Functional Data Analysis (Lecture 1)

Zoltán Szabó

October 4, 2016

Email, course link, references

- Email: zoltan (dot) szabo (at) polytechnique (dot) edu
- Course: http://www.cmap.polytechnique.fr/~zoltan.szabo/teaching_FDA.html

References:

- [1] J.O. Ramsay, B.W. Silverman. Functional Data Analysis. Springer, 2005.
- [2] J.O. Ramsay, Giles Hooker, Spencer Graves. Functional Data Analysis with R and Matlab. Springer, 2009.

Contents

Motivation: examples, challenges.

- Closely related methods:
 - Smoothing by least squares → linear smoother.
 - Localized least squares = kernel smoothing.
 - Their combination = 'locally linear smoother'.

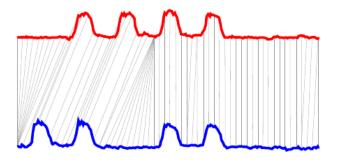
Motivation: examples, challenges.

Time-series: examples

Bank transactions, oil refinement, MOCAP, face tracking, weather, brain imaging, . . .

DFA in nutshell

- Input data: functions. Challenges+:
 - curves: might not be aligned (registration).



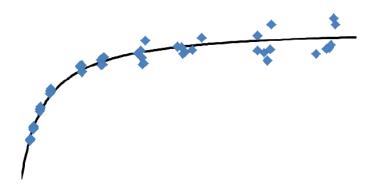
- noisy observations (denoising).
- interplay between noise & smoothness. Dominant patterns=?
- \bullet possibly constraints: non-negativity, monotonicity, \dots
- Assumption: smoothness.

Smoothing

Problem formulation

Given:

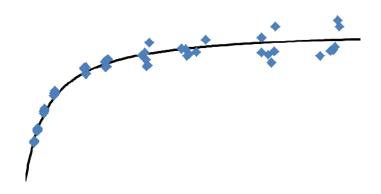
$$y_i = x(t_i) + e_i, (i = 1, ..., n).$$



Problem formulation

Given:

$$y_i = x(t_i) + e_i, (i = 1, ..., n).$$



t: often time; but can be space, ...

Assumptions

Given:

$$y_i = \mathbf{x}(t_i) + \mathbf{e}_i, (i = 1, \ldots, n).$$

Assumptions:

- x: smooth,
- standard model: $var(\mathbf{y}) = var(\mathbf{e}) = \sigma^2 \mathbf{I}$.

Assumptions

Given:

$$y_i = \mathbf{x}(t_i) + \mathbf{e}_i, (i = 1, \ldots, n).$$

Assumptions:

- x: smooth,
- standard model: $var(\mathbf{y}) = var(\mathbf{e}) = \sigma^2 \mathbf{I}$.

Some critisism:

- $var(e_i)$ might change (height vs ages),
- $cov(e_i, e_j) = 0 \ (i \neq j)$: also simplifying.

Representation:

$$x(t) = \sum_{k=1}^{B} c_k \phi_k(t) = \langle \mathbf{c}, \phi_t \rangle,$$

Representation:

$$x(t) = \sum_{k=1}^{B} c_k \phi_k(t) = \langle \mathbf{c}, \phi_t \rangle,$$

where ϕ_k -s are linearly independent, $c_k \in \mathbb{R}$. Examples:

• Monomials: $1, t, t^2, t^3, \dots$

Representation:

$$x(t) = \sum_{k=1}^{B} c_k \phi_k(t) = \langle \mathbf{c}, \phi_t \rangle,$$

- Monomials: $1, t, t^2, t^3, \dots$
- Fourier system: $1, \sin(\omega t), \cos(\omega t), \sin(2\omega t), \cos(2\omega t), \dots$

Representation:

$$x(t) = \sum_{k=1}^{B} c_{k} \phi_{k}(t) = \langle \mathbf{c}, \phi_{t} \rangle,$$

- Monomials: $1, t, t^2, t^3, \dots$
- Fourier system: $1, \sin(\omega t), \cos(\omega t), \sin(2\omega t), \cos(2\omega t), \dots$
- Splines: piecewise polynomials, connecting smoothly.

Representation:

$$x(t) = \sum_{k=1}^{B} c_k \phi_k(t) = \langle \mathbf{c}, \phi_t \rangle,$$

- Monomials: $1, t, t^2, t^3, \dots$
- Fourier system: $1, \sin(\omega t), \cos(\omega t), \sin(2\omega t), \cos(2\omega t), \dots$
- Splines: piecewise polynomials, connecting smoothly.
- Wavelets: $2^{\frac{j}{2}}\psi(2^{j}\cdot -k), (j,k)\in\mathbb{Z}^{2}; \psi$: mother wavelet.

Representation:

$$x(t) = \sum_{k=1}^{B} c_k \phi_k(t) = \langle \mathbf{c}, \phi_t \rangle,$$

- Monomials: $1, t, t^2, t^3, \dots$
- Fourier system: $1, \sin(\omega t), \cos(\omega t), \sin(2\omega t), \cos(2\omega t), \dots$
- Splines: piecewise polynomials, connecting smoothly.
- Wavelets: $2^{\frac{j}{2}}\psi(2^{j}\cdot -k), (j,k)\in\mathbb{Z}^{2}; \psi$: mother wavelet.
- Exponential base: $e^{\lambda_1 t}$, $e^{\lambda_2 t}$, ... $(\lambda_i > 0)$.

Representation:

$$x(t) = \sum_{k=1}^{B} c_{k} \phi_{k}(t) = \langle \mathbf{c}, \phi_{t} \rangle,$$

- Monomials: $1, t, t^2, t^3, \dots$
- Fourier system: $1, \sin(\omega t), \cos(\omega t), \sin(2\omega t), \cos(2\omega t), \dots$
- Splines: piecewise polynomials, connecting smoothly.
- Wavelets: $2^{\frac{j}{2}}\psi(2^{j}\cdot -k), (j,k)\in\mathbb{Z}^{2}; \psi$: mother wavelet.
- Exponential base: $e^{\lambda_1 t}$, $e^{\lambda_2 t}$, ... $(\lambda_i > 0)$.
- Power base: t^{λ_1} , t^{λ_2} , ...

Smoothing: by least squares.

Least squares fit: unweighted

$$J(\mathbf{c}) = \sum_{j=1}^{n} \left[y_j - \sum_{k=1}^{B} c_k \underbrace{\phi_k(t_j)}_{\Phi_{jk}} \right]^2 = \|\mathbf{y} - \mathbf{\Phi}\mathbf{c}\|_2^2 \to \min_{\mathbf{c} \in \mathbb{R}^B}.$$

Solution $\left(\frac{\partial J}{\partial \mathbf{c}} = \mathbf{0}\right)$:

$$\begin{split} \hat{\mathbf{c}} &= (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \mathbf{y}, \\ \hat{\mathbf{y}} &= \boldsymbol{\Phi} \hat{\mathbf{c}} = \underbrace{\boldsymbol{\Phi} (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T}_{=:\mathsf{S: linear smoother}} \mathbf{y}. \end{split}$$

Note: here **S** is the projection to $Im(\Phi)$.

Least squares fit: Weighted

Given: W symmetric, positive definite.

$$J(\mathbf{c}) = (\mathbf{y} - \Phi \mathbf{c})^T \mathbf{W} (\mathbf{y} - \Phi \mathbf{c}) o \min_{\mathbf{c} \in \mathbb{R}^B}.$$

Solution:

$$\begin{split} \hat{\textbf{c}} &= (\boldsymbol{\Phi}^T \textbf{W} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \textbf{W} \textbf{y}, \\ \hat{\textbf{y}} &= \boldsymbol{\Phi} \hat{\textbf{c}} = \underbrace{\boldsymbol{\Phi} (\boldsymbol{\Phi}^T \textbf{W} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \textbf{W}}_{=\textbf{S}} \textbf{y} \end{split}$$

Unweighted case: $\mathbf{W} = \mathbf{I}$. Ideally: $\mathbf{W} = \Sigma_{m{e}}^{-1}$.

Bias-variance tradeoff: danger of overfitting

B: level of smoothing. Large B (overfitting):

$$Bias[\hat{x}(t)] = x(t) - \mathbb{E}[\hat{x}(t)] \rightarrow \text{small}; \ Bias = 0 \text{ for } B = n,$$

$$Var[\hat{x}(t)] = \mathbb{E}[\hat{x}(t) - \mathbb{E}\hat{x}(t)]^2 \rightarrow \text{high}.$$

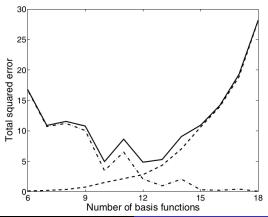
Bias-variance tradeoff: danger of overfitting

B: level of smoothing. Large B (overfitting):

$$Bias[\hat{x}(t)] = x(t) - \mathbb{E}[\hat{x}(t)] \rightarrow \text{small}; \ Bias = 0 \text{ for } B = n,$$

$$Var[\hat{x}(t)] = \mathbb{E}[\hat{x}(t) - \mathbb{E}\hat{x}(t)]^2 \rightarrow \text{high}.$$

$$MSE[\hat{x}(t)] = \mathbb{E}[x(t) - \hat{x}(t)]^2 = Bias^2[\hat{x}(t)] + Var[\hat{x}(t)].$$
 Tradeoff:



Heuristics for B choice

- Forward procedure: increase B,
- Backward procedure: decrease B

until 'no significant change'.

Local summary

Smoothing by least squares:

- basis function method.
- linear smoother $(\hat{\mathbf{y}} = \mathbf{S}\mathbf{y})$,
- smoothing is achieved by B = |base|,
- there exist heuristics to choose *B*.

Localized least squares or kernel smoothing

Kernel smoothing

Recall (linear smoother):

$$\hat{x}(t) = \sum_{j=1}^{n} S_j(t) y_j.$$

- Idea:
 - smoothness \Rightarrow more weight to nearby t_j -s.

Kernel smoothing

Recall (linear smoother):

$$\hat{x}(t) = \sum_{j=1}^{n} S_j(t) y_j.$$

- Idea:
 - smoothness \Rightarrow more weight to nearby t_i -s.
 - (smoothing) kernels:

$$egin{aligned} \mathcal{K}_U(u) &= 0.5 imes \chi_{[-1,1]}(u) \colon ext{uniform}, \ \mathcal{K}_Q(u) &= 0.75(1-u^2) imes \chi_{[-1,1]}(u) \colon ext{quadratic}, \ \mathcal{K}_G(u) &= rac{1}{\sqrt{2\pi}} e^{-rac{u^2}{2}} \colon ext{Gaussian}. \end{aligned}$$

Kernel smoothing: weight choice

Choose the weights in

$$\hat{x}(t) = \sum_{j=1}^{n} S_j(t) y_j$$

as

$$\begin{split} S_j(t) &= K\left(\frac{t_j-t}{h}\right): \text{ unnormalized,} \\ S_j(t) &= \frac{K\left(\frac{t_j-t}{h}\right)}{\sum_{i=1}^n K\left(\frac{t_i-t}{h}\right)}: \text{Nadaraya-Watson estimator,} \\ S_j(t) &= \frac{1}{h} \int_{\bar{t}_{j-1}}^{\bar{t}_j} K\left(\frac{u-t}{h}\right) du: \text{Gasser-Müller estimator,} \end{split}$$

$$\bar{t}_j=rac{t_{j+1}+t_j}{2}$$
, $\bar{t}_0=t_1$, $\bar{t}_n=t_n$. Last: nice formulas for K_Q .

Local summary

- least squares method (basis function technique),
- kernel smoother.

Localized basis function estimator:

combine the 2 directions.

- Idea:
 - weighted least squares,
 - weight is
 - local: $\mathbf{c} = \mathbf{c}_t$,
 - determined by a smoothing kernel.
- Objective function $(\mathbf{c}_t := [c_1; \dots; c_B])$:

$$J(\mathbf{c}_t) = \sum_{j=1}^n \mathbf{w}_j(t) \Big[y_j - \sum_{k=1}^B c_k \phi_k(t_j) \Big]^2, \ \mathbf{w}_j(t) = K\left(\frac{t_j - t}{h}\right).$$

• Prediction: $\hat{x}(t) = \langle \hat{\mathbf{c}}_t, \phi_t \rangle$.

• Objective $[\mathbf{W}_t = diag(w_i(t))]$:

$$J(\mathbf{c}_t) = \sum_{j=1}^n w_j(t) \big[y_j - \sum_{k=1}^B c_k \phi_k(t_j) \big]^2 = (\mathbf{y} - \mathbf{\Phi} \mathbf{c}_t)^T \mathbf{W}_t (\mathbf{y} - \mathbf{\Phi} \mathbf{c}_t).$$

• Solution (see weighted least squares):

$$\begin{split} \hat{\mathbf{c}}_t &= (\boldsymbol{\Phi}^T \mathbf{W}_t \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \mathbf{W}_t \mathbf{y}, \\ \hat{x}(t) &= \langle \boldsymbol{\phi}_t, \mathbf{c}_t \rangle = \underbrace{\boldsymbol{\phi}_t^T (\boldsymbol{\Phi}^T \mathbf{W}_t \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \mathbf{W}_t}_{=S_t: \text{ locally linear}} \mathbf{y}. \end{split}$$

- Specifically:
 - $B = 1, \phi_1(t) \equiv 1$ gives the Nadaraya-Watson estimator.
 - In other words, it is a 'locally constant' technique.

- Specifically:
 - $B = 1, \phi_1(t) \equiv 1$ gives the Nadaraya-Watson estimator.
 - In other words, it is a 'locally constant' technique.
- More generally: locally polynomial estimators

$$J(\mathbf{c}_t) = \sum_{j=1}^n K\left(\frac{t_j - t}{h}\right) \left[y_j - \sum_{k=1}^B c_k (t - t_j)^k\right]^2.$$

- superior behaviour @ boundaries,
- adapts well to unequally spaced t_j -s.

Localized basis function methods

- Bandwith h: control of smoothness.
- Choice: some heuristics / visually.

Localized basis function methods

- Bandwith h: control of smoothness.
- Choice: some heuristics / visually.
- Properties (kernel smoothing, localised basis):
 - *h* intuitive meaning.
 - kernel smoothing: instability around boundaries.
 - localised polynomials: better boundary behaviour.

Summary

- Linear smoother $(\hat{\mathbf{y}} = \mathbf{S}\mathbf{y})$:
 - basis + least squares,
 - kernel smoothing: e.g., Nadaraya-Watson.
- Locally-linear smoother $(S_t y)$:
 - local polynomial smoothing $\xrightarrow{\text{specifically}}$ Nadaraya-Watson.

Summary

- Linear smoother $(\hat{\mathbf{y}} = \mathbf{S}\mathbf{y})$:
 - basis + least squares,
 - kernel smoothing: e.g., Nadaraya-Watson.
- Locally-linear smoother $(S_t y)$:
 - local polynomial smoothing $\xrightarrow{\text{specifically}}$ Nadaraya-Watson.
- We covered Chapter 1-4 from [1].

