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@ Motivation: examples, challenges.
w time series,

il

@ Closely related methods:

e Smoothing by least squares — linear smoother.
o Localized least squares = kernel smoothing.
e Their combination = 'locally linear smoother'.
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Motivation: examples, challenges.
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Time-series: examples

Bank transactions, oil refinement, MOCAP, face tracking, weather,
brain imaging, ...
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DFA in nutshell

o Input data: functions. Challenges+:
e curves: might not be aligned (registration).
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e noisy observations (denoising).
e interplay between noise & smoothness. Dominant patterns=?
e possibly constraints: non-negativity, monotonicity, ...

@ Assumption: smoothness.
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Smoothing
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Problem formulation

Given:
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Problem formulation

Given:

t: often time; but can be space, ...
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Given:
y,~=x(t,-)+e,-,(i= 1,...,n).

Assumptions:
@ Xx: smooth,

e standard model: var(y) = var(e) = o°l.
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Given:
y,~=x(t,-)+e,-,(i= 1,...,n).

Assumptions:

@ x: smooth,

e standard model: var(y) = var(e) = o°l.
Some critisism:

o var(ej) might change (height vs ages),

e cov(ej, ) =0 (i #j): also simplifying.
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Representation:

B

x(t) = D cdu(t) = (e, de)

k=1

where ¢,-s are linearly independent, ¢, € R.
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Representation:

B

x(t) = D cdu(t) = (e, de)

k=1

where ¢,-s are linearly independent, ¢, € R. Examples:
e Monomials: 1,¢t,t2,t3,...
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Representation:

B

x(t) = D cdu(t) = (e, de)

k=1

where ¢,-s are linearly independent, ¢, € R. Examples:
e Monomials: 1,¢t,t2,t3,...
e Fourier system: 1,sin(wt), cos(wt),sin(2wt), cos(2wt), ...
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Representation:

B
x(t) = D adr(t) = (¢, be)
k=1
where ¢,-s are linearly independent, ¢, € R. Examples:
e Monomials: 1,¢t,t2,t3,...
e Fourier system: 1,sin(wt), cos(wt),sin(2wt), cos(2wt), ...
@ Splines: piecewise polynomials, connecting smoothly.
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Representation:

B
x(t) = D adr(t) = (¢, be)
k=1
where ¢,-s are linearly independent, ¢, € R. Examples:

e Monomials: 1,¢t,t2,t3,...
e Fourier system: 1,sin(wt), cos(wt),sin(2wt), cos(2wt), ...
@ Splines: piecewise polynomials, connecting smoothly.
o Wavelets: 22¢)(2 - —k), (j, k) € Z2; 1: mother wavelet.
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Representation:

B
x(t) = Y cdult) = (e, o)
k=1
where ¢,-s are linearly independent, ¢, € R. Examples:

e Monomials: 1,¢t,t2,t3,...
e Fourier system: 1,sin(wt), cos(wt),sin(2wt), cos(2wt), ...
@ Splines: piecewise polynomials, connecting smoothly.
o Wavelets: 22¢)(2 - —k), (j, k) € Z2; 1: mother wavelet.
o Exponential base: eM?, et —..(A\i>0).
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Representation:

B

x(t) = D cdu(t) = (e, de)

k=1

where ¢,-s are linearly independent, ¢, € R. Examples:

e Monomials: 1,¢t,t2,t3,...

e Fourier system: 1,sin(wt), cos(wt),sin(2wt), cos(2wt), ...
Splines: piecewise polynomials, connecting smoothly.
Wavelets: 22¢)(2 - —k), (j, k) € Z2; 1 mother wavelet.
Exponential base: e™f, et .. ()\; > 0).

Power base: t'1, t*2 .
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Smoothing: by least squares.
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Least squares fit: unweighted

2
n B

J(e) = - )| =y - ®c|2 - min.
(c) Z Yi— ), ck $x(ty) ly 2 = min

j=1 k=1 v

O

Solution (3 = 0)
e=(o"®) @'y,

y=de=d(@ @) 'a"y.
—_——

=:S: linear smoother

Note: here S is the projection to Im(®).
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Least squares fit: Weighted

Given: W symmetric, positive definite.

J(c) = (y — ®c)"W(y — ®c) — min .

ceR8

Solution:
¢=(2"Wae) e Twy,
e —d(d'WD) d Wy

=S

Unweighted case: W = I. Ideally: W = X1,
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Bias-variance tradeoff: danger of overfitting

B: level of smoothing. Large B (overfitting):
Bias[%(t)] = x(t) — E[%(t)] — small; Bias = 0 for B = n,
Var[£(t)] = E[&(t) — EX(t)]*> — high.
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Bias-variance tradeoff: danger of overfitting

B: level of smoothing. Large B (overfitting):
Bias[%(t)] = x(t) — E[%(t)] — small; Bias = 0 for B = n,
Var[£(t)] = E[&(t) — EX(t)]*> — high.

MSE[%(t)] = E[x(t) — %(t)]? = Bias?[%(t)] + Var[%(t)]. Tradeoff:
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Heuristics for B choice

@ Forward procedure: increase B,

@ Backward procedure: decrease B

until 'no significant change'.
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Local summary

Smoothing by least squares:
@ basis function method,
@ linear smoother (y = Sy),
@ smoothing is achieved by B = |base|,

@ there exist heuristics to choose B.
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Localized least squares or kernel smoothing
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Kernel smoothing

o Recall (linear smoother):

£(t) = Y Si(t)y;.

j=1

o Idea:
e smoothness = more weight to nearby tj-s.

Zoltdn Szabd Functional Data Analysis (Lecture 1)



Kernel smoothing

o Recall (linear smoother):

=Zn15 t

Jj=1

o ldea:

e smoothness = more weight to nearby tj-s
e (smoothing) kernels:

Ko(u) = 0.75(1 — u?) x X[-1,1](1): quadratic,

1 L/z
Ke(u) = ~7: Gaussian.

)

Kuy(u) = 0.5 x x_1,17(v): uniform,
(
W= e
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Kernel smoothing: weight choice

Choose the weights in

j=1
as
t;—t .
Si(t) =K p : unnormalized,
K (%)
Si(t) = —5——7+— : Nadaraya-Watson estimator,
XL K ()
1 (Y u—t i} :
Si(t) == K du : Gasser-Miiller estimator,
! h Jz h
ti—1
tj = &2“’ to = t1, tp = t,. Last: nice formulas for Kgq.
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Local summary

. specifically
Linear smoother ———

@ least squares method (basis function technique),
@ kernel smoother.

Localized basis function estimator:

combine the 2 directions.
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Localized basis function estimator
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Localized basis function estimator

@ ldea:
e weighted least squares,
e weight is
@ local: c =c¢,
@ determined by a smoothing kernel.

@ Objective function (c; := [c1;...; cg]):
B Pp—
e = Do - 3 an(o)]s wie) =k (40)).
j=1 k=1

e Prediction: X(t) = (€, ¢¢).
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Localized basis function estimator

@ Objective [W; = diag(w;(t))]:

n B
2
J(er) = Z w;(t)[y; — Z adk(t)]” = (y — ®c) "W (y — ®cy).
j=1 k=1
@ Solution (see weighted least squares):
& = (2TW, @) Wy,
R(t) = (P ce) = ¢ (BTW: D) '@ W, y.

Y
=5;: locally linear
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Localized basis function estimator

@ Specifically:
e B=1,¢1(t) =1 gives the Nadaraya-Watson estimator.
e In other words, it is a 'locally constant’ technique.
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Localized basis function estimator

@ Specifically:
e B=1,¢1(t) =1 gives the Nadaraya-Watson estimator.
e In other words, it is a 'locally constant’ technique.

@ More generally: locally polynomial estimators

@ superior behaviour @ boundaries,
o adapts well to unequally spaced t;-s.
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Localized basis function methods

@ Bandwith h: control of smoothness.

@ Choice: some heuristics / visually.
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Localized basis function methods

e Bandwith h: control of smoothness.

@ Choice: some heuristics / visually.

@ Properties (kernel smoothing, localised basis):
e h — intuitive meaning.
o kernel smoothing: instability around boundaries.
e localised polynomials: better boundary behaviour.
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@ Linear smoother (y = Sy):

e basis + least squares,
o kernel smoothing: e.g., Nadaraya-Watson.

@ Locally-linear smoother (S:y):

. . specificall
o local polynomial smoothing 2=""°~Y, Nadaraya-Watson.
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Summary

@ Linear smoother (y = Sy):

e basis + least squares,
o kernel smoothing: e.g., Nadaraya-Watson.

@ Locally-linear smoother (S:y):

e local polynomial smoothing Spedifically, Nadaraya-Watson.
e We covered Chapter 1-4 from [1].

~
-

=/

Zoltdn Szabé Functional Data Analysis (Lecture 1)



