Functional Data Analysis (Lecture 2)

Zoltán Szabó

October 11, 2016

Reminder

Last time:

Smoothing by least squares, kernel smoothing:

$$\begin{split} \hat{x}(t) &= \langle \hat{\mathbf{c}}, \phi(t) \rangle \,, \; J(\mathbf{c}) = (\mathbf{y} - \mathbf{\Phi} \mathbf{c})^T \mathbf{W} (\mathbf{y} - \mathbf{\Phi} \mathbf{c}) \to \min_{\mathbf{c} \in \mathbb{R}^B}, \\ \hat{x}(t) &= \sum_{j=1}^n S_j(t) y_j, \; S_j(t) \leftarrow K, h. \end{split}$$

- Regularization parameters:
 - $B = dim(\phi)$ and h. Choice: a few heuristics came up.

Reminder

Last time:

• Smoothing by least squares, kernel smoothing:

$$\hat{x}(t) = \langle \hat{\mathbf{c}}, \phi(t) \rangle, \ J(\mathbf{c}) = (\mathbf{y} - \Phi \mathbf{c})^T \mathbf{W} (\mathbf{y} - \Phi \mathbf{c}) \rightarrow \min_{\mathbf{c} \in \mathbb{R}^B},$$

$$\hat{x}(t) = \sum_{j=1}^n S_j(t) y_j, \ S_j(t) \leftarrow K, h.$$

- Regularization parameters:
 - $B = dim(\phi)$ and h. Choice: a few heuristics came up.

Today:

smoothing with roughness penalty (regularization)

Smoothing with roughness penalty

- Meaning of "smooth": explicitly expressed.
- Wide applicability.
- In practice: often better results (derivatives).

Let *D* denote derivative. Curvature of *x* at *t*: $[D^2x(t)]^2$; zero for lines.

• $PEN_2(x) := \int [D^2x(t)]^2 dt \leftarrow \text{roughness of } x.$

Let *D* denote derivative. Curvature of *x* at *t*: $[D^2x(t)]^2$; zero for lines.

- $PEN_2(x) := \int [D^2x(t)]^2 dt \leftarrow \text{roughness of } x.$

Let *D* denote derivative. Curvature of *x* at *t*: $[D^2x(t)]^2$; zero for lines.

- $PEN_2(x) := \int [D^2x(t)]^2 dt \leftarrow \text{roughness of } x.$
- $PEN_M(x) := \int [D^M x(t)]^2 dt \leftarrow \text{roughness of } D^{M-2}x.$
- Harmonic acceleration operator: $Lx = D^3x + \omega^2Dx$, ω : period = $\frac{2\pi}{\omega}$

$$Lx = 0 \Leftrightarrow x(t) = c_1 + c_2 \sin(\omega t) + c_3 \cos(\omega t).$$

Let *D* denote derivative. Curvature of *x* at *t*: $[D^2x(t)]^2$; zero for lines.

- $PEN_2(x) := \int [D^2x(t)]^2 dt \leftarrow \text{roughness of } x.$
- $PEN_M(x) := \int [D^M x(t)]^2 dt \leftarrow \text{roughness of } D^{M-2}x.$
- Harmonic acceleration operator: $Lx = D^3x + \omega^2Dx$, ω : period = $\frac{2\pi}{\omega}$

$$Lx = 0 \Leftrightarrow x(t) = c_1 + c_2 \sin(\omega t) + c_3 \cos(\omega t).$$

More generally: linear differential operator

$$Lx = \sum_{j=0}^{M} \beta_{j} D^{j} x \to PEN_{L}(x) = ||Lx||^{2} = \int (Lx)^{2} (t) dt.$$

Smoothing by roughness penalty

• Idea: combine least squares with roughness penalty.

Smoothing by roughness penalty

- Idea: combine least squares with roughness penalty.
- Objective, $x(\mathbf{t}) := [x(t_1); ...; x(t_n)], \lambda > 0$:

$$J(x) = \underbrace{[\mathbf{y} - x(\mathbf{t})]^T \mathbf{W}[\mathbf{y} - x(\mathbf{t})]}_{\text{least squares}} + \lambda \underbrace{\|Lx\|^2}_{\text{roughness of } x} \rightarrow \min_{\mathbf{x}}$$

- $\lambda \to 0$: interpolation, $x(t_i) \approx y_i$.
- $\lambda \to \infty$: $Lx \approx 0$.

Smoothing by roughness penalty

- Idea: combine least squares with roughness penalty.
- Objective, $x(\mathbf{t}) := [x(t_1); \dots; x(t_n)], \lambda > 0$:

$$J(x) = \underbrace{[\mathbf{y} - x(\mathbf{t})]^T \mathbf{W}[\mathbf{y} - x(\mathbf{t})]}_{\text{least squares}} + \lambda \underbrace{\parallel Lx \parallel^2}_{\text{roughness of } x} \rightarrow \min_{\mathbf{x}}$$

- $\lambda \to 0$: interpolation, $x(t_i) \approx y_i$.
- $\lambda \to \infty$: $Lx \approx 0$.

We got a variational problem (min_x) . Solution=?

Good news for $L = D^2$

'Carl de Boor: A Practical Guide to Splines, 2002': The minimum of

$$J(x) = [\mathbf{y} - x(\mathbf{t})]^T \mathbf{W} [\mathbf{y} - x(\mathbf{t})] + \lambda PEN_2(x) \rightarrow \min_{x},$$

is a cubic spline with knots at t_j -s.

Now

We will

- shortly review splines, B-spline basis, then
- 2 continue with the general case: PEN_L .

Splines

Spline: example

Spline: properties

• Divide the interval to *L* parts, with endpoints:

$$\tau_0, \tau_1, \ldots, \tau_{L-1}, \tau_L \leftarrow L + 1$$
 points.

- A spline is a polynomial of degree m on each interval, its
- $\leq m 2$ -order derivatives join up smoothly at the breakpoints.

Spline: properties

• Divide the interval to *L* parts, with endpoints:

$$\tau_0, \tau_1, \dots, \tau_{L-1}, \tau_L \leftarrow L + 1$$
 points.

- A spline is a polynomial of degree m on each interval, its
- $\leq m 2$ -order derivatives join up smoothly at the breakpoints.

Example:

• order 4 cubic spline \Rightarrow the 2nd derivative is a polygonal line.

Spline: degree of freedom

• Order 2 spline (=polygonal line) in the demo:

$$\underbrace{\frac{2}{\text{line}}}_{\text{fintervals}} \times \underbrace{\frac{4}{\text{continuity constraints}}}_{\text{continuity constraints}} = 5$$

Spline: degree of freedom

• Order 2 spline (=polygonal line) in the demo:

$$2 \times 4 - 3 = 5$$
line # of intervals continuity constraints

More generally:

$$\underbrace{m}_{\text{degree}} \times \underbrace{L}_{\text{ $m-1$}} - \underbrace{(m-1)}_{D^0s,\dots,D^{m-2}s} \times \underbrace{(L-1)}_{\text{ interval}} =$$

$$= m + (L-1)$$

$$= \text{order} + \text{number of internal points}.$$

Basis for splines

Multiple basis systems for splines. B-spline basis: let

- order 4 (= m), 9 equally space internal points (L = 10),
- $\xrightarrow{\text{formula}}$ degree of freedom = m + L 1 = 13.

B-spline basis: properties

• Compact support: \leq 4 (or m) subintervals \Rightarrow efficient computation.

B-spline basis: properties

- Compact support: ≤ 4 (or m) subintervals \Rightarrow efficient computation.
- Nested subspaces: for
 - new breakpoint or increased *m*.

B-spline basis: properties

- Compact support: ≤ 4 (or m) subintervals \Rightarrow efficient computation.
- Nested subspaces: for
 - new breakpoint or increased m.
- \exists : data-driven approaches for τ choice, but expensive.
 - Cubic theorem: automatic au.

Back to PEN_L -regularized problems

Back to PEN_L

Recall the objective:

$$J(x) = [\mathbf{y} - x(\mathbf{t})]^T \mathbf{W} [\mathbf{y} - x(\mathbf{t})] + \lambda \|Lx\|^2 \to \min_{x},$$

$$x(t) = \mathbf{c}^T \phi(t).$$

• Idea: rewrite $\|Lx\|^2$ to quadratic form in $\mathbf{c} \Rightarrow \text{ridge regression}$.

$$PEN_L(x) = \int (Lx)^2(t)dt$$

$$PEN_L(x) = \int (Lx)^2(t)dt \stackrel{(i)}{=} \int (L\mathbf{c}^T\phi)^2(t)dt$$

using the definition of x

$$PEN_L(x) = \int (Lx)^2(t)dt \stackrel{(i)}{=} \int (L\mathbf{c}^T\phi)^2(t)dt \stackrel{(ii)}{=} \int (\mathbf{c}^TL\phi)^2(t)dt$$

using the definition of x, linearity of L

$$PEN_{L}(x) = \int (Lx)^{2}(t)dt \stackrel{(i)}{=} \int (L\mathbf{c}^{T}\phi)^{2}(t)dt \stackrel{(ii)}{=} \int (\mathbf{c}^{T}L\phi)^{2}(t)dt$$
$$\stackrel{(iii)}{=} \int \mathbf{c}^{T}(L\phi)(t)(L\phi)^{T}(t)\mathbf{c}dt$$

using the definition of x, linearity of L, $(\mathbf{c}^T \mathbf{d})^2 = (\mathbf{c}^T \mathbf{d})(\mathbf{d}^T \mathbf{c})$.

$$PEN_{L}(x) = \int (Lx)^{2}(t)dt \stackrel{(i)}{=} \int (L\mathbf{c}^{T}\phi)^{2}(t)dt \stackrel{(ii)}{=} \int (\mathbf{c}^{T}L\phi)^{2}(t)dt$$

$$\stackrel{(iii)}{=} \int \mathbf{c}^{T}(L\phi)(t)(L\phi)^{T}(t)\mathbf{c}dt = \mathbf{c}^{T} \underbrace{\left[\int (L\phi)(t)(L\phi)^{T}(t)\right]}_{=:\mathbf{R}=\left[R_{ij}\right]=\left[\int (L\phi_{i})(t)(L\phi_{j})(t)dt\right]}_{=:\mathbf{R}=\left[R_{ij}\right]=\left[\int (L\phi_{i})(t)(L\phi_{j})(t)dt\right]}$$

using the definition of x, linearity of L, $(\mathbf{c}^T \mathbf{d})^2 = (\mathbf{c}^T \mathbf{d})(\mathbf{d}^T \mathbf{c})$.

Using the quadratic form of PEN_L

the objective becomes

$$J(\mathbf{c}) = (\mathbf{y} - \mathbf{\Phi} \mathbf{c})^T \mathbf{W} (\mathbf{y} - \mathbf{\Phi} \mathbf{c}) + \lambda \mathbf{c}^T \mathbf{R} \mathbf{c} \to \min_{\mathbf{c} \in \mathbb{R}^B}.$$

Ridge solution (J is quadratic in \mathbf{c}):

$$\hat{\mathbf{c}} = (\mathbf{\Phi}^T \mathbf{W} \mathbf{\Phi} + \lambda \mathbf{R})^{-1} \mathbf{\Phi}^T \mathbf{W} \mathbf{y},$$

 $\hat{\mathbf{y}} = \mathbf{\Phi} \hat{\mathbf{c}} =: \mathbf{S}_{\lambda} \mathbf{y}.$

Using the quadratic form of PEN_L

the objective becomes

$$J(\mathbf{c}) = (\mathbf{y} - \mathbf{\Phi} \mathbf{c})^T \mathbf{W} (\mathbf{y} - \mathbf{\Phi} \mathbf{c}) + \lambda \mathbf{c}^T \mathbf{R} \mathbf{c} \to \min_{\mathbf{c} \in \mathbb{R}^B}.$$

Ridge solution (J is quadratic in \mathbf{c}):

$$\begin{split} \hat{\mathbf{c}} &= (\boldsymbol{\Phi}^T \mathbf{W} \boldsymbol{\Phi} + \lambda \mathbf{R})^{-1} \boldsymbol{\Phi}^T \mathbf{W} \mathbf{y}, \\ \hat{\mathbf{y}} &= \boldsymbol{\Phi} \hat{\mathbf{c}} =: \mathbf{S}_{\lambda} \mathbf{y}. \end{split}$$

Degree of freedom (will be useful in λ -choice):

$$df(\lambda) = \operatorname{Tr}(\mathbf{S}_{\lambda}).$$

Two questions

1 Can we compute $\mathbf{R} = \int (L\phi)(t)(L\phi)^T(t)dt$?

2 How can one choose λ ?

Two questions

- **1** Can we compute $\mathbf{R} = \int (L\phi)(t)(L\phi)^T(t)dt$?
 - $L = D^m$, traditional basis systems (B-spline, Fourier): \checkmark
 - General case: quadrature rules.
- **2** How can one choose λ ?

Two questions

- **1** Can we compute $\mathbf{R} = \int (L\phi)(t)(L\phi)^T(t)dt$?
 - $L = D^m$, traditional basis systems (B-spline, Fourier): \checkmark
 - General case: quadrature rules.
- **2** How can one choose λ ?
 - cross-validation,
 - generalized cross-validation.

Two simple quadrature rules

Trapezoid rule

Idea:
$$\int_a^b f(x) dx \approx (b-a) \frac{f(a)+f(b)}{2}$$
.

Trapezoid rule

Idea:
$$\int_a^b f(x)dx \approx (b-a)\frac{f(a)+f(b)}{2}$$
.

• For uniform grid: $a = x_1 < \ldots < x_{n+1} = b$:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \sum_{k=1}^{n} [f(x_{k}) + f(x_{k+1})]$$

$$= \frac{b-a}{2N} \left[f(x_{1}) + 2 \sum_{k=2}^{n} f(x_{k}) + f(x_{n+1}) \right].$$

Trapezoid rule

Idea:
$$\int_a^b f(x) dx \approx (b-a) \frac{f(a)+f(b)}{2}$$
.

• For uniform grid: $a = x_1 < \ldots < x_{n+1} = b$:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \sum_{k=1}^{n} [f(x_{k}) + f(x_{k+1})]$$

$$= \frac{b-a}{2N} \left[f(x_{1}) + 2 \sum_{k=2}^{n} f(x_{k}) + f(x_{n+1}) \right].$$

Generally:

$$\int_{a}^{b} f(x)dx \approx \frac{1}{2} \sum_{k=1}^{n} (x_{k+1} - x_k) \left[f(x_{k+1}) + f(x_k) \right].$$

Simpson's rule

$$\int_a^b f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right].$$

Q Replace f with a parabola interpolating at $a, m = \frac{a+b}{2}, b$:

$$P(x) = f(a)\frac{(x-m)(x-b)}{(a-m)(a-b)} + f(m)\frac{(x-a)(x-b)}{(m-a)(m-b)} + f(b)\frac{(x-a)(x-m)}{(b-a)(b-m)}$$

2 Approximation: $\int_a^b P(x) dx$.

(Generalized) cross-validation

Idea: in iteration

$$\mathsf{data} = \underbrace{\mathsf{training}}_{\mathsf{estimate}} \underbrace{\mathsf{model}}_{\mathsf{goodness}} \underbrace{\mathsf{validation}}_{\mathsf{goodness}} \underbrace{\mathsf{data}}_{\mathsf{data}}.$$

Idea: in iteration

$$\mathsf{data} = \underbrace{\mathsf{training} \ \mathsf{data}}_{\mathsf{estimate} \ \mathsf{model}} \cup \underbrace{\mathsf{validation} \ \mathsf{data}}_{\mathsf{goodness} \ \mathsf{of} \ \lambda}.$$

• Extreme: leave-one-out cross-validation.

Idea: in iteration

$$\mathsf{data} = \underbrace{\mathsf{training}}_{\mathsf{estimate}} \underbrace{\mathsf{model}}_{\mathsf{goodness}} \underbrace{\mathsf{validation}}_{\mathsf{goodness}} \mathsf{of} \ \lambda$$

- Extreme: leave-one-out cross-validation.
- Typically: $log(\lambda)$ is scanned.

Idea: in iteration

$$\mathsf{data} = \underbrace{\mathsf{training} \ \mathsf{data}}_{\mathsf{estimate} \ \mathsf{model}} \cup \underbrace{\mathsf{validation} \ \mathsf{data}}_{\mathsf{goodness} \ \mathsf{of} \ \lambda}.$$

- Extreme: leave-one-out cross-validation.
- Typically: $log(\lambda)$ is scanned.
- Drawbacks:
 - can be computationally expensive.
 - prone to undersmoothing.

Generalized cross-validation (GCV)

- Motivation:
 - ① avoid re-smoothing *n* times,
 - less tendency to undersmooth.

Generalized cross-validation (GCV)

- Motivation:
 - 1 avoid re-smoothing *n* times,
 - 2 less tendency to undersmooth.
- Goodness of λ :

$$\begin{split} &SSE(\lambda) = \sum_{j=1}^{n} [y_j - \hat{y}_j(\lambda)]^2, \ df(\lambda) = \operatorname{Tr}\left(\mathbf{S}_{\lambda}\right), \\ &GCV(\lambda) = \frac{n^{-1}SSE(\lambda)}{\left[n^{-1}\operatorname{Tr}\left(\mathbf{I} - \mathbf{S}_{\lambda}\right)\right]^2} = \left(\frac{n}{n - df(\lambda)}\right) \left(\frac{SSE(\lambda)}{n - df(\lambda)}\right) \to \min_{\lambda > 0}. \end{split}$$

 $GCV(\lambda)$ is small: if $SSE(\lambda)$ and $df(\lambda)$ is so.

Bi-resolution analysis

- Two basis systems:
 - $\{\phi_k\}$: capture large-scale features (smooth),
 - **2** $\{\psi_j\}$: for local features.

Penalize on $Im(\{\psi_j\})$ only: $PEN_L(x_R)$.

Bi-resolution analysis

- Two basis systems:
 - $\{\phi_k\}$: capture large-scale features (smooth),
 - **2** $\{\psi_j\}$: for local features.

Penalize on $Im(\{\psi_j\})$ only: $PEN_L(x_R)$.

Model, objective (ridge regression):

$$x = \sum_{k=1}^{B_1} c_j \phi_k + \sum_{j=1}^{B_2} d_j \psi_j =: x_S + x_R,$$

$$J(\mathbf{c}, \mathbf{d}) = \|\mathbf{y} - \mathbf{\Phi} \mathbf{c} - \mathbf{\Psi} \mathbf{d}\|^2 + \lambda \mathbf{c}^T \mathbf{R} \mathbf{c} \to \min_{\mathbf{c}, \mathbf{d}},$$

$$R_{ij} = \int L \psi_i(t) L \psi_j(t) dt.$$

Summary

PEN_L-regularized least squares:

- For $L = D^2$: solution = cubic splines.
- Ridge regression.
- R: analytical formula/quadrature rules.
- λ -choice: (generalized) cross-validation.

We covered Chapter 5 from [1].