truncated
expansion [Gretton et al., 2009],
@ Large sample size:

o online techniques [Gretton et al., 2012], or
o recent linear methods (next time).
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Independence testing: HSIC
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Independence testing

Theorem ([Gretton et al., 2008, Pfister et al., 2016])

Under Hy

o 0]
—2
nHSIC, & Y Niz2,  zi ~ N(0,1).
i=1
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Independence testing

Theorem ([Gretton et al., 2008, Pfister et al., 2016])

Under Hy

o 0]
—2
nHSIC, & Y Niz2,  zi ~ N(0,1).
i=1

Notes:
o For U-statistic: >; \j(z? — 1).
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Independence testing

Theorem ([Gretton et al., 2008, Pfister et al., 2016])

Under Hy

o 0]
—2
nHSIC, & Y Niz2,  zi ~ N(0,1).
i=1

Notes:
o For U-statistic: >; \j(z? — 1).
@ In practice: permutation-test/gamma-approximation.
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Related work
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Two-sample problem: truncated expansion

[Gretton et al., 2009]: n = m, z; = (x;, y;). Estimator:
— 1
MMDE,(]P’, Q)= ———= ) h(z,z),
n(n—1) ; !

h(z,2") = k(x,x") + k(y,y") — k(x,y") — k(x', ).
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Two-sample problem: truncated expansion

[Gretton et al., 2009]: n = m, z; = (x;, y;). Estimator:
— 1
MMDE,(]P’, Q)= ———= ) h(z,z),
n(n—1) ; !

h(z,2") = k(x,x") + k(y,y") — k(x,y") — k(x', ).

I\W,: unbiased.
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Two-sample problem: truncated expansion — continued

1
Assuming >.721 A2 < oo, the empirical null converges as n — o0

Z)\,na—2 ) S 3N (2-2), &~ N(0,2).
i=1

i=1
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Two-sample problem: truncated expansion — continued

1
Assuming >.721 A2 < oo, the empirical null converges as n — o0

n e}
,, =ZS\;7,, (a,g— Z a —2 aj ~ N(0,2).
i=1 i=1
Note:
3\,-’,, = )\i(:;x) (i=1,...,n), G, € R™*".
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Online variant [Gretton et al., 2012]

— 1
2 - - . .
MMD?,(P, Q)= 1) ,;- h(zi, zj),

has a natural online approximation, ny := [n/2]

— 1 n2
MMD} (P,Q) = = D h((ie1, y2i-1), (i, ai).
i=1
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Online variant [Gretton et al., 2012]

— 1
2 - - . .
MMD?,(P, Q)= 1) ,;- h(zi, zj),

has a natural online approximation, ny := [n/2]
— 1 n2
MMDZ(P,Q) = — > h((x2i-1,¥2i-1), (xai, yai))-
25

@ Unbiased.
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Online variant [Gretton et al., 2012]

— 1
2 - - . .
MMD?,(P, Q)= 1) ,;- h(zi, zj),

has a natural online approximation, ny := [n/2]
— 1 n2
MMDZ(P,Q) = — > h((x2i-1,¥2i-1), (xai, yai))-
25

@ Unbiased.

@ Linear-time: streaming data.
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Online variant [Gretton et al., 2012]

— 1
2 - - . .
MMD?,(P, Q)= 1) ,;- h(zi, zj),

has a natural online approximation, ny := [n/2]
— 1 n2
MMDZ(P,Q) = — > h((x2i-1,¥2i-1), (xai, yai))-
25

@ Unbiased.
@ Linear-time: streaming data.

@ In practice: high variance.
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Online variant — continued

By the average the CLT kicks in:

Theorem

Assuming Eh? € (0, 0), /\ﬂﬂ?,2 is asymptotically normal (Ho/H1 )

Vm [ MMD? (P, @) — MMD(P, Q)] % N (0,02),

where 02 = 2 [Ezyz/ h?(z,2') — Eﬁ’zlh (z, z’)].
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Block version [Zaremba et al., 2013|

Idea:
@ partition the data to blocks of size B,

@ on each block: compute I\WBZ,

@ average the results.
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Block version — continued

Properties:
e Statistic: asymptotically normal (Hp, H1).
e For consistency: increase B, s.t. Bﬂm — 0.

@ Reduced variance.
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Three-variable interaction test

e Goal:

([x1; x2] L x3) v ([x1:x3] L x2) v ([x2; x3] L x1).

Example: P = P15Ps.
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Three-variable interaction test

o Goal:
([x1; x2] L x3) v ([x1:x3] L x2) v ([x2; x3] L x1).

Example: P = P15Ps.
@ Applications:

e structure learning of graphical models,
e discovering V-structures.
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Three-variable interaction test — continued

Analogy
Independence < P = P;P, < P — P1P, = 0.
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Three-variable interaction test — continued

Analogy
Independence < P = PP, < P — PP, = 0.

@ Lancaster 3-variable interaction [Lancaster, 1969]:

L(P) = P — Py 2P3 — Py 3P; — Py 3Ps + 2P PoPs.
is a signed measure, capturing

interaction = L(P) = 0.
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Three-variable interaction test — continued

Analogy
Independence < P = PP, < P — PP, = 0.

@ Lancaster 3-variable interaction [Lancaster, 1969]:

L(P) =P - P1,2P3 — P2,3P1 — P1,3P2 + 2P1 P> Ps.
is a signed measure, capturing
interaction = L(P) = 0.

e x; € (AXj, k;) are kernel endowed domains.
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Three-variable interaction test — continued

@ Interaction index [Sejdinovic et al., 2013a]:

| — 2
= |1 lye, 056, 00, -
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Three-variable interaction test — continued

@ Interaction index [Sejdinovic et al., 2013a]:

| — 2
= |1 lye, 056, 00, -

@ Empirical estimate:
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Three-variable interaction test — continued

@ Interaction index [Sejdinovic et al., 2013a]:

| — 2
= |1 lye, 056, 00, -

@ Empirical estimate:

@ Null approximation: permutation-test.
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Time-series tests: independence

@ Goal: test the stationary distribution of processes.
@ Independence tests
e Statistic: HSIC.
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Time-series tests: independence

@ Goal: test the stationary distribution of processes.
@ Independence tests

e Statistic: HSIC.
@ i.i.d. permutation technique: would fail.
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Time-series tests: independence

@ Goal: test the stationary distribution of processes.
@ Independence tests

e Statistic: HSIC.

@ i.i.d. permutation technique: would fail.

o ldea: shift-approach = preserve 'time structure’
[Chwialkowski and Gretton, 2014].
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Time-series tests: two-sample, independence, interaction

e Permutation approach (i.i.d): +1.
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Time-series tests: two-sample, independence, interaction

e Permutation approach (i.i.d): +1.

@ Idea: mask according to the memory of the processes.
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Time-series tests: two-sample, independence, interaction

e Permutation approach (i.i.d): +1.
@ Idea: mask according to the memory of the processes.
@ Implementation: wild bootstrap [Chwialkowski et al., 2014].
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Time-series tests: two-sample, independence, interaction

e Permutation approach (i.i.d): +1.
@ Idea: mask according to the memory of the processes.
@ Implementation: wild bootstrap [Chwialkowski et al., 2014].

3-variable interaction:

@ Lancaster interaction + wild bootstrap
[Rubenstein et al., 2016].
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Goodness-of-fit test

o Given:
j.id.
o [}, "X p,
e q: target distribution.
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Goodness-of-fit test

o Given:
j.id.
o [}, "X p,
e q: target distribution.

e p, q live on X = RY (differentiability), kernel k on X'
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Goodness-of-fit test

o Given:
o Pl " b,
e q: target distribution.
e p, q live on X = RY (differentiability), kernel k on X'

o Goal:

HO:p:qa
Hy:p#q.
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Goodness-of-fit test: continued

@ Idea [Chwialkowski et al., 2016]: Stein operator

ofi(x)

(500 = 33| “EI g + T pesti- wtsa,

i=1

) [0log q(x)
R R AP
8x,-
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Goodness-of-fit test: continued

@ Idea [Chwialkowski et al., 2016]: Stein operator

d
(SaF)x) = Y] [“"S)g(@ﬁ(x) + 5';)(:()] L fed =@ K,
i=1 ! !
Tqg= sup Ex p(Sqf)(x).

£l <1
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Goodness-of-fit test: continued

@ Idea [Chwialkowski et al., 2016]: Stein operator

d
(SaF)x) = Y] [“"S)g(@ﬁ(x) + 5';)(:()] L fed =@ K,
i=1 ! !
Tqg= sup Ex p(Sqf)(x).

£l <1

@ For co-universal k: Tqg =0< p=gq.
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Goodness-of-fit test: continued

@ Idea [Chwialkowski et al., 2016]: Stein operator

c [alogq<x> Fiy o U600

(Sqf)(x) = Z Ox; i(x) + 8)(] , fed:= ®7/=19‘Ck7
i=1 ! !

Tqg= sup Ex p(Sqf)(x).

£l <1

@ For co-universal k: Tqg =0< p=gq.
e Enough: ¢ up to multiplicative constant (V log q).
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Goodness-of-fit test: continued

@ Idea [Chwialkowski et al., 2016]: Stein operator

c [alogq<x> Fiy o U600

(Sqf)(x) = Z Ox; i(x) + 8)(] , fed:= ®7/=19‘Ck7
i=1 ! !

Tqg= sup Ex p(Sqf)(x).

£l <1

@ For co-universal k: Tqg =0< p=gq.
e Enough: ¢ up to multiplicative constant (V log q).
@ Null approximation: wild bootstrap (i.i.d, non-i.i.d.).
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Quadratic-time methods

@ Two-sample, independence, interaction, goodness-of-fit test.
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Quadratic-time methods

@ Two-sample, independence, interaction, goodness-of-fit test.

o Kernel endowed domain (goodness-of-fit RY).
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Quadratic-time methods

@ Two-sample, independence, interaction, goodness-of-fit test.
o Kernel endowed domain (goodness-of-fit RY).

o Typically: null can be ugly, techniques do not scale well.

Zoltan Szabé Structured Data: Dependency, Testing



Quadratic-time methods

@ Two-sample, independence, interaction, goodness-of-fit test.
o Kernel endowed domain (goodness-of-fit RY).

o Typically: null can be ugly, techniques do not scale well.

Linear-time tests, with high-power!
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Hypothesis testing: linear-time methods
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@ Nystrom method, random Fourier features.

@ Analytic representations — linear-time two-sample testing.
@ High-power linear-time techniques:

e two-sample testing,
e independence testing.
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Three schemes

Exemplified in independence testing [Zhang et al., 2017]:
@ block-HSIC: analog of block-MMD.
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Three schemes

Exemplified in independence testing [Zhang et al., 2017]:

@ block-HSIC: analog of block-MMD.
@ 2 low-rank schemes:
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Three schemes

Exemplified in independence testing [Zhang et al., 2017]:

@ block-HSIC: analog of block-MMD.
@ 2 low-rank schemes:

e Nystrom method
[Williams and Seeger, 2001, Drineas and Mahoney, 2005].
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Three schemes

Exemplified in independence testing [Zhang et al., 2017]:
@ block-HSIC: analog of block-MMD.
@ 2 low-rank schemes:

e Nystrom method
[Williams and Seeger, 2001, Drineas and Mahoney, 2005].
o random Fourier features: [Rahimi and Recht, 2007,
Sutherland and Schneider, 2015, Sriperumbudur and Szabé, 2015].
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HSIC recall

G, = Eu [ (60) — 1) ® (9() — 1)
=Eyy [0(x) @Y (y)] — px ® py,

HSIC(x,y) H yHHS
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:

X ~ -1
R™" 56 ~ G,,G;!G, ,
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:

1 1
nxn 5 -1 —2c 2T
R 535G~ Gn,rGr7r c';r,n = Gn,rGr,rZGr,r2Gn,r
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
1 1
A -1 e 2T
R™" 3G ~ Gn,rGr7r Gr,n = Gn,rGr,rZGr,rzcn,r

1 _1] 7
= Gn,rGr,r2 |:Gn,rGr,r?:|
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
1 1
A -1 e 2T
R™" 3G ~ Gn,rGr7r Gr,n = Gn,rGr,rZGr,rzcn,r

.
_1 _1
=G,,G,/ [Gn,rc,,ﬁ] = oY), oY eR™,
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
N 1 1
R™" 5 G~ Gn,rGr_}Gr,n = Gn,rGr,rZGr,EG,Z:r
1 _1] 7 -
= Gn,rGr,r2 |:Gn,rGr,r?:| = o (cbu) ’ oY e Rnxr’

1

T
_1 _1
R™" 5 CY = [Gn,rGr,rz] Gn rc';rr2

) )
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
1 1
A -1 e 2T
R™" 3G ~ Gn,rGr7r Gr,n = Gn,rGr,rZGr,rzcn,r

.
_1 _1
=G,,G,/ [Gn,rc,,ﬁ] = oY), oY eR™,

1T 1
R™ s CY = |:Gn,rGr,r2:| Gn,rc'.'r,r2 = ((Du)Tq)u.
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
R™"5G ~ G,,G; G, = Gn,rG,‘,?G,‘,?GL
_ G,,VrG,f,% [GnV,G,}] ! — (e, DY e R™,
17 _1
B3 GGt | GG ()T o
@ With centering:

R™" 5 G = H,GH,
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
N 1 1
R™" 5 G~ Gn,rGr_}Gr,n = c';n,rc';r G, r2G,Z—r
1 _1] 7 -
= Gn,rGr,r2 |:Gn,rGr,r?:| = o (cbu) oY e Rnxr’

)

17 _1
R™" 5 CY = [G,,,,G,f] G,,G, 7 = (o")T ov.

@ With centering:

R™" 5 G = H,GH, = H,®! ()T H,,
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
A 1 1
R™" 3G~ Gn,rGr_}Gr,n = c';n,rc';r 7 G, r2G,Z—r
1 _1]7 -
= Gn,rGr,r2 |:Gn,rGr,r?:| = o (cbu) ’ oY e Rnxr’

1T 1
R™ s CY = |:Gn,rGr,r2:| Gn,rc'.'r,r2 = ((Du)Tq)u.

@ With centering:

R™" 5 G = H,GH, = H,®! ()T H,,
R 5C¢ = (q)u)T Han(Du
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Nystrom method

Approximate G € R"*" with a (random) subset of size r « n.

@ Without centering:
A 1 1
R™" 3G~ Gn,rGr_}Gr,n = c';n,rc';r 7 G, r2G,Z—r
1 _1]7 -
= Gn,rGr,r2 |:Gn,rGr,r?:| = o (cbu) ’ oY e Rnxr’

1T 1
R™ s CY = |:Gn,rGr,r2:| Gn,rc'.'r,r2 = ((Du)Tq)u.

@ With centering:

R™" 5 G = H,GH, = H,®! ()T H,,
R™" 5 CE = (0Y)T HyH,0Y = ()7 °,
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Implementation for x and y, separately

Zoltan Szabé Structured Data: Dependency, Testing



Implementation for x and y, separately
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Implementation for x and y, separately

x,1

Gon 0U(ON)T = Cl = ()T oY, o = [(01)T 1 (08,)T | e R,
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Implementation for x and y, separately

o7 = c = (oY 7oL, ot —[(or) i (0k,) ] e R,
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Implementation for x and y, separately

On x:
Gon 0U(ON)T = Cl = ()T oY, o = [(01)T 1 (08,)T | e R,
Gy = H,GH, = H,0" (0)T H,

Zoltan Szabé Structured Data: Dependency, Testing



Implementation for x and y, separately

On x:

Gon 0U(ON)T = Cl = ()T oY, o = [(01)T 1 (08,)T | e R,
Gy = H,GH, = H,0! (02)TH,, €S = (02)7 H,H,0!
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Implementation for x and y, separately
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Implementation for x and y, separately
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Implementation for x and y, separately

6, ~oponT =y = (o) T oy oy = [(o4,) i (04,) | e R,

13

G, ~ H,G, H, = H,0! (04) T H,, CS = (¢%)T HH, 0! = (6¢)7 o

Zoltan Szabé Structured Data: Dependency, Testing



-based HSIC estimator

Population quantity:
HSICz(XaY) = ”Exy [p(x) @ U(y)] — ux ® ,UfyHi/s

= [0 (000 ~ 1) © (600) — ).

HS

Estimator:

.
1 § u 1 § u
HSICb,V X,¥) Z oY T - (n ,-Z;(DX"') (n Z{%J)

2

F
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Population quantity:
HSIC?(x,y) = [Exy [9(x) ® b (y)] = 11x @ 1y I3
= B [ (200 — ) © (0() — 1) ||

2

HS '
Estimator:

2

-

) 1 1< 1

HSICb,N(XaY) = n Z cb;l,l' (q’;,) = (n Z q’i,:’) (n Z cb%)
i=1 i=1 i=1

F
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-based HSIC estimator

Population quantity:

HSICz(XaY) = ”Exy [o(x) @Y (y)] — 1x ®,UfyHi/5

‘ 2
= ’Exy[(S@(X) - MX) ® (W(Y) - My)] HHS'
Estimator:
7112
o2 1 S u u\T 1 . u 1 - u
HSICb,N(Xay) = E Z cbx,i <¢y,i> - (n Z q)x,l') ( Z cby,i)
i=1 i=1 n i=1
F
1 2
=@ ey (@) 1,1] 0
n F
1 T 1,1 2
== (v . n u
n (®) (In n ) ®y F
(S
H,=HTH,
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-based HSIC estimator

Population quantity:

HSICz(XaY) = ”Exy [o(x) @Y (y)] — 1x ®,UfyHi/5

‘ 2
= ’Exy[(S@(X) - MX) ® (W(Y) - My)] HHS'
Estimator:
712
o2 1 S u u\T 1 . u 1 - u
HSICb,N(Xay) = E Z cbx,i <¢y,i> - (n Z q)x,l') ( Z cby,i)
i=1 i=1 n i=1
F
1 2
@Y7 ey (@0 1,1] 0
n F
1 T 1,1 2 1 T
= |= (Y |l — n u _ = c c )
n(x) (n n >¢y,__ n(¢x) q>yF
(S
H,=HTH,
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Nystrom-based HSIC estimator — conclusion

HSIC(x,y) = | C5, |2 c
——2 1 T 4y¢ 2
S - |47

F
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Nystrom-based HSIC estimator — conclusion

HSIC(x,y) = | C5, |2 c
——2 1 T 4y¢ 2
S - |47

F

CS, changed to 1 (S " ®¢, with Frobenius norm.
Xy n X y
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Nystrom technique: notes

o Use H/S/\Cb’/\/ in

e permutation test, or spectral approach.
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Nystrom technique: notes

o Use H/S/\Cb’/\/ in

e permutation test, or spectral approach.

o Computational complexity:
O(n) = 0(rR+r2+(r2+r2)n+ran).

In practice: ry,r, < n.
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Nystrom technique: notes

o Use H/S/\Cb’/\/ in

e permutation test, or spectral approach.
o Computational complexity:
O(n’) > 0(R2+r2+(rf+r)n+nan).

In practice: ry,r, < n.
@ [Snelson and Ghahramani, 2006, Titsias, 2009]:

o subset — optimized subset of size r,
e inducing points.
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Random Fourier features
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Characteristic functions: quick summary [Sasvari, 2013]

PH(ﬁPZ

op(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd
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Characteristic functions: quick summary [Sasvari, 2013]

P— ¢P3
op(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd

Properties:

o 3, P<ES g,
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Characteristic functions: quick summary [Sasvari, 2013]

P— ¢P3
op(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd
Properties:
0 3, P g,

o |pp(t)| <1, f(—t) = f(t) VteRC
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Characteristic functions: quick summary [Sasvari, 2013]

P— ¢P3
op(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd

Properties:
1:1
o E|, P& ¢]P>,
o |pp(t)| <1, f(—t) = f(t) VteRC
@ ¢p: uniformly continuous on RY.
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Characteristic functions: quick summary [Sasvari, 2013]

P— ¢P3
op(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd

Properties:
1:1
e 1, P ¢p,
o |pp(t)| <1, f(—t) = f(t) VteRC
@ ¢p: uniformly continuous on RY.
o pd: X7 ¢p(ti —tj)ci§ =0, for Yne ZF, t; € RY, ¢ e C.
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Characteristic functions: quick summary [Sasvari, 2013]

P— ¢P3
op(t) := Exp [ei<t’x>] = j ¥ dP(x), teRC.
Rd
Properties:
0 3, P g,

o |gp(t) <1, f(—t) =f(t) VteRC
@ ¢p: uniformly continuous on RY.
o pd: X7 ¢p(ti —tj)ci§ =0, for Yne ZF, t; € RY, ¢ e C.

Bochner's theorem & G > 0 definition of kernels!
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Characteristic functions: continued

Operations, closedness:
@ Sum of independent variables:

dsn o(t) =] [éx(t), VeeR
i=1
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Characteristic functions: continued

Operations, closedness:
@ Sum of independent variables:

dsn o(t) =] [éx(t), VeeR
i=1

o Affine transformation (A € R *%):

Oncin(t) = e, (ATE), vee R,
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Characteristic functions: continued

Operations, closedness:
@ Sum of independent variables:

dsn o(t) =] [éx(t), VeeR
i—1
o Affine transformation (A € R *%):

Oncin(t) = e, (ATE), vee R,

e Concatenation of independent variables: x = [x1;...;Xp]

ox(t) = [ [ o (k). t=[ts;...;t,] e R
i=1

Zoltan Szabé Structured Data: Dependency, Testing



Characteristic functions: continued

Operations, closedness:
@ Sum of independent variables:

dsn o(t) =] [éx(t), VeeR
i—1
o Affine transformation (A € R *%):

Oncin(t) = e, (ATE), vee R,

e Concatenation of independent variables: x = [x1;...;Xp]

ox(t) = [ [ o (k). t=[ts;...;t,] e R
i=1

Distance covariance!
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Characteristic functions: continued

Moment condition on P = differentiability of ¢p. J

Assume that exists:

Ma = Ex-p[x?] ac€ N9, (xa — Hxﬁi> '

Then 302¢p and
Pop(t) = i | x*et¥dP(x), Ve RY,
Rd

P?pp(0) = il M,

and 0?¢p is uniformly continuous.
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RFF idea

@ k: continuous, shift-invariant on R? [k(x,y) = ko(x —y)]. By Bochner:

k(x,y) = f e’ (x-y) dA(w)
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RFF idea

@ k: continuous, shift-invariant on R? [k(x,y) = ko(x —y)]. By Bochner:

k(x,y) = f e’ (x-y) dA(w)

cos(wT (x—y))+isin(wT (x—y))

- fRd cos (wT(x - y)) dA(w).
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RFF idea

@ k: continuous, shift-invariant on R? [k(x,y) = ko(x —y)]. By Bochner:

) =[ €T aw)
cos(wT (x—y))+isin(wT (x—y))

- fRd cos (wT(x - y)) dA(w).

e RFF trick [Rahimi and Recht, 2007] (MC): w1.m 1= (wj)7

= e (o] ()

iid.
1~ A,
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RFF idea

@ k: continuous, shift-invariant on R? [k(x,y) = ko(x —y)]. By Bochner:

k(x,y) = f e’ (y) dA\(w)
cos(wT (x—y))+isin(wT (x—y))

- fRd cos (wT(x - y)) dA(w).

® RFF trick [Rahimi and Recht, 2007] (MC): w1 1= (w;)[Z, G

k(x,y) = % i cos (wJ-T(x - y)) = f cos (wT(x - y)) dAp(w).
j=1 :
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RFF idea

@ k: continuous, shift-invariant on R? [k(x,y) = ko(x —y)]. By Bochner:

k(x,y) = y eiw’ (x—y) dA(w)
cos(wT (x—y))+isin(wT (x—y))

_ fRd cos (w7 (x ~y)) dA(w).

® RFF trick [Rahimi and Recht, 2007] (MC): w1 1= (w;)[Z, G

k(x,y) = % i cos (wJ-T(x - y)) = f cos <wT(x - y)) dAp(w).
j=1 :

Remember (characteristic kernels)

We saw many k — A examples!
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e Why is RFF useful?
o Does it converge (k — k)? Rates?

@ Extensions?
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Why is RFF useful?

Kernel approximation:

=L S (o)
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Why is RFF useful?

Kernel approximation:
1 m
= s ().

By the trigonometric identity:
cos(a — b) = cos(a) cos(b) + sin(a) sin(b),
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Why is RFF useful?

Kernel approximation:
1
= s ().
By the trigonometric identity:
os(a) cos(b) + sin(a) sin(b),
<(Zg () >R2’" ’
QAS(x) _ 1 [cos <w1Tx) ;... COS (wlx) ;

m
sin (w{x) c...:sin (wLx)] € R?>™.

cos(a —b) =
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Why is RFF useful?
Kernel approximation:
1 m
= ; cos ( )) .
By the trigonometric identity:

cos(a — b) = cos(a) cos( + sin(a) sin(b),

0s b)
<q§ () >R2m ’
<ZA5(X) _ b [cos <w1Tx) ;... COS (""LX> ;

m
sin (w{x) c...:sin (wLx)] € R?>™.

We got (random) explicit feature maps!
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RFF application in independence testing

Previous slide =
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RFF application in independence testing

Previous slide =

G, ~ 02 (09T, G, ~ oy (o))",
and hence
7112
1< 1 ¢
HSICb RFF X _y Zq) <n2¢;,i> (an);yi)
i=1 i=1
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RFF application in independence testing

Previous slide =

and hence

S|
NE
xT

\._/
VR
S|
Nk
<
<T
\._/
\'
N

2 1
HSICb,RFF(X7-y) = ; Z q);,i (q)}lj,l) T - (
i=1

1 |7
—(90)" &)

F

We simply 'overloaded’ the features with the RFF ones.
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Some further RFF-accelerated measures

o KCCA [Lopez-Paz et al., 2014].

@ MMD [Sutherland and Schneider, 2015,
Zhao and Meng, 2015, Lopez-Paz, 2016].
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RFF: in kernel ridge regression

e Given: {(x,-,y,-)}f;1
e Task: find f € Hy s.t. f(x;) ~ y;,

4
f — .
; I+ Alfl5, — min - (A>0)
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RFF: in kernel ridge regression

e Given: {(x,-,y,-)}f;1
e Task: find f € Hy s.t. f(x;) ~ y;,

4
f — .
; I+ Alfl5, — min - (A>0)

@ Analytical solution, O(¢3) — expensive:

F(x) = [k(x1,%), ..., k(xe, )](G + MDY y1;.. .5y,
G = [k(xi, )]}
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RFF: in kernel ridge regression

e Given: {(x,-,y,-)}f;1
e Task: find f € Hy s.t. f(x;) ~ y;,

4
f — .
; I+ Alfl5, — min - (A>0)

@ Analytical solution, O(¢3) — expensive:

F(x) = [k(x1,%), ..., k(xe, )](G + MDY y1;.. .5y,
G = [k(xi, )]}

ij=1*

o ldea: G, matrix-inversion lemma, fast primal solvers — RFF.
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Approximation quality

@ Hoeffding inequality + union bound
[Rahimi and Recht, 2007, Sutherland and Schneider, 2015]:

e, =05 (575
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Approximation quality

@ Hoeffding inequality + union bound
[Rahimi and Recht, 2007, Sutherland and Schneider, 2015]:

e, =05 (575

o ECFs [Csorgo and Totik, 1983]: [8,,| = €°(™ — optimal rate,
asymptotic!
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Approximation quality

@ Hoeffding inequality + union bound
[Rahimi and Recht, 2007, Sutherland and Schneider, 2015]:

e, =05 (575

o ECFs [Csorgo and Totik, 1983]: [8,,| = €°(™ — optimal rate,
asymptotic!
o Finite-sample L*-bound [Sriperumbudur and Szabé, 2015] 2=,

_o. [Vlelsl
LOC(S) a.s. .

k—k
H N

Zoltan Szabé Structured Data: Dependency, Testing



Optimal ||k — kHLf . proof idea

e Empirical process form [Pg := { gdP; g(w) = cos (wT(x — y))]:

sup
X,y€S

K(x,y) = k(xy)| = sup g = Amg| = A = An.
ge
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Optimal ||k — kHLf . proof idea

e Empirical process form [Pg := { gdP; g(w) = cos (wT(x — y))]:

sup
X,y€S

k(x,y) = k(x,y)| = sup|Ag — Amg| = |A = Anl.
g€g
o f(wim) = |A = Anlg concentrates (bounded difference):

1
IN=Amlg % Born [A = Amllg + 7.
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Optimal ||k — kHLf . proof idea

e Empirical process form [Pg := { gdP; g(w) = cos (wT(x — y))]:

sup
X,y€S

k(x,y) = k(x,y)| = sup|Ag — Amg| = |A = Anl.
g€g
o f(wim) = |A = Anlg concentrates (bounded difference):

1
IM—AMbéEmmM—AMb+;ﬁ-
@ G is 'nice’ (uniformly bounded, separable Carathéodory) =
Ewlzm H/\ - /\mHg 5 ]Ewl:m jz (g/ wl:m) .
[

1
Eesupgeg | = 27y €jg(w))]
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Proof idea — continued

@ Using Dudley's entropy bound:

1

R (g wl:m) < ﬁ

|g‘L2Am
J " \Jlog N (G, L2(Ar). r)dr.
0
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Proof idea — continued

@ Using Dudley's entropy bound:

|9‘L2<Am>

R(G,wi:m) < \/»J og/\/(g,L2(/\m),r)dr.

@ G is smoothly parameterized by a compact set =

4|S|A

r

N (G, L2(Am), 1) < < + 1>d, Alwr:m) =

1 & )
- Z lw;ll5-
j=1
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Proof idea — continued

@ Using Dudley's entropy bound:

|9‘L2<Am>

R(G,wi:m) < \/»J og/\/(g,L2(/\m),r)dr.

@ G is smoothly parameterized by a compact set =

4|S|A

r

N (G, L2(Am), 1) < < + 1>d, Alwr:m) =

1 & )
- Z lw;ll5-
j=1

o Putting together [|G[;2(a,) < 2, Jensen inequality] we get ...
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Theorem (Finite-sample optimal uniform bound on RFF)

Let k be continuous, 02 := {|lw|?dA(w) < 0. Then for V7 > 0
and compact set § < RY

e h(d,|8],0) + V21 _ .
A (uk— My > HE15E0) <

2d
h(d,|8], o) := 324/2dlog(2[S] + 1) + 164 | — oo
(d,|S] =3 og(2|8|+1) + 16 (2|8|+)+

324/2dlog(o + 1).
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* motivation

The object of interest:

sup |[Pf — P,f].
fer
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* motivation

The object of interest:

sup |[Pf — P,f].
fer

Original motivation:
e F: cdf, F,: empirical cdf.
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* motivation

The object of interest:

sup |[Pf — P,f].
fer

Original motivation:
e F: cdf, F,: empirical cdf.

@ Glivenko-Cantelli theorem:

|F = Fall, = sup [F(x) — Fa(x)]
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* motivation

The object of interest:

sup |[Pf — P,f].
fer

Original motivation:
e F: cdf, F,: empirical cdf.

@ Glivenko-Cantelli theorem:
IF = Fall, = sup |F(x) — Fa(x)]

=sup [Pf —Ppf|, T ={X(0x) : xR}
fegF

Ref: [van der Vaart and Wellner, 1996, van der Vaart, 1998,
van de Geer, 2009].
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Notes on RFF: LP bounds, kernel derivatives

@ One can also get:

o LP(8) results (<= uniform bound, type of LP).
e bounds on JkP-9.
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Notes on RFF: LP bounds, kernel derivatives

@ One can also get:

o LP(8) results (<= uniform bound, type of LP).

e bounds on JkP9.
P9f(x,y)
oPx0dy !

o nonlinear variable selection [Rosasco et al., 2010, Rosasco et al., 2013],

o Kernel derivatives:
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Notes on RFF: LP bounds, kernel derivatives

@ One can also get:

o LP(8) results (<= uniform bound, type of LP).
e bounds on 0kP9,
oPaf(xy)
o nonlinear variable selection [Rosasco et al., 2010, Rosasco et al., 2013],
o infinite-dimensional exponential family fitting
[Sriperumbudur et al., 2014].

o Kernel derivatives:
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Nonlinear variable selection

@ Objective function, A > 0:

1 n d
)= o D170 A3 101~ i,

=1 j=1
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Nonlinear variable selection

@ Objective function, A > 0:

1 n d
;Z (xi) — yil +/\Z|oJfH—>mj|{n

i=1 j=1

lgl :=

@ Intuition:
o if f does not depend on variable j — J;f = 0.
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Infinite-dimensional exponential family (R9)

@ Exponential family:
po(x)ocel®> T

where 0: natural parameter, T (x): sufficient statistics.
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Infinite-dimensional exponential family (R9)

@ Exponential family:
po(x)ocel®> T

where 0: natural parameter, T (x): sufficient statistics.

@ Examples: normal, exponential, gamma, X2, beta, ...
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Infinite-dimensional exponential family (R9)

@ Exponential family:
po(x)ocel®> T

where 0: natural parameter, T (x): sufficient statistics.
@ Examples: normal, exponential, gamma, X2, beta, ...

@ InfiniteD generalization:

Pf(X)oCef(x) _ e<f’k("x>>9€k .
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Infinite-dimensional exponential family (R9)

@ Exponential family:

po(x)ocel®> T

where 0: natural parameter, T (x): sufficient statistics.
@ Examples: normal, exponential, gamma, X2, beta, ...

@ InfiniteD generalization:

Pf(X)oCef(x) _ e<f’k("x>>9€k .

Fitting idea (score matching, Fischer divergence):

2

dx — min .
2 ij'fk

J(ps, pr) = JP*(X)

dlog p«(x)  Olog pr(x)
ox ox
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Notes on RFF: operator-valued extension

@ Standard setup: k: X x X - R

He={f: X >R|..}.
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Notes on RFF: operator-valued extension

@ Standard setup: k: X x X - R
He={f: X >R|...}.
@ Operator-valued case:

H={f X —>Y]|..}
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Notes on RFF: operator-valued extension

@ Standard setup: k: X x X - R
He={f: X >R|...}.
@ Operator-valued case:
Hi={fX->Y]|...}, k: X xX — L(Y).

Y: (separable) Hilbert. Example: Y = R9, £(Y) = R9*4.
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Notes on RFF: operator-valued extension

@ Standard setup: k: X x X - R
He={f: X >R|...}.
@ Operator-valued case:
Hi={fX->Y]|...}, k: X xX — L(Y).

Y: (separable) Hilbert. Example: Y = R9, £(Y) = R9*4.
o RFF idea

o works [Brault et al., 2016]; (R?,+) — LCA : v/
@ open question: 'optimal’ rates.
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Nystrom method, RFF: the end.
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Linear-time two-sample testing: analytic
representations.
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Linear-time 2-sample test [Chwialkowski et al., 2015]

@ Recall:

MMD(P,Q) = |up — pal, -
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Linear-time 2-sample test [Chwialkowski et al., 2015]

@ Recall:

MMD(P,Q) = |up — pal, -

@ ldea: change this to

J
p(P,Q) :=p (PvQ; {Vj}f=1) 1= Z e (v)) — po(v))]?

with random {v;}7_; test locations.
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Linear-time 2-sample test [Chwialkowski et al., 2015]

@ Recall:

MMD(P,Q) = |up — pal, -

@ ldea: change this to

J
p(P,Q) :=p (Pv(@; {Vj}f=1) 1= Z e (v)) — po(v))]?

with random {v;}7_; test locations.

Is p a random metric? How do we estimate it? Distribution under
Ho?
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What is a random metric?

It is a metric almost surely.
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What is a random metric?

It is a metric almost surely.

In other words,
e p(P,Q) >0, p(P,Q) =0« P =Q almost surely.
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What is a random metric?

It is a metric almost surely.

In other words,
e p(P,Q) >0, p(P,Q) =0« P =Q almost surely.
e p(P,Q) = p(Q,P) almost surely.

Zoltan Szabé Structured Data: Dependency, Testing



What is a random metric?

It is a metric almost surely. \

In other words,
e p(P,Q) >0, p(P,Q) =0« P =Q almost surely.
e p(P,Q) = p(Q,P) almost surely.
e p(P,Q) < p(P,D) + p(D,Q) almost surely.
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What is a random metric?

It is a metric almost surely.

In other words,
e p(P,Q) >0, p(P,Q) =0« P =Q almost surely.
e p(P,Q) = p(Q,P) almost surely.
e p(P,Q) < p(P,D) + p(D,Q) almost surely.

V = {v;}/_; = RY: reason of randomness.
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Result

If k is
® bounded: supy , k(x,x") < By < 0,

Zoltan Szabé Structured Data: Dependency, Testing



Result

If k is
® bounded: supy , k(x,x") < By < 0,

o analytic: x — k(x,y) is analytic for any 'y € RY.
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Result

If k is

® bounded: supy , k(x,x") < By < 0,

o analytic: x — k(x,y) is analytic for any 'y € RY.
@ characteristic:  is injective,
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Result

If k is

® bounded: supy , k(x,x") < By < 0,

o analytic: x — k(x,y) is analytic for any 'y € RY.
@ characteristic:  is injective,
then

J
p(BQ) = | 5 Due(w) — pa ()]

j=1

. . W
is a metric a.s. w.r.t. {vj}jzl,
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Why do analytic features work? — proof idea

@ i is injective to analytic functions:

e k: bounded, analytic = elements of H: analytic.
e k: characteristic, bounded = p = uy: well-defined, injective.
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Why do analytic features work? — proof idea

@ i is injective to analytic functions:

e k: bounded, analytic = elements of H: analytic.
e k: characteristic, bounded = p = uy: well-defined, injective.

@ u: characteristic = for P # Q, f := pup — pg # 0.
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Why do analytic features work? — proof idea

@ i is injective to analytic functions:

e k: bounded, analytic = elements of H: analytic.
e k: characteristic, bounded = p = uy: well-defined, injective.

@ u: characteristic = for P # Q, f := pup — pg # 0.

e f: analytic, thus

M~

p(P,Q) = [1e(v)) — na(v;)]®
j=1
is a metric, a.s. w.r.t. (v, o d) m < \. Reason: for an
analytic f # 0, m{v: f(v) =0} = 0.
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Compute
J
(IP Q) = 7 - Z fip(vj) — H@(VJ)]Z,
J:

Ix=v|?

where fip(v) = %Z,’-’:l k(x;,v). Example using k(x,v) = e 252 :

—  fip(v)
—  Jfig(v)

—  (Ap(v) = fig(v))®
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Estimation — continued

1

N J
PR.Q) = 5 Ylir) = o)
J
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Estimation — continued

)

J
Z fip(vj) — M@(W)]z

J 1 n 1 n 2
Z[,,Z (x7,v;) EZ y"’f]

k\l—‘

p*(P,Q) =

k\l—‘
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Estimation — continued

j=1
1 J 1 1 n 2 1 J ) 1__,__
= J; ; ’_Zlk(x”v‘l) - E 121 k(yhvj) = JJ_Z]-(Z")J = Jzn zn7

where Z,, = %Zle [k(xj,vj) — k(y,-,vj)]le e R/,
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Estimation — continued

where Z, = 1 37 | [k(x;,vj) — k(yi,vj)]i; € R7.

@ Good news: estimation is linear in n!

o Bad news: intractable null distr. = /np2(P, ) % sum of J
correlated 2.
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Normalized version gives tractable null

@ Modified test statistic:

An = nZ) X2,
where X, = cov ({z;}_,).
@ Under Hy:

~

o\, LR xX2(J). = Easy to get the (1 — a)-quantile!
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@ Characteristic functions — poor choice:

J
pa(BQ) 1= | & D [66(w) — dauy) .

Jj=1
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@ Characteristic functions — poor choice:

J
p2(P,Q) = §2¢PVJ ~ baw)P

@ [Moulines et al., 2007]:

nyn
p3(P,Q) := = yHC (1o — MP’)H :
k
n
C= X Cux + Cy : led i tor.
et 1y nx+ny vy © pooled covariance operator
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@ Characteristic functions — poor choice:

J
p2(P,Q) = §2¢PVJ ~ baw)P

@ [Moulines et al., 2007]:

nyn
p3(P,Q) := = yHC (1o — MP’)H :
k
n
C= X Cux + Cy : led i tor.
et 1y nx+ny vy © pooled covariance operator

Computational cost: high (cubic).
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Notes — continued

@ Until now: spatial domain.

@ Smoothed characteristic functions:

velt) = | delw)t(e—w)dw, e

J
pa(P,Q) := pr vj) — Yo(v))]?.

k \
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Notes — continued

@ Until now: spatial domain.

@ Smoothed characteristic functions:

velt) = | delw)t(e—w)dw, e

J
p4(P, Q) = j Z W Vj wQ(Vj)P-

@ It

o works,
@ is more sensitive to differences in the frequency domain.
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Linear-time high-power two-sample testing
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Example-1: NLP

e Given: two categories of documents (Bayesian inference,
neuroscience).
e Task:

o test their distinguishability,
e most discriminative words — interpretability.
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Example-2: computer vision

e Given: two sets of faces (happy, angry).
o Task:

e check if they are different,
o determine the most discriminative features/regions.
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One-page summary [Jitkrittum et al., 2016a]

@ We get a nonparametric t-test.

@ It gives a reason why Hy is rejected.
o ltis

e adaptive — high test power.
o fast (linear time).
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https://github.com/wittawatj/interpretable-test

One-page summary [Jitkrittum et al., 2016a]

@ We get a nonparametric t-test.

@ It gives a reason why Hy is rejected.
o ltis

e adaptive — high test power.
o fast (linear time).

Code:
@ https://github.com/wittawatj/interpretable-test
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https://github.com/wittawatj/interpretable-test

@ Until this point: test locations (V) are fixed.
@ Instead: choose 6 = {V,0} to

maximize lower bound on the test power.
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@ Until this point: test locations (V) are fixed.
@ Instead: choose 6 = {V,0} to

maximize lower bound on the test power.

Theorem (Lower bound on power, for large n)

Test power > L(\,,); L: explicit function, increasing.

@ Here,
o A\, = nuTE "y population version of \, = nz] £, 'z,
o p=Ey[z1], T =Ey [(zl —p)(z1 — H)T]-
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Convergence of the )\, estimator

But A, is unknown. Split (X, Y) into (X¢r, Yer) and (Xie, Yie).
o Locations, kernel parameter: § = arg maxy A (6).
2
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Convergence of the )\, estimator

But A, is unknown. Split (X, Y) into (X¢r, Yer) and (Xie, Yie).
o Locations, kernel parameter: § = arg maxy A (6).
2

@ Test statistic: /A\tge(é)
2
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Convergence of the )\, estimator

Theorem (Guarantee on objective approximation, v, — 0)

%up |27 (Zn + vn) 120 — uTzflu‘ = (’)(n_%).

)

Zoltan Szabé Structured Data: Dependency, Testing



Convergence of the )\, estimator

Theorem (Guarantee on objective approximation, v, — 0)

%up |27 (Zn + vn) 120 — ,uTzflu‘ = (’)(n_%).

)

Examples:

_ Ix=y)?
=S ks(x,y) =€ 222 :0>0p,

= {kA(x, y) = e~ (NTAKY) L A > O} .
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@ Lower bound on the test power:
o [An— | S (Zn — pll, + 120 — X f.
e Bound the r.h.s. by Hoeffding inequality = P(

i o= An| = 1)
o By reparameterization: P(A, > T,) bound.
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@ Lower bound on the test power:
o [An— | S (Zn — pll, + 120 — X f.
e Bound the r.h.s. by Hoeffding inequality = P(

i o= An| = 1)
o By reparameterization: P(A, > T,) bound.

e Uniformly Mo~ Ap:
e Reduction to bounding sup |z, — |
V.8

2 Sup | Z, — X .
i V.8

e Empirical processes, Dudley entropy bound.
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Non-convexity, informative features

Va2 = Af{?(vla v2) — 160

1140
1120
1100
180
160
140
120
=0

@ 2D problem:
P:= N(0> I)a Q:= N(e17 I)

o V= {Vl,Vz}. Fix v1 to the
triangle.

o vu — Ap({v1,va}): contour
plot.

— 192
1184
1176
1168
1160
1152
{1144
1136
=128
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Non-convexity, informative features

— 160
1140
1120
1100
180
160
140
120
=0

— 192
1184
1176
1168
1160
1152
{1144
1136
=128
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@ Nearby locations: do not
increase discrimininability.

@ Non-convexity: reveals multiple
ways to capture the difference.




Computational complexity

@ Optimization & testing: linear in n.
@ Testing: O (ndJ +nJ? + J3).
@ Optimization: O (ndJ2 + J3) per gradient ascent.
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Number of locations (J)

@ Small J:

e often enough to detect the difference of P & Q.
o few distinguishing regions to reject Hp.
o faster test.
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Number of locations (J)

o Very large J:

o test power need not increase monotonically in J (more
locations = statistic can gain in variance).
o defeats the purpose of a linear-time test.
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Numerical demos
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Parameter settings

o Gaussian kernel (¢). a = 0.01. J = 1. Repeat 500 trials.
@ Report
times A\, > T, holds
P(reject Hp) ~ # T
Ftrials
@ Compare 4 methods
o ME-full: Optimize V and Gaussian bandwidth o.
o ME-grid: Optimize 0. Random V [Chwialkowski et al., 2015].
o MMD-quad: Test with quadratic-time MMD [Gretton et al., 2012].
o MMD-lin: Test with linear-time MMD [Gretton et al., 2012].
@ Optimize kernels to power in MMD-lin, MMD-quad.
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NLP: discrimination of document categories

@ 5903 NIPS papers (1988-2015).
@ Keyword-based category assignment into 4 groups:

e Bayesian inference, Deep learning, Learning theory, Neuroscience

@ d = 2000 nouns. TF-IDF representation.

Problem nte ME-full  ME-grid MMD-quad MMD-lin
1. Bayes-Bayes 215 .012 .018 .022 .008
2. Bayes-Deep 216 .954 .034 .906 .262
3. Bayes-Learn 138 .990 174 1.00 .238
4. Bayes-Neuro 394 1.00 .300 .952 .972
5. Learn-Deep 149 .956 .052 .876 .500
6. Learn-Neuro 146 .960 572 1.00 .538

o Performance of ME-full [O(n)] is comparable to MMD-quad [O(n?)].
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NLP: most/least discriminative words

o Aggregating over trials; example: 'Bayes-Neuro'.
@ Most discriminative words:
spike, markov, cortex, dropout, recurr, iii, gibb.
o learned test locations: highly interpretable,

e 'markov’, 'gibb’ (<= Gibbs): Bayesian inference,
e 'spike’, 'cortex’: key terms in neuroscience.
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NLP: most/least discriminative words

o Aggregating over trials; example: 'Bayes-Neuro'.

@ Least dicriminative ones:

circumfer, bra, dominiqu, rhino, mitra, kid, impostor.
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Distinguish positive/negative emotions

e Karolinska Directed Emotional Faces (KDEF) [Lundqvist et al., 1998].
@ 70 actors = 35 females and 35 males.
@ d =48 x 34 = 1632. Grayscale. Pixel features.

-I—:...—:...

happy  neutral surprised afraid angry disgusted

Problem nt® \ ME-full ME-grid MMD-quad MMD-lin
+vs. £ 201 .010 .012 .018 .008
+vs. — 201 .998 .656 1.00 578

@ Learned test location (averaged) =
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Linear-time high-power two-sample testing:

finished
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Linear-time high-power independence testing
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2-sample test — independence test

Until now:
@ adaptive linear-time 2-sample test (automatic parameter tuning).

Zoltan Szabé Structured Data: Dependency, Testing



2-sample test — independence test

2-sample test:

J
MMD(P, Q) = |pp — MQHJ—(,(7 p(P,Q) = Z Hp VJ — HQ VJ>]27
J:1
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2-sample test — independence test

2-sample test:

J
MMD(P, Q) = |pp — MQHJ—(,(7 p(P,Q) = Z Hp VJ — HQ VJ>]27
J:1

Independence test [Jitkrittum et al., 2016b]:

J
HSIC(x,y) = |lxy — px ®Ny|‘g{k®g{£ , FSIC(x,y) = Z (vj, wj)
_]:1
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2-sample test — independence test

2-sample test:

J
MMD(P, Q) = |pp — MQHJ—(,(7 p(P,Q) = Z Hp VJ — HQ VJ>]27
J:1

Independence test [Jitkrittum et al., 2016b]:

J
HSIC(x,y) = |lxy — px ®Ny|‘g{k®g{£ , FSIC(x,y) = Z (vj, wj),
_]:1

with u(v,w) = 1, (v, W) — pix(V) e, (W) witness function.

Zoltan Szabdé Structured Data: Dependency, Testing



FSIC: covariance view

By rewriting

u(v,w) = fixy (v, W) — fix (V) /iy (W)
— By [k (%, )y, w)] — B [k(x,v)]Ey [Cly, w)]
= covky (k(x,v), l(y,w)) .

= We picked the (v, w) entry of

Coy = Exy [0(x) @ 9(y)] — pix @ py,

HSIC = | Gyl -
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FSIC is an independence measure

If k, £ are bounded, characteristic, analytic, then almost surely

FSIC(x,y) =0<x Ly.
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FSIC is an independence measure

If k, £ are bounded, characteristic, analytic, then almost surely

FSIC(x,y) =0<x Ly.

Computational complexity:

O ((dy + dy)Jn).
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FSIC is an independence measure

If k, £ are bounded, characteristic, analytic, then almost surely

FSIC(x,y) =0<x Ly.

Computational complexity:

O ((dy + dy)Jn).

Consequence of the theorem

FSIC is immediately applicable in ISA, feature selection,
outlier-robust image registration, ...
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Empirical estimator for FSIC

J
1

FSIC2 X y j 2 VJ7 WJ U(V,W) = MXy(Vaw) - IU'X(V)/'L}/(W)’
J

FSIC" (x.y) = 7. Z (vj,wj), (v, W) = iy (v, W) = (xsiy ) (v, W),
a —_—

=fix (V) fiy (w)
= > Jul3
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Empirical estimator for FSIC

FSIC2 (x,y)

FSIC” (x,y)

where

J
1
j 2 v_[7 WJ U(V, W) = MXy(va W) - IU'X(V)/'L}/(W)’
J
= j Z Vjawj a(v,w) = /I;},(V,W) - (/J/X/Ty)(va w),
o —_—
i=fx (V) fiy (w)
- Lz,
17
/ny v, W ;Z XH YM )7
[ty (v, W) Zk xi, v)L(yj, w)

l;é_]
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Empirical estimator for FSIC

For fixed (v,w) FSIC is a U-statistic:

ﬁ(V,W) = n(n2_1) Z hv,w ((Xiayi)a (xja YJ)) )

i<j

hV,W ((X> Y)v (X,a y/)) = % [k(X, V) - k(xlv V)] [E(Ya W) - g(ylv W)]
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Empirical estimator for FSIC

For fixed (v,w) FSIC is a U-statistic:
N 2
(v, w) = n(n—l);h‘”w ((xi,¥i), (%}, ¥7))

hV,W ((X>Y)7 (X,a y/)) = % [k(X,V) - k(X/,V)] [K(Yaw) - g(ylvw)] )

thus

Theorem (Asymptotic normality)

For any fixed locations V = {(vj,wj)}le, i:= [0(vj,wj)]f=1

Vn(a—u) % N, x),

Zij = COVxy (ﬁ(vivwi)a ﬁ(vjij)) °
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NFSIC = FSIC + whitening

_— 9 2
e nFSIC (x,y) = n%: asymptotically sum of correlated y?-s.
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NFSIC = FSIC + whitening

_— 9 2
e nFSIC (x,y) = n%: asymptotically sum of correlated y?-s.
@ Quantile: hard. = With the whitening trick:

e Under Hy: with v, — 0

~ N —1
Y ():n + »ynlJ) 6 % \2(J).
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NFSIC = FSIC + whitening

_— 9 2
e nFSIC (x,y) = n%: asymptotically sum of correlated y?-s.
@ Quantile: hard. = With the whitening trick:

e Under Hy: with v, — 0

~

N 1
Y ():n + »ynlJ) 6 % \2(J).

o Under Hy: we get a consistent test (i.e., power — 1).
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NFSIC can be estimated

Test statistic:
o T e -1
An = ni (Z,, + fy,,IJ> u.

Estimator: no n x n Gram matrix
o K:=[k(vj,xj)] € RI*" L:=[{(w;,y;)] € R/*",

A - N N KoL), _ (Kln)o(Ll,
o £, = T T = (KHy)o (LHy) — 1], @ :— KcLln _ (KLo(ll),

Computational time:

O (£ + Sn+ (de+dy)JIn).
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NFSIC can be estimated

Test statistic:
o T e -1
An = ni (Z,, + 7,,IJ> u.

Estimator: no n x n Gram matrix
o K:=[k(vj,xj)] € RI*" L:=[{(w;,y;)] € R/*",

A - N N KoL), _ (Kln)o(Ll,
o £, = T T = (KHy)o (LHy) — 1], @ :— KcLln _ (KLo(ll),

Computational time:
O (£ + Sn+ (de+dy)JIn).

Code with demos:
https://github.com/wittawatj/fsic-test
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Choosing the locations & kernel parameters

o Consistent test: for V'V = {(vj,wj}f:1 and kernel parameters.
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Choosing the locations & kernel parameters

o Consistent test: for V'V = {(vj,wj}f:1 and kernel parameters.

@ Choose the test-power proxy maximizers.

Let NFSIC?(x,y) = Ay = nu” Ztu. For large n,
test power = L(\,),

L: monotonically increasing.
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Choosing the locations & kernel parameters

o Consistent test: for V'V = {(vj,wj}f:1 and kernel parameters.

@ Choose the test-power proxy maximizers.

Let NFSIC?(x,y) = Ay = nu” Ztu. For large n,
test power = L(\,),

L: monotonically increasing.

@ In practice: data-splitting (a la 2-sample testing).
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HSIC versus FSIC

Which one to choose?

® FSIC = ul (i} )
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HSIC versus FSIC

Which one to choose?

o When p,, — p«p, is diffuse, close to flat.

® FSIC = ul (i} )
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HSIC versus FSIC

Which one to choose?

o When p,, — p«p, is diffuse, close to flat.

® FSIC = ul (i} )

e When p,, — p.p, is local, with many peaks.
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Demo settings

@ k, ¢: Gaussian. J = 10.
@ Report: rejection rate of Hp.
o Compare 6 methods:

Method Description Tuning Test size  Complexity
NFSIC-opt  Studied Gradient descent  n/2 O(n)
NFSIC-med  No tuning Random locations n O(n)
QHSIC Full HSIC Median heuristic ~ n O(n?)
NyHSIC Nystrom + HSIC ~ Median heuristic ~ n O(n)
FHSIC RFF + HSIC Median heuristic ~ n O(n)
RDC RFF + CCA Median heuristic ~ n O(nlog n)
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Demo-1: million song data

Song (x) vs. year of release (y).

@ Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].

o x € R99=%: judio features.

o Left: break (x,y) pairs, i.e. Hp; right: Hi is true.
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Demo-1: million song data

Song (x) vs. year of release (y).
@ Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
o x € R99=%: judio features.
o Left: break (x,y) pairs, i.e. Hp; right: Hi is true.

‘-—- NFSIC-opt =@ NFSIC-med  e— QHSIC =~ NyHSIC +—e FHSIC +— RDC

0.025 — - . 1.0F
0.020 0.91 1
. + 0.8f 1
e [
5 0.015 §0.7— 1
£ 0.010 7 06f : 1
o U.
& Sosf “ f
0.005 0.4} 1
0.3} « 1
0.000— : : - - -
500 1000 1500 2000 500 1000 1500 2000
Sample size n Sample size n
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Demo-2: videos and captions

Youtube video (x) vs. caption (y).

@ VideoStory46K [Habibian et al., 2014]

o x € R?000=dx: Fisher vector encoding of motion boundary
histograms [Wang and Schmid, 2013].

o y e R1878=d: phag of words. TF.

o Left: break (x,y) pairs, i.e. Ho; right: Hj is true.
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Demo-2: videos and captions

Youtube video (x) vs. caption (y).
@ VideoStory46K [Habibian et al., 2014]
o x € R?000=dx: Fisher vector encoding of motion boundary
histograms [Wang and Schmid, 2013].
o y e R1878=d: phag of words. TF.
o Left: break (x,y) pairs, i.e. Ho; right: Hj is true.

‘-—- NFSIC-opt  ®-@ NFSIC-med  e— QHSIC +—~ NyHSIC +— FHSIC +— RDC

0.018 : . 1.0
0.016}
0.8}
. 0.014{ =
2 0.012f £ 0.6/
(] o
-+ 0.010 Q
(] +
20.008} 0 0.4f
= F =
0.006 0.2
0.004}
0'O%JOO 2000 6000 8000 02%00 4000 6000 8000
Sample size n Sample size n
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@ Dependency measures, distances: KCCA, HSIC, MMD.
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@ Dependency measures, distances: KCCA, HSIC, MMD.
@ Mean embedding, cross-covariance operator.
@ Applications:
e ISA, distribution regression, image registration, feature selection,
e hypothesis testing.
@ Hypothesis testing:
e quadratic methods,
e scaling: block-variants, Nystrom, RFF,
e linear-time adaptive nonparametric tests.
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Thank you for the attention!
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