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Last time:
@ Smoothing by least squares, kernel smoothing:

£(1) = (@ 6(6), J(c) = y — Be) W[y — ¥c) — min,

R(t) = . Si(t)y;, Si(t) — K, h.

j=1

@ Regularization parameters:
o B = dim(¢) and h. Choice: a few heuristics came up.
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Last time:
@ Smoothing by least squares, kernel smoothing:

£(1) = (@ 6(6), J(c) = y — Be) W[y — ¥c) — min,

(1) = > Si(t)y;, Si(t) < K, h.

j=1

@ Regularization parameters:
o B = dim(¢) and h. Choice: a few heuristics came up.

Today:

‘smoothing with roughness penalty (regularization) ‘
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Smoothing with roughness penalty

@ Meaning of “smooth”: explicitly expressed.
o Wide applicability.

@ In practice: often better results (derivatives).
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Roughness measures

Let D denote derivative. Curvature of x at t: [D?x(t)]?; zero for lines.
o PEN,(x) := {[D?x(t)]?dt < roughness of x.
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Roughness measures

Let D denote derivative. Curvature of x at t: [D?x(t)]?; zero for lines.

e PEN,(x) := S [D?x(t)]?dt < roughness of x.
° PENM =l DM ] dt < roughness of DM—2x
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Roughness measures

Let D denote derivative. Curvature of x at t: [D?x(t)]?; zero for lines.

e PEN,(x) := S [D?x(t)]?dt < roughness of x.
° PENM =l DM ] dt < roughness of DM—2x
° Harmomc acceleratlon operator: Lx = D3x—|—w2Dx, w: period = %”

Lx =0 < x(t) = c1 + e sin(wt) + c3 cos(wt).
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Roughness measures

Let D denote derivative. Curvature of x at t: [D?x(t)]?; zero for lines.
e PEN,(x) := S [D?x(t)]?dt < roughness of x.
° PENM =l DM ] dt < roughness of DM—2x
° Harmomc acceleratlon operator: Lx = D3x—|—w2Dx, w: period = %”

Lx =0 < x(t) = c1 + e sin(wt) + c3 cos(wt).

@ More generally: linear differential operator

M o
Lx = ) BiD/x — PEN,(x) = | Lx|* = J(Lx)z(t)dt.

Jj=0
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Smoothing by roughness penalty

@ ldea: combine least squares with roughness penalty.
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Smoothing by roughness penalty

@ ldea: combine least squares with roughness penalty.
e Objective, x(t) := [x(t1);...;x(tn)], A > O:

J(x) = [y = x(®©)]"W[y = x(t)] +A |Lx|* — min
- ——

_

least squares roughness of x

e A — 0: interpolation, x(t;) ~ y;.
o A — oo Lx=~0.
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Smoothing by roughness penalty

@ ldea: combine least squares with roughness penalty.
e Objective, x(t) := [x(t1);...;x(tn)], A > O:

J(x) = [y = x(®©)]"W[y = x(t)] +A |Lx|* — min
- ——

_

least squares roughness of x

e A — 0: interpolation, x(t;) ~ y;.
o A — oo Lx=~0.

We got a variational problem (miny). Solution=7 J
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Good news for L = D?

"Carl de Boor: A Practical Guide to Splines, 2002": The minimum
of

J(x) = [y = x(©)] "WI[y — x(t)] + APEN;(x) — min,

is a cubic spline with knots at t;-s.
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Now

We will
@ shortly review splines, B-spline basis, then

@ continue with the general case: PEN,.
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Splines
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Spline: example
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Spline: properties

@ Divide the interval to L parts, with endpoints:
TO, Tlye- s TL—1,TL < L + 1 points.

@ A spline is a polynomial of degree m on each interval, its

@ < m — 2-order derivatives join up smoothly at the breakpoints.
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Spline: properties

@ Divide the interval to L parts, with endpoints:
TO, Tlye- s TL—1,TL < L + 1 points.

@ A spline is a polynomial of degree m on each interval, its

@ < m — 2-order derivatives join up smoothly at the breakpoints.

Example:

@ order 4 cubic spline = the 2nd derivative is a polygonal line.
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Spline: degree of freedom

@ Order 2 spline (=polygonal line) in the demo:

2 X 4 — 3 =b.
—— —— —
line # of intervals  continuity constraints
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Spline: degree of freedom

@ Order 2 spline (=polygonal line) in the demo:

2 X 4 — 3 =b.
—— —— —
line # of intervals  continuity constraints

@ More generally:

m X L - (m—=1) x (L—-1) =
degree # of intervals DOs,....Dm—2s L interval = L — 1 internal point
=m+(L-1)

= order + number of internal points.
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B-spline basis: properties

e Compact support: < 4 (or m) subintervals = efficient computation.
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B-spline basis: properties

e Compact support: < 4 (or m) subintervals = efficient computation.
@ Nested subspaces: for

e new breakpoint or increased m.
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B-spline basis: properties

e Compact support: < 4 (or m) subintervals = efficient computation.
@ Nested subspaces: for

e new breakpoint or increased m.
@ 1: data-driven approaches for T choice, but expensive.
o Cubic theorem: automatic 7.
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Back to PEN,-regularized problems
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Back to PEN,

@ Recall the objective:
J(x) = [y = x()] "Wy — x(£)] + A Lx]|* — min,
x(t) = cTp(t).

o Idea: rewrite ||Lx||* to quadratic form in ¢ = ridge regression.
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Rewrite PEN,

PEN,(x) = J(Lx)2(t)dt
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Rewrite PEN,

PEN, (x) — J(Lx)2(t)dt ® j(LcT¢)2(t)dt

using the definition of x
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Rewrite PEN,

PEN, (x) =J(Lx)2(t)dt(2j(LcT¢)2(t)dt @ f(cTL¢)2(t)dt

using the definition of x, linearity of L
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Rewrite PEN,

pen(x) = [(L(ae 2 [(weTo2(a L [T Lo (o
[T Lore s (ted:

-

using the definition of x, linearity of L, (c"d)? = (c"d)(d"c).
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Rewrite PEN,

PEN, (x) = f (Lx2(e)dt & j (LT §)(t)dt @ j (cTLp)(t)dt
D [T o) (tedt =T [ | <L¢><r><L¢>T<r>] c

=R=[Ry]=[§(Le) () (L) (t)dt]

-

using the definition of x, linearity of L, (c"d)?> = (c"d)(d"c).
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Using the quadratic form of PEN,

the objective becomes

J(c) = (y — ®c) "W(y — ®c) + \c"Rc — min .

ceRB

Ridge solution (J is quadratic in c):

¢=(2"W& + \R) 1@ wy,
§=®c=:S,y.
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Using the quadratic form of PEN,

the objective becomes

J(c) = (y — ®c) "W(y — ®c) + \c"Rc — min .

ceRB

Ridge solution (J is quadratic in c):

Degree of freedom (will be useful in A-choice):

df(\) = Tr(Sy).
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© Can we compute R = {(Lo)(t)(Lp) T (t)dt?

@ How can one choose \?
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Q@ Can we compute R = {(L¢p)(t)(Lep) " (t)dt?
e L = D™, traditional basis systems (B-spline, Fourier): v
o General case: quadrature rules.

@ How can one choose \?
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Q@ Can we compute R = {(L¢p)(t)(Lep) " (t)dt?

e L = D™, traditional basis systems (B-spline, Fourier): v
o General case: quadrature rules.

@ How can one choose \?
e cross-validation,

e generalized cross-validation.
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Two simple quadrature rules
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Trapezoid rule

Idea: Ss f(x)dx ~ (b— a)w_
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Trapezoid rule

Idea: Ss f(x)dx ~ (b— a)w_

@ For uniform grid: a=x3 < ... < Xxp11 = b: | a b>
b h n
f(X)dX N = Z [f(Xk) + f(Xk+1)]
2 2 k=1
_b-a f(x)+2zn:f(x)+f(x )
= N 1 = k n+1 .
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Trapezoid rule

Idea: Ss f(x)dx ~ (b— a)w_

@ For uniform grid: a=x3 < ... < Xxp11 = b: | a b>
b h n
f(X)dX N = Z [f(Xk) + f(Xk+1)]
2 2 k=1
_b-a f(x)+2zn:f(x)+f(x )
= N 1 = k n+1 .

o Generally:

b n
f f(x)dx ~ % Z (xk+1 — xk) [F(xke1) + F(xk)] -

a k=1
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Simpson's rule

A f(x)

§2F(x)dx ~ b2 [(a) + 4F (2£2) + £(b)].

o

© Replace f with a parabola interpolating at a, m = 252, b:

(x —m)(x —b)
(a—m)(a—b)

(x —a)(x —b)
(m—a)(m—b)

P(x) = f(a) + f(m)

@ Approximation: Sf P(x)dx.
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(Generalized) cross-validation
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Cross-validation

@ Idea: in iteration
data = training data u validation data.
—_—

estimate model goodness of A
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Cross-validation

@ Idea: in iteration
data = training data u validation data.
—_—

estimate model goodness of A

@ Extreme: leave-one-out cross-validation.
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Cross-validation

@ Idea: in iteration

data = training data u validation data.
—_—

estimate model goodness of A

@ Extreme: leave-one-out cross-validation.

e Typically: log()) is scanned.
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Cross-validation

Idea: in iteration
data = training data u validation data.
—_—

estimate model goodness of A
Extreme: leave-one-out cross-validation.
Typically: log()) is scanned.
Drawbacks:

@ can be computationally expensive.
@ prone to undersmoothing.
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Generalized cross-validation (GCV)

@ Motivation:

@ avoid re-smoothing n times,
@ less tendency to undersmooth.
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Generalized cross-validation (GCV)

@ Motivation:

@ avoid re-smoothing n times,
@ less tendency to undersmooth.

@ Goodness of A:

n

SSE(N) = D [y = 5i(NP2, df () = Tr (Sy),,
j=1

n-1SSE(\) n SSE(\) |
GV = R s <n - df@)) <n - df(A)> et

GCV/()) is small: if SSE(\) and df (\) is so.
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Bi-resolution analysis

@ Two basis systems:

© {d«}: capture large-scale features (smooth),
@ {v;}: for local features.

Penalize on Im({¢;}) only: PEN|(xg).
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Bi-resolution analysis

@ Two basis systems:

© {¢k}: capture large-scale features (smooth),
@ {v;}: for local features.

Penalize on Im({¢;}) only: PEN|(xg).

@ Model, objective (ridge regression):

B B,
X =) G+ Y. djithj = xs + g,
k=1 =

J(c,d) = |ly — ®c — ¥d|? + Ac"Rc — min,
C,

R,‘j = JLw;(t)ij(t)dt.
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PEN|-regularized least squares:
e For L = D?: solution = cubic splines.
@ Ridge regression.
e R: analytical formula/quadrature rules.
@ \-choice: (generalized) cross-validation.
We covered Chapter 5 from [1].

Zoltdn Szabd Functional Data Analysis (Lecture 2)



