Functional Data Analysis (Lecture 3)

Zoltán Szabó

October 18, 2016

Reminder, contents

- Last time: PEN_L-regularized least squares.
- Today:
 - smoothing with constraints,
 - positivity: daily precipitation, counts of errors, ...
 - monotonicity: growth curves (height, length); in registration!
 - probability density function.

Reminder, contents

- Last time: PEN_L-regularized least squares.
- Today:
 - smoothing with constraints,
 - positivity: daily precipitation, counts of errors, ...
 - monotonicity: growth curves (height, length); in registration!
 - probability density function.
 - 2 curve registration:
 - shift-, feature-, continuous registration.

Positivity as exp

• Idea: parameterize log[x(t)], log := ln.

Positivity as exp

- Idea: parameterize $\log[x(t)]$, $\log := \ln$.
- Objective:

$$\begin{split} & x(t) = e^{W(t)}, \ W(t) = \mathbf{c}^T \phi(t), \\ & J(\mathbf{c}) = \left[\mathbf{y} - e^{W(\mathbf{t})} \right]^T \mathbf{W} \left[\mathbf{y} - e^{W(\mathbf{t})} \right] + \lambda \left\| L W \right\|^2 \to \min_{\mathbf{c} \in \mathbb{R}^B}. \end{split}$$

Positivity as exp

- Idea: parameterize $\log[x(t)]$, $\log := \ln$.
- Objective:

$$\begin{split} & x(t) = \mathbf{e}^{W(t)}, \ W(t) = \mathbf{c}^T \phi(t), \\ & J(\mathbf{c}) = \left[\mathbf{y} - \mathbf{e}^{W(\mathbf{t})} \right]^T \mathbf{W} \left[\mathbf{y} - \mathbf{e}^{W(\mathbf{t})} \right] + \lambda \left\| LW \right\|^2 \to \min_{\mathbf{c} \in \mathbb{R}^B}. \end{split}$$

- Notes:
 - J: nonquadratic in $\mathbf{c} \Rightarrow$ iterative solvers,
 - typically: $\mathbf{c}_0 = \mathbf{0}$, fast convergence.

Positivity as differential equation

• Motivation:
$$x(t) = e^{wt} \leftrightarrow Dx(t) = wx(t) \Rightarrow \text{Let } Dx(t) = w(t)x(t)$$
.

Positivity as differential equation

- Motivation: $x(t) = e^{wt} \leftrightarrow Dx(t) = wx(t) \Rightarrow \text{Let } Dx(t) = w(t)x(t)$.
- Note: w(t) > 0 more rapid increase as x(t) grows.

Positivity as differential equation

- Motivation: $x(t) = e^{wt} \leftrightarrow Dx(t) = wx(t) \Rightarrow \text{Let } Dx(t) = w(t)x(t)$.
- Note: w(t) > 0 more rapid increase as x(t) grows.
- Solution:

$$\frac{\mathbf{x}(t)}{\mathbf{z}(t)} = \underbrace{\mathbf{x}(t_0)}_{=C} e^{\int_{t_0}^t w(u)du} \stackrel{(*)}{=} e^{\log(C)} e^{\int_{t_0}^t w(u)du}$$

$$= e^{\log(C) + \int_{t_0}^t w(u)du =: \mathbf{W}(t)}$$

(*): if
$$C = x(t_0) > 0$$
. Else: take " $-x(t)$ ".

Smoothing with monotonicity: explicit way

Idea:

x: strictly increasing $\Leftrightarrow Dx$: positive.

Smoothing with monotonicity: explicit way

Idea:

x: strictly increasing \Leftrightarrow Dx: positive.

• Solution of $Dx(t) = e^{W(t)}$:

$$x(t) = \underbrace{C}_{=x(t_0)} \int_{t_0}^t e^{W(u)} du.$$

Smoothing with monotonicity: differential equation

- Idea: D(Dx) = w(Dx).
- Note: solving it & suitable W(t) choice gives again

$$x(t) = C \int_{t_0}^t e^{W(u)} du.$$

• Density estimation: given $t_1, \ldots, t_n \overset{i.i.d.}{\sim} p$; task: \hat{p} .

- Density estimation: given $t_1, \ldots, t_n \overset{i.i.d.}{\sim} p$; task: \hat{p} .
- Idea:
 - **1** p: positive function $\Rightarrow p(t) = Ce^{W(t)}$,
 - ② with a $\int p(t)dt = 1$ constraint $\Rightarrow C = \frac{1}{\int e^{W(t)}dt}$.

- Density estimation: given $t_1, \ldots, t_n \overset{i.i.d.}{\sim} p$; task: \hat{p} .
- Idea:
 - **1** p: positive function $\Rightarrow p(t) = Ce^{W(t)}$,
 - with a $\int p(t)dt = 1$ constraint $\Rightarrow C = \frac{1}{\int e^{W(t)}dt}$.
- Use ML estimation, $W(t) = \mathbf{c}^T \phi(t)$:

$$\max_{W/\mathbf{c}} \leftarrow \log \left[p(\mathbf{t}; W) \right]$$

- Density estimation: given $t_1, \ldots, t_n \overset{i.i.d.}{\sim} p$; task: \hat{p} .
- Idea:
 - **1** p: positive function $\Rightarrow p(t) = Ce^{W(t)}$,
 - ② with a $\int p(t)dt = 1$ constraint $\Rightarrow C = \frac{1}{\int e^{W(t)}dt}$.
- Use ML estimation, $W(t) = \mathbf{c}^T \phi(t)$:

$$\max_{W/\mathbf{c}} \leftarrow \log [p(\mathbf{t}; W)] = \sum_{i=1}^{n} \log p(t_i; W)$$

- Density estimation: given $t_1, \ldots, t_n \overset{i.i.d.}{\sim} p$; task: \hat{p} .
- Idea:
 - **1** p: positive function $\Rightarrow p(t) = Ce^{W(t)}$,
 - 2 with a $\int p(t)dt = 1$ constraint $\Rightarrow C = \frac{1}{\int e^{W(t)}dt}$.
- Use ML estimation, $W(t) = \mathbf{c}^T \phi(t)$:

$$\max_{W/\mathbf{c}} \leftarrow \log [p(\mathbf{t}; W)] = \sum_{i=1}^{n} \log p(t_i; W)$$
$$= \sum_{i=1}^{n} W(t_i) + \log(C)$$

- Density estimation: given $t_1, \ldots, t_n \overset{i.i.d.}{\sim} p$; task: \hat{p} .
- Idea:
 - **1** p: positive function $\Rightarrow p(t) = Ce^{W(t)}$,
 - with a $\int p(t)dt = 1$ constraint $\Rightarrow C = \frac{1}{\int e^{W(t)}dt}$.
- Use ML estimation, $W(t) = \mathbf{c}^T \phi(t)$:

$$\max_{W/\mathbf{c}} \leftarrow \log [p(\mathbf{t}; W)] = \sum_{i=1}^{n} \log p(t_i; W)$$
$$= \sum_{i=1}^{n} W(t_i) + \log(C) = \sum_{i=1}^{n} \mathbf{c}^{T} \phi(t_i) + n \log(C).$$

- Density estimation: given $t_1, \ldots, t_n \stackrel{i.i.d.}{\sim} p$; task: \hat{p} .
- Idea:
 - **1** p: positive function $\Rightarrow p(t) = Ce^{W(t)}$,
 - ② with a $\int p(t)dt = 1$ constraint $\Rightarrow C = \frac{1}{\int e^{W(t)}dt}$.
- Use ML estimation, $W(t) = \mathbf{c}^T \phi(t)$:

$$\max_{W/\mathbf{c}} \leftarrow \log [p(\mathbf{t}; W)] = \sum_{i=1}^{n} \log p(t_i; W)$$
$$= \sum_{i=1}^{n} W(t_i) + \log(C) = \sum_{i=1}^{n} \mathbf{c}^{T} \phi(t_i) + n \log(C).$$

• Penalty: $L = D^3 \Rightarrow W \approx \text{quadratic} \leftrightarrow p \approx \text{Gaussian}$.

- Density estimation: given $t_1, \ldots, t_n \stackrel{i.i.d.}{\sim} p$; task: \hat{p} .
- Idea:
 - **1** p: positive function $\Rightarrow p(t) = Ce^{W(t)}$,
 - ② with a $\int p(t)dt = 1$ constraint $\Rightarrow C = \frac{1}{\int e^{W(t)}dt}$.
- Use ML estimation, $W(t) = \mathbf{c}^T \phi(t)$:

$$\max_{W/\mathbf{c}} \leftarrow \log \left[p(\mathbf{t}; W) \right] = \sum_{i=1}^{n} \log p(t_i; W)$$
$$= \sum_{i=1}^{n} W(t_i) + \log(C) = \sum_{i=1}^{n} \mathbf{c}^{T} \phi(t_i) + n \log(C).$$

- Penalty: $L = D^3 \Rightarrow W \approx \text{quadratic} \leftrightarrow p \approx \text{Gaussian}$.
- Objective:

$$J(\mathbf{c}) = -\sum_{i=1}^{n} \mathbf{c}^{T} \phi(t_{i}) + \lambda \int [LW(t)]^{2} dt \to \min_{\mathbf{c} \in \mathbb{R}^{B}}.$$

Curve registration

Curve registration: motivation

Examples:

- ◆ thild grows at his/her own pace
- 2 weather: winter: may started at different time, ...

Curve registration: amplitude/phase variability

$$x_i^*(t) = x_i(t + \delta_i)$$
 -s are aligned.

$$x_i^*(t) = x_i(t + \delta_i)$$
 -s are aligned.

- Registration (Procrustes method):

$$x_i^*(t) = x_i(t + \delta_i)$$
 -s are aligned.

- Registration (Procrustes method):

 - ① $x_1, \ldots, x_N \xrightarrow{\text{average/smoothing}} x_0$: 'mean' curve. ② $J(\delta) = \sum_{i=1}^N \int [x_i(t+\delta_i) x_0(t)]^2 dt \to \min_{\delta \in \mathbb{R}^N}$.

$$x_i^*(t) = x_i(t + \delta_i)$$
 -s are aligned.

- Registration (Procrustes method): in iteration
 - ① $x_1, \ldots, x_N \xrightarrow{\text{average/smoothing}} x_0$: 'mean' curve. ② $J(\delta) = \sum_{i=1}^N \int [x_i(t+\delta_i) x_0(t)]^2 dt \to \min_{\delta \in \mathbb{R}^N}$.

 - **3** curves:= registered ones, i.e. $x_i(t) := x_i(t + \hat{\delta}_i) \ \forall i$.

Shift registration: modified Newton-Raphson method

Algorithm ($\alpha > 0$, Newton method: $\alpha = 1$): step 2-3 in iteration

- Input: $\{\delta_i\}_{i=1}^N$.
- 2 Mean curve: $x_1, \ldots, x_N \rightarrow x_0$.
- Update the shifts:

$$\delta_i := \delta_i - \alpha \frac{\frac{\partial J}{\partial \delta_i}}{\frac{\partial^2 J}{\partial \delta_i^2}}, \quad (\forall i).$$

Shift registration: modified Newton-Raphson method

Algorithm ($\alpha > 0$, Newton method: $\alpha = 1$): step 2-3 in iteration

- Input: $\{\delta_i\}_{i=1}^N$.
- 2 Mean curve: $x_1, \ldots, x_N \rightarrow x_0$.
- Update the shifts:

$$\delta_i := \delta_i - \alpha \frac{\frac{\partial J}{\partial \delta_i}}{\frac{\partial^2 J}{\partial \delta_i^2}}, \quad (\forall i).$$

Derivatives:
$$J(\delta) = \sum_{i=1}^{N} \int [x_i(t+\delta_i) - x_0(t)]^2 dt \Rightarrow$$
$$\frac{\partial J}{\partial \delta_i} = 2 \int [x_i(t+\delta_i) - x_0(t)] Dx_i(t+\delta_i) dt,$$
$$\frac{\partial^2 J}{\partial \delta_i^2} = 2 \int [Dx_i(t+\delta_i)]^2 + [x_i(t+\delta_i) - x_0(t)] D^2 x_i(t+\delta_i) dt,$$

- Idea: align only curve features.
- Assumption: features are visible on all curves. Acceleration:

• Task: find $\{h_i\}_{i=1}^N$ such that

$$x_i^* = x_i \circ h_i \ (\forall i)$$

-s are aligned (in terms of the curve features).

$$x_i^* = x_i \circ h_i \ (\forall i)$$

- -s are aligned (in terms of the curve features).
- Registration:

$$x_i^* = x_i \circ h_i \ (\forall i)$$

- -s are aligned (in terms of the curve features).
- Registration:
 - **1** Feature extraction: $x_1 \mapsto \mathbf{t}_1, \dots, x_N \mapsto \mathbf{t}_N, \, \mathbf{t}_n \in \mathbb{R}^F$.

$$x_i^* = x_i \circ h_i \ (\forall i)$$

- -s are aligned (in terms of the curve features).
- Registration:
 - Feature extraction: x₁ → t₁,..., x_N → t_N, t_n ∈ ℝ^F.
 Mean curve: x₁,..., x_N average / x₀, x₀ → t₀ ∈ ℝ^F.

$$x_i^* = x_i \circ h_i \ (\forall i)$$

- -s are aligned (in terms of the curve features).
- Registration:
 - **1** Feature extraction: $x_1 \mapsto \mathbf{t}_1, \dots, x_N \mapsto \mathbf{t}_N, \, \mathbf{t}_n \in \mathbb{R}^F$.
 - **2** Mean curve: $x_1, \ldots, x_N \xrightarrow{\text{average}} x_0, x_0 \mapsto \mathbf{t}_0 \in \mathbb{R}^F$.
 - **3** Warping-functions: $\{h_i\}_{i=1}^N = ?$, solve (constrained smoothing, $\forall i$)

$$h_i(0) = 0, h_i(T) = T_i,$$

 $h_i(t_{0f}) = t_{if} \quad f = 1, \dots, F,$
 h_i : strictly monotone.

• Task: find $\{h_i\}_{i=1}^N$ such that

$$x_i^* = x_i \circ h_i \ (\forall i)$$

- -s are aligned (in terms of the curve features).
- Registration: in iteration
 - **1** Feature extraction: $x_1 \mapsto \mathbf{t}_1, \dots, x_N \mapsto \mathbf{t}_N, \, \mathbf{t}_n \in \mathbb{R}^F$.
 - **2** Mean curve: $x_1, \ldots, x_N \xrightarrow{\text{average}} x_0, x_0 \mapsto \mathbf{t}_0 \in \mathbb{R}^F$.
 - **3** Warping-functions: $\{h_i\}_{i=1}^N = ?$, solve (constrained smoothing, $\forall i$)

$$h_i(0) = 0, h_i(T) = T_i,$$

 $h_i(t_{0f}) = t_{if} \quad f = 1, \dots, F,$
 h_i : strictly monotone.

4 Update curves: $x_i := x_i \circ h_i$.

Continuous registration

- We do not use landmarks. We register the complete curves.
- Recall (strictly monotone functions):

$$h(t) = C + \int_0^t e^{W(u)} du.$$

- Note:
 - **1** W(u) = 0: internal time = clock time.
 - ② W(u) > 0: warped time grows faster than clock time.

- Idea:
 - **1** x_0 and x^* only differ in amplitude $\Leftrightarrow x_0(x^*)$ is *linear*.

- Idea:
 - **1** x_0 and x^* only differ in amplitude $\Leftrightarrow x_0(x^*)$ is *linear*.
 - 2 Take $(x_0(t), x[h(t)])$ at n t-values; $\mathbf{X} \in \mathbb{R}^{n \times 2}$.

- Idea:
 - **1** x_0 and x^* only differ in amplitude $\Leftrightarrow x_0(x^*)$ is *linear*.
 - 2 Take $(x_0(t), x[h(t)])$ at n t-values; $\mathbf{X} \in \mathbb{R}^{n \times 2}$.
 - **3** PCA: X^TX functional analogue

$$\mathbf{T}(h) = \begin{bmatrix} \langle x_0, x_0 \rangle & \langle x_0, x \circ h \rangle \\ \langle x \circ h, x_0 \rangle & \langle x \circ h, x \circ h \rangle \end{bmatrix} \in \mathbb{R}^{2 \times 2},$$

where
$$\langle f, g \rangle = \int f(t)g(t)dt$$
.

- Idea:
 - **1** x_0 and x^* only differ in amplitude $\Leftrightarrow x_0(x^*)$ is *linear*.
 - 2 Take $(x_0(t), x[h(t)])$ at n t-values; $\mathbf{X} \in \mathbb{R}^{n \times 2}$.

$$\mathbf{T}(h) = \begin{bmatrix} \langle x_0, x_0 \rangle & \langle x_0, x \circ h \rangle \\ \langle x \circ h, x_0 \rangle & \langle x \circ h, x \circ h \rangle \end{bmatrix} \in \mathbb{R}^{2 \times 2},$$

where
$$\langle f, g \rangle = \int f(t)g(t)dt$$
.

⑤ line \leftrightarrow **T**(h) has 1 non-zero eigenvalue.

- Idea:
 - **1** x_0 and x^* only differ in amplitude $\Leftrightarrow x_0(x^*)$ is *linear*.
 - 2 Take $(x_0(t), x[h(t)])$ at n t-values; $\mathbf{X} \in \mathbb{R}^{n \times 2}$.
 - **3** PCA: $\mathbf{X}^T \mathbf{X} \xrightarrow{\text{functional analogue}}$

$$\mathbf{T}(h) = \begin{bmatrix} \langle x_0, x_0 \rangle & \langle x_0, x \circ h \rangle \\ \langle x \circ h, x_0 \rangle & \langle x \circ h, x \circ h \rangle \end{bmatrix} \in \mathbb{R}^{2 \times 2},$$

where
$$\langle f, g \rangle = \int f(t)g(t)dt$$
.

- **⑤** line \leftrightarrow **T**(h) has 1 non-zero eigenvalue.
- Objective, h = h(W):

$$J(h) = \lambda_2 \left[\mathbf{T}(h) \right] + \lambda \left\| D^m W \right\|^2 \to \min_h.$$

- Idea:
 - **1** x_0 and x^* only differ in amplitude $\Leftrightarrow x_0(x^*)$ is *linear*.
 - 2 Take $(x_0(t), x[h(t)])$ at n t-values; $\mathbf{X} \in \mathbb{R}^{n \times 2}$.
 - **3** PCA: $\mathbf{X}^T\mathbf{X} \xrightarrow{\text{functional analogue}}$

$$\mathbf{T}(h) = \begin{bmatrix} \langle x_0, x_0 \rangle & \langle x_0, x \circ h \rangle \\ \langle x \circ h, x_0 \rangle & \langle x \circ h, x \circ h \rangle \end{bmatrix} \in \mathbb{R}^{2 \times 2},$$

where
$$\langle f, g \rangle = \int f(t)g(t)dt$$
.

- **⑤** line \leftrightarrow **T**(h) has 1 non-zero eigenvalue.
- Objective, h = h(W):

$$J(h) = \lambda_2 \left[\mathbf{T}(h) \right] + \lambda \left\| D^m W \right\|^2 \to \min_{h}.$$

• $x := x_i, \forall i$.

In practice

- Often *composition* of feature and continuous registration. ⇒
- Clearly visible landmarks: with feature registration.
- Note: dynamic programming based methods (no smoothness).

Summary

- Smoothing with constraints: positivity, monotonicity, pdf.
- Registration: shift-, feature-, continuous registration.

We covered Chapter 6-7 in [1].