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1 Outline
• Normed and inner product spaces. Cauchy sequences and completeness.

Banach and Hilbert spaces.

• Linearity, continuity and boundedness of operators. Riesz representation
of functionals.

• Definition of an RKHS and reproducing kernels.

• Relationship with positive definite functions. Moore-Aronszajn theorem.

2 Some functional analysis
We start by reviewing some elementary Banach and Hilbert space theory. Two
key results here will prove useful in studying the properties of reproducing kernel
Hilbert spaces: (a) that a linear operator on a Banach space is continuous if
and only if it is bounded, and (b) that all continuous linear functionals on a
Hilbert space arise from the inner product. The latter is often termed Riesz
representation theorem.

2.1 Definitions of Banach and Hilbert spaces
We will focus on real Banach and Hilbert spaces, which are, first of all, vector
spaces1 over the field R of real numbers. We remark that the theory remains
valid in the context of complex Banach and Hilbert spaces, defined over the
field C of complex numbers, modulo appropriately placed complex conjugates.
In particular, the complex inner product satisfies conjugate symmetry instead
of symmetry.

Definition 1 (Norm). Let F be a vector space over R. A function ‖·‖F : F →
[0,∞) is said to be a norm on F if

1. ‖f‖F = 0 if and only if f = 0 (norm separates points),

1A vector space can also be known as a linear space Kreyszig (1989, Definition 2.1-1).
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Figure 2.1: An example of a Cauchy sequence of continuous functions with no
continuous limit, w.r.t. L2-norm.

2. ‖λf‖F = |λ| ‖f‖F , ∀λ ∈ R, ∀f ∈ F (positive homogeneity),

3. ‖f + g‖F ≤ ‖f‖F + ‖g‖F , ∀f, g ∈ F (triangle inequality).

Note that all elements in a normed space must have finite norm - if an
element has infinite norm, it is not in the space. The norm ‖·‖F induces a
metric, i.e., a notion of distance on F : d(f, g) = ‖f − g‖F . This means that
F is endowed with a certain topological structure, allowing us to study notions
like continuity and convergence. In particular, we can consider when a sequence
of elements of F converges with respect to induced distance. This gives rise to
the definition of a convergent and of a Cauchy sequence:

Definition 2 (Convergent sequence). A sequence {fn}∞n=1 of elements of a
normed vector space (F , ‖·‖F ) is said to converge to f ∈ F if for every ε > 0,
there exists N = N(ε) ∈ N, such that for all n ≥ N , ‖fn − f‖F < ε.

Definition 3 (Cauchy sequence). A sequence {fn}∞n=1 of elements of a normed
vector space (F , ‖·‖F ) is said to be a Cauchy (fundamental) sequence if for every
ε > 0, there exists N = N(ε) ∈ N, such that for all n,m ≥ N , ‖fn − fm‖F < ε.

From the triangle inequality ‖fn − fm‖F ≤ ‖fn − f‖F + ‖f − fm‖F , it is
clear that every convergent sequence is Cauchy. However, not every Cauchy
sequence in every normed space converges!

Example 4. The field of rational numbers Q with absolute value |·| as a norm
is a normed vector space over itself. The sequence 1, 1.4, 1.41, 1.414, 1.4142, ...
is a Cauchy sequence in Q which does not converge - because

√
2 /∈ Q.

Example 5. In the space C[0, 1] of bounded continuous functions on segment

[0, 1] endowed with the norm ‖f‖ =
(´ 1

0
|f(x)|2 dx

)1/2
, a sequence {fn} of

functions shown in Fig. 2.1, that take value 0 on [0, 12 − 1
2n ] and value 1 on

[ 12 + 1
2n , 1] is Cauchy, but has no continuous limit.
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Cauchy sequences are always bounded (Kreyszig, 1989, Exercise 4 p. 32),
i.e., there exists M <∞, s.t., ‖fn‖F ≤M , ∀n ∈ N.

Next we define a complete space (Kreyszig, 1989, Definition 1.4-3):

Definition 6 (Complete space). A space X is complete if every Cauchy se-
quence in X converges: it has a limit, and this limit is in X .

Definition 7 (Banach space). Banach space is a complete normed space, i.e.,
it contains the limits of all its Cauchy sequences.

Example 8. For a (finite or countable infinite) index set A and p ≥ 1, the
space `p(A) of sequences {xα}α∈A of real numbers, satisfying

∑
α∈A |xα|p <∞

is a Banach space with norm
∥∥{xα}α∈A∥∥`p(A)

=
(∑

α∈A |xα|p
)1/p.

Example 9. If µ is a measure on X ⊂ Rd and p ≥ 1, then the space

Lp(X ;µ) :=

{
f : X → R measurable

∣∣∣∣∣
ˆ
X
|f(x)|pdµ(x) <∞

}
(2.1)

is a Banach space with norm ‖f‖p =
(´
X |f(x)|pdµ(x)

)1/p.
In order to study useful geometrical notions analogous to those of Euclidean

spaces Rd, e.g., orthogonality, one requires additional structure on a Banach
space, that is provided by a notion of inner product:

Definition 10 (Inner product). Let F be a vector space over R. A function
〈·, ·〉F : F × F → R is said to be an inner product on F if

1. 〈α1f1 + α2f2, g〉F = α1 〈f1, g〉F + α2 〈f2, g〉F
2. 〈f, g〉F = 〈g, f〉F
3. 〈f, f〉F ≥ 0 and 〈f, f〉F = 0 if and only if f = 0.

Vector space with an inner product is said to be an inner product (or unitary)
space. Some immediate consequences of Definition 10 are that:

• 〈f, g〉F = 0, ∀f ∈ F if and only if g = 0.

• 〈f, α1g1 + α2g2〉F = α1 〈f, g1〉F + α2 〈f, g2〉F .

One can always define a norm induced by the inner product:

‖f‖F = 〈f, f〉1/2F ,

and the following useful relations between the norm and the inner product hold:

• | 〈f, g〉 | ≤ ‖f‖ · ‖g‖ (Cauchy-Schwarz inequality)

• ‖f + g‖2 + ‖f − g‖2 = 2 ‖f‖2 + 2 ‖g‖2 (the parallelogram law)
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• 4 〈f, g〉 = ‖f + g‖2 − ‖f − g‖2 (the polarization identity2)

Definition 11 (Hilbert space). Hilbert space is a complete inner product space,
i.e., it is a Banach space with an inner product.

Two key examples of Hilbert spaces are given below.

Example 12. For an index set A, the space `2(A) is a Hilbert space with inner
product

〈{xα} , {yα}〉`2(A) =
∑
α∈A

xαyα.

Example 13. If µ is a measure on X ⊂ Rd, then the space L2(X ;µ) is a Hilbert
space with inner product

〈f, g〉 =

ˆ
X

f(x)g(x)dµ.

Strictly speaking, L2(X ;µ) is the space of equivalence classes of functions that
differ by at most a set of µ-measure zero3. If µ is the Lebesgue measure, it is
customary to write L2(X ) as a shorthand4.

More Hilbert space examples can be found in Kreyszig (1989, p. 132 and
133 ).

2.2 Bounded/Continuous linear operators
In the following, we take F and G to be normed spaces over R (for instance,
they could both be the Banach spaces of functions mapping from X ⊂ R to R,
with Lp-norm).

Definition 14 (Linear operator). A function A : F → G, where F and G are
both normed linear spaces over R, is called a linear operator if it satisfies the
following properties:

• Homogeneity: A(αf) = α (Af) ∀α ∈ R, f ∈ F ,

• Additivity: A(f + g) = Af +Ag ∀f, g ∈ F .

Example 15. Let F be an inner product space. For g ∈ F , operator Ag : F →
R, defined with Ag(f) := 〈f, g〉F is a linear operator. Note that the codomain
of Ag is the underlying field R (if g 6= 0), which is trivially a normed linear
space over itself5. Such scalar-valued operators are called functionals on F .

2The polarization identity is different in complex Hilbert spaces and reads: 4 〈f, g〉 =
‖f + g‖2 − ‖f − g‖2 + i ‖f + ig‖2 − i ‖f − ig‖2.

3Norm defined in L2(X ;µ) does not separate functions f and g which differ only on some
set A ⊂ X , for which µ(A) = 0, since f − g 6= 0 and ‖f − g‖22 =

´
X
(
|f(x)− g(x)|2

)
dµ = 0.

Thus, we consider all such functions as a single element in the space L2(X ;µ).
4In fact, `2(A) is just L2(X ;µ) where µ is the counting measure, where the “size” of a

subset is taken to be the number of elements in the subset.
5with norm |·|
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Definition 16 (Continuity). A function A : F → G is said to be continuous
at f0 ∈ F , if for every ε > 0, there exists a δ = δ(ε, f0) > 0, s.t.

‖f − f0‖F < δ implies ‖Af −Af0‖G < ε. (2.2)

A is continuous on F , if it is continuous at every point of F . If, in addition, δ
depends on ε only, i.e., ∀ε > 0, ∃δ = δ(ε) > 0, s.t. (2.2) holds for every f0 ∈ F ,
A is said to be uniformly continuous.

In other words, continuity means that a convergent sequence in F is mapped
to a convergent sequence in G. An even stronger form of continuity than uniform
continuity is Lipschitz continuity:

Definition 17 (Lipschitz continuity). A function A : F → G is said to be Lip-
schitz continuous if ∃C > 0, s.t. ∀f1, f2 ∈ F , ‖Af1 −Af2‖G ≤ C ‖f1 − f2‖F .

It is clear that Lipschitz continuous function is uniformly continuous since
one can choose δ = ε/C.

Example 18. For g ∈ F , Ag : F → R, defined with Ag(f) := 〈f, g〉F is
continuous on F :

|Ag(f1)−Ag(f2)| = |〈f1 − f2, g〉F | ≤ ‖g‖F ‖f1 − f2‖F .

Definition 19 (Operator norm). The operator norm of a linear operator A :
F → G is defined as

‖A‖ = sup
f∈F

‖Af‖G
‖f‖F

.

Definition 20 (Bounded operator). The linear operator A : F → G is said to
be a bounded operator if ‖A‖ <∞.

It can readily be shown (Kreyszig, 1989) that operator norm satisfies all the
requirements of a norm (triangle inequality, zero iff the operator maps only to
the zero function, ‖λA‖ = |λ| ‖A‖ for c ∈ R), and that the set of bounded
linear operators A : F → G (for which the norm is defined) is therefore itself a
normed vector space. Another way to write the above is to say that, for f ∈ F
(possibly) not attaining the supremum, we have

‖Af‖G ≤ ‖A‖ ‖f‖F ,

so there exists a non-negative real number λ for which ‖Af‖G ≤ λ ‖f‖F , for all
f ∈ F , and the smallest such λ is precisely the operator norm. In other words,
a bounded subset in F is mapped to a bounded subset in G.

WARNING: In calculus, a bounded function is a function whose range is a
bounded set. This definition is not the same as the above, which simply states
that the effect of A on f is bounded by some scaling of the norm of f . There is
a useful geometric interpretation of the operator norm: A maps the closed unit
ball in F , into a subset of the closed ball in G centered at 0 ∈ G and with radius
‖A‖ . Note also the result in Kreyszig (1989, p. 96): every linear operator on a
normed, finite dimensional space is bounded.
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Theorem 21. Let (F , ‖·‖F ) and (G, ‖·‖G) be normed linear spaces. If L is a
linear operator, then the following three conditions are equivalent:

1. L is a bounded operator.

2. L is continuous on F .

3. L is continuous at one point of F .

Proof. (1)⇒(2), since ‖L(f1 − f2)‖G ≤ ‖L‖ ‖f1 − f2‖F , L is Lipschitz contin-
uous with a Lipschitz constant ‖L‖, and (2)⇒(3) trivially. Now assume that
L is continuous at one point f0 ∈ F . Then, there is a δ > 0, s.t. ‖L∆‖G =
‖L(f0 + ∆)− Lf0)‖G ≤ 1, whenever ‖∆‖F ≤ δ. But then, ∀f ∈ F\{0}, since∥∥∥δ f
‖f‖

∥∥∥
F

= δ,

‖Lf‖G = δ−1 ‖f‖F
∥∥∥∥L(δ f

‖f‖

)∥∥∥∥
G

≤ δ−1 ‖f‖F ,

so ‖L‖ ≤ δ−1, and (3)⇒(1), q.e.d.

Definition 22 (Topological dual). If F is a normed space, then the space F ′
of continuous linear functionals A : F → R is called the topological dual space
of F .

Note that there is an alternative notion of a dual space: that of an algebraic
dual, i.e., the space of all linear functionals A : F → R (which need not be
continuous). In finite-dimensional space, the two notions of dual spaces coincide
but this is not the case in infinite dimensions. Unless otherwise specified, we
will always refer to the topological dual when discussing the dual of F .

We have seen in Examples 15, 18 that the functionals of the form 〈·, g〉F on
an inner product space F are both linear and continuous, i.e., they lie in the
topological dual F ′ of F . It turns out that if F is a Hilbert space, all elements
of F ′ take this form6.

Theorem 23. (Riesz representation) In a Hilbert space F , all continous linear
functionals are of the form 〈·, g〉F , for some g ∈ F .

Two Hilbert spaces may have elements of different nature, e.g., functions
vs. sequences, but still have exactly the same geometric structure. This is the
notion of isometric isomorphism of two Hilbert spaces. It combines notions of
vector space isomorphism (a linear bijection) and of isometry (transformation
that preserves distances). Once the isometric isomorphism of two spaces is
established, it is customary to use whichever of the spaces is more convenient
for the problem.

6An approachable proof of Riesz representation theorem is in Rudin (1987, Theorem 4.12).
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Definition 24 (Hilbert space isomorphism). Two Hilbert spaces H and F are
said to be isometrically isomorphic if there is a linear bijective map U : H → F ,
which preserves the inner product, i.e., 〈h1, h2〉H = 〈Uh1, Uh2〉F .

Note that Riesz representation theorem gives us a natural isometric isomor-
phism7 ψ : g 7→ 〈·, g〉F between F and F ′, whereby ‖ψ(g)‖F ′ = ‖g‖F . This
property will be used below when defining a kernel on RKHSs. In particular,
note that the dual space of a Hilbert space is also a Hilbert space.

3 Reproducing kernel Hilbert space

3.1 Definition of an RKHS
We begin by describing in general terms the reproducing kernel Hilbert space,
and its associated kernel. Let H be a Hilbert space8 of functions mapping from
some non-empty set X to R (we write this: H ⊂ RX ). A very interesting
property of an RKHS is that if two functions f ∈ H and g ∈ H are close in
the norm of H, then f(x) and g(x) are close for all x ∈ X . We write the inner
product on H as 〈f, g〉H, and the associated norm ‖f‖2H = 〈f, f〉H. We may
alternatively write the function f as f(·), to indicate it takes an argument in X .

Note that since H is now a space of functions on X , there is for every x ∈ X
a very special functional on H: the one that assigns to each f ∈ H, its value at
x:

Definition 25 (Evaluation functional). Let H be a Hilbert space of functions
f : X → R, defined on a non-empty set X . For a fixed x ∈ X , map δx : H → R,
δx : f 7→ f(x) is called the (Dirac) evaluation functional at x.

It is clear that evaluation functionals are always linear: For f, g ∈ H and
α, β ∈ R, δx(αf + βg) = (αf + βg)(x) = αf(x) + βg(x) = αδx(f) + βδx(g). So
the natural question is whether they are also continuous (recall that this is the
same as bounded). This is exactly how reproducing kernel Hilbert spaces are
defined (Steinwart & Christmann, 2008, Definition 4.18(ii)):

Definition 26 (Reproducing kernel Hilbert space). A Hilbert space H of func-
tions f : X → R, defined on a non-empty set X is said to be a Reproducing
Kernel Hilbert Space (RKHS) if δx is continuous ∀x ∈ X .

A useful consequence is that RKHSs are particularly well behaved, relative
to other Hilbert spaces.

Corollary 27. (Norm convergence in H implies pointwise convergence)(Berlinet
& Thomas-Agnan, 2004, Corollary 1) If two functions converge in RKHS norm,
then they converge at every point, i.e., if limn→∞ ‖fn − f‖H = 0, then limn→∞ fn(x) =
f(x), ∀x ∈ X .

7In complex Hilbert spaces, due to conjugate symmetry of inner product, this map is
antilinear, i.e., ψ(αg) = ᾱ (ψg).

8This is a complete linear space with a dot product - see earlier.
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Proof. For any x ∈ X ,

|fn(x)− f(x)| = |δxfn − δxf |
≤ ‖δx‖ ‖fn − f‖H ,

where ‖δx‖ is the norm of the evaluation operator (which is bounded by defini-
tion on the RHKS).

Example 28. (Berlinet & Thomas-Agnan, 2004, p. 2) If we are not in an
RKHS, then norm convergence does not necessarily imply pointwise conver-
gence. LetH be the space of polynomials over [0, 1] endowed with the L2-metric:

‖f1 − f2‖L2([0,1])
=

(ˆ 1

0

|f1(x)− f2(x)|2 dx
)1/2

,

and consider the sequence of functions {qn}∞n=1, where qn = xn. Then

lim
n→∞

‖qn − 0‖L2([0,1])
= lim

n→∞

(ˆ 1

0

x2ndx

)1/2

= lim
n→∞

1√
2n+ 1

= 0,

and yet qn(1) = 1 for all n, i.e., qn → 0 ∈ H, but qn(1) 9 0. In other words,
the evaluation of functions at point 1 is not continuous.

3.2 Reproducing kernels
The reader will note that there is no mention of a kernel in the definition of an
RKHS! We next define what is meant by a kernel, and then show how it fits in
with the above definition.

Definition 29. (Reproducing kernel (Berlinet & Thomas-Agnan, 2004, p. 7))
Let H be a Hilbert space of R-valued functions defined on a non-empty set

X . A function k : X × X → R is called a reproducing kernel of H if it satisfies

• ∀x ∈ X , k(·, x) ∈ H,

• ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x) (the reproducing property).

In particular, for any x, y ∈ X ,

k(x, y) = 〈k (·, x) , k (·, y)〉H. (3.1)

The definition above raises a number of questions. What does the kernel have
to do with the definition of the RKHS? Does this kernel exist? Is it unique?
What properties does it have? We first consider uniqueness, which is immediate
from the definition of the reproducing kernel.
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Proposition 30. (Uniqueness of the reproducing kernel) If it exists, reproduc-
ing kernel is unique.

Proof. Assume that H has two reproducing kernels k1 and k2. Then,

〈f, k1(·, x)− k2(·, x)〉H = f(x)− f(x) = 0, ∀f ∈ H,∀x ∈ X .
In particular, if we take f = k1(·, x)−k2(·, x), we obtain ‖k1(·, x)− k2(·, x)‖2H =
0, ∀x ∈ X , i.e., k1 = k2.

To establish existence of a reproducing kernel in an RKHS, we will make use
of the Riesz representation theorem - which tells us that in an RKHS, evaluation
itself can be represented as an inner product!

Theorem 31. (Existence of the reproducing kernel) H is a reproducing kernel
Hilbert space (i.e., its evaluation functionals δx are continuous), if and only if
H has a reproducing kernel.

Proof. Given that a Hilbert space H has a reproducing kernel k with the repro-
ducing property 〈f, k(·, x)〉H = f(x), then

|δxf | = |f(x)|
= |〈f, k(·, x)〉H|
≤ ‖k(·, x)‖H ‖f‖H
= 〈k(·, x), k(·, x)〉1/2H ‖f‖H
= k(x, x)1/2 ‖f‖H ,

where the third line uses the Cauchy-Schwarz inequality. Consequently, δx :
F → R is a bounded operator.

To prove the other direction, assume that δx ∈ H′, i.e. δx : F → R is
a bounded linear functional. The Riesz representation theorem (Theorem 23)
states that there exists an element fδx ∈ H such that

δxf = 〈f, fδx〉H, ∀f ∈ H.
Define k(x′, x) = fδx(x′), ∀x, x′ ∈ X . Then, clearly k(·, x) = fδx ∈ H, and
〈f, k(·, x)〉H = δxf = f(x). Thus, k is the reproducing kernel.

From the above, we see k(·, x) is in fact the representer of evaluation at
x. We now turn to one of the most important properties of the kernel func-
tion: specifically, that it is positive definite (Berlinet & Thomas-Agnan, 2004,
Definition 2), (Steinwart & Christmann, 2008, Definition 4.15).

Definition 32 (Positive definite functions). A symmetric9 function h : X×X →
R is positive definite if ∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ Xn,

n∑
i=1

n∑
j=1

aiajh(xi, xj) ≥ 0. (3.2)

9Note that we require symmetry of h in addition to (3.2). In the complex case,∑n
i=1

∑n
j=1 aiājh(xi, xj) ≥ 0, satisfied for all complex scalars (a1, . . . an) ∈ Cn will itself

imply conjugate symmetry of h. Can you construct a non-symmetric h that satisfies (3.2)?
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The function h(·, ·) is strictly positive definite if for mutually distinct xi, the
equality holds only when all the ai are zero.10

Every inner product is a positive definite function, and more generally:

Lemma 33. Let F be any Hilbert space (not necessarily an RKHS), X a non-
empty set and φ : X → F . Then h(x, y) := 〈φ(x), φ(y)〉F is a positive definite
function.

Proof.
n∑
i=1

n∑
j=1

aiajh(xi, xj) =

n∑
i=1

n∑
j=1

〈aiφ(xi), ajφ(xj)〉F

=

〈
n∑
i=1

aiφ(xi),
n∑
j=1

ajφ(xj)

〉
F

=

∥∥∥∥∥
n∑
i=1

aiφ(xi)

∥∥∥∥∥
2

F

≥ 0.

Corollary 34. Reproducing kernels are positive definite.

Proof. For a reproducing kernel k in an RKHSH, one has k(x, y) = 〈k(·, x), k(·, y)〉H,
so it is sufficient to take φ : x 7→ k(·, x).

The following Lemma goes in the converse direction and shows that all pos-
itive definite functions are in fact intimately related to inner products in feature
spaces, because a Cauchy-Schwarz type inequality holds. We will later see (in
the Moore-Aronszajn theorem) that they are actually equivalent concepts.

Lemma 35. If h is positive definite, then |h(x1, x2)|2 ≤ h(x1, x1)h(x2, x2).

Proof. If h(x1, x2) = 0, inequality is clear. Otherwise, take a1 = a, a2 =

h(x1, x2). We have that q(a) = a2h(x1, x1)+2a |h(x1, x2)|2+|h(x1, x2)|2 h(x2, x2) ≥
0. Since q is a quadratic function of a and inequality holds ∀a, we have
|h(x1, x2)|4 ≤ |h(x1, x2)|2 h(x1, x1)h(x2, x2), which proves the claim.

3.3 Feature space, and other kernel properties
This section summarizes the relevant parts of Steinwart & Christmann (2008,
Section 4.1).

Following Lemma 33, one can define a kernel (note that we drop qualification
reproducing here - later we will see that these two notions are the same), as a
function which can be represented via inner product, and this is the approach
taken in Steinwart & Christmann (2008, Section 4.1):

10Note that Wendland (2005, Definition 6.1 p. 65) uses the terminology “positive semi-
definite” vs “positive definite”. This is probably more logical, since it then coincides with the
terminology used in linear algebra. However, we proceed with the terminology prevalent with
machine learning literature.
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Definition 36 (Kernel). Let X be a non-empty set. The function k : X ×
X → R is said to be a kernel if there exists a real Hilbert space H and a map
φ : X → H such that ∀x, y ∈ H ,

k(x, y) = 〈φ(x), φ(y)〉H .

Such map φ : X → H is referred to as the feature map, and space H as the
feature space. For a given kernel, there may be more than one feature map, as
demonstrated by the following example.

Example 37. Consider X = R, and

k(x, y) = xy =
[

x√
2

x√
2

] [ y√
2
y√
2

]
,

where we defined the feature maps φ(x) = x and φ̃(x) =
[

x√
2

x√
2

]
, and

where the feature spaces are respectively, H = R, and H̃ = R2.

Lemma 38. [`2 convergent sequences are kernel feature maps] For every x ∈ X ,
assume the sequence {fn(x)} ∈ `2 for n ∈ N, where fn : X → R. Then

k(x1, x2) :=

∞∑
n=1

fn(x1)fn(x2) (3.3)

is a kernel.

Proof. Hölder’s inequality states

∞∑
n=1

|fn(x1)fn(x2)| ≤ ‖fn(x1)‖`2 ‖fn(x2)‖`2 .

so the series (3.3) converges absolutely. Definining H := `2 and φ(x) = {fn(x)}
completes the proof.

4 Construction of an RKHS from a kernel: Moore-
Aronszajn

We have seen previously that given a reproducing kernel Hilbert space H, we
may define a unique reproducing kernel associated with H, which is a positive
definite function. Then we considered kernels, i.e., functions that can be written
as an inner product in a feature space. All reproducing kernels are kernels. In
Example (37), we have seen that the representation of a kernel as an inner
product in a feature space may not be unique. However, neither of the feature
spaces in that example is an RKHS, as they are not spaces of functions on
X = R.

11



Our goal now is to show that for every positive definite function k(x, y),
there corresponds a unique RKHS H, for which k is a reproducing kernel. The
proof is rather tricky, but also very revealing of the properties of RKHSs, so it
is worth understanding (it also occurs in very incomplete form in a number of
books and tutorials, so it is worth seeing what a complete proof looks like).

Starting with the positive definite function, we will construct a pre-RKHS
H0, from which we will form the RKHS H. The pre-RKHS H0 must satisfy two
properties:

1. the evaluation functionals δx are continuous on H0,

2. Any Cauchy sequence fn in H0 which converges pointwise to 0 also con-
verges in H0-norm to 0.

The last result has an important implication: Any Cauchy sequence {fn} in
H0 that converges pointwise to f ∈ H0, also converges to f in ‖·‖H0

, since
in that case {fn − f} converges pointwise to 0, and thus ‖fn − f‖H0

→ 0.
PREVIEW: we can already say what the pre-RKHS H0 will look like: it is
the set of functions

f(x) =

n∑
i=1

αik(xi, x). (4.1)

After the proof, we’ll show in Section 4.5 that these functions satisfy conditions
(1) and (2) of the pre-RKHS space.

Next, define H to be the set of functions f ∈ RX for which there exists an
H0-Cauchy sequence {fn} ∈ H0 converging pointwise to f : note that H0 ⊂ H,
since the limits of these Cauchy sequences might not be in H0. Our goal is to
prove that H is an RKHS. The two properties above hold if and only if

• H0 ⊂ H ⊂ RX and the topology induced by 〈·, ·〉H0
on H0 coincides with

the topology induced on H0 by H.
• H has reproducing kernel k(x, y).

We concern ourselves with proving that (1), (2) imply the above bullet points,
since the reverse direction is easy to prove. This takes four steps:

1. We define the inner product between f, g ∈ H as the limit of an inner prod-
uct of the Cauchy sequences {fn}, {gn} converging to f and g respectively.
Is the inner product well defined, and independent of the sequences used?
This is proved in Section 4.1.

2. Recall that an inner product space must satisfy 〈f, f〉H = 0 iff f = 0. Is
this true when we define the inner product on H as above? (Note that we
can also check that the remaining requirements for an inner product on
H hold, but these are straightforward)

3. Are the evaluation functionals still continuous on H?
4. Is H complete?

Finally, we’ll see that the functions (4.1) define a valid pre-RKHS H0. We will
also show that the kernel k(·, x) has the reproducing property on the RKHS H.

12



4.1 Is the inner product well defined in H?
In this section we prove that if we define the inner product in H of all limits of
Cauchy sequences as (4.2) below, then this limit is well defined : (1) it converges,
and (2) it depends only on the limits of the Cauchy sequences, and not the
particular sequences themselves.

This result is from Berlinet & Thomas-Agnan (2004, Lemma 5).

Lemma 39. For f, g ∈ H and Cauchy sequences (wrt the H0 norm) {fn},
{gn} converging pointwise to f and g, define αn = 〈fn, gn〉H0

. Then, {αn} is
convergent and its limit depends only on f and g. We thus define

〈f, g〉H := lim
n→∞

〈fn, gn〉H0
(4.2)

Proof that αn = 〈fn, gn〉H0
is convergent: For n,m ∈ N,

|αn − αm| =
∣∣〈fn, gn〉H0

− 〈fm, gm〉H0

∣∣
=

∣∣〈fn, gn〉H0
− 〈fm, gn〉H0

+ 〈fm, gn〉H0
− 〈fm, gm〉H0

∣∣
=

∣∣〈fn − fm, gn〉H0
+ 〈fm, gn − gm〉H0

∣∣
≤

∣∣〈fn − fm, gn〉H0

∣∣+
∣∣〈fm, gn − gm〉H0

∣∣
≤ ‖gn‖H0

‖fn − fm‖H0
+ ‖fm‖H0

‖gn − gm‖H0
.

Take ε > 0. Every Cauchy sequence is bounded, so ∃A,B ∈ R, ‖fm‖H0
≤ A,

‖gn‖H0
≤ B, ∀n,m ∈ N.

By taking N1 ∈ N s.t. ‖fn − fm‖H0
< ε

2B , for n,m ≥ N1, and N2 ∈ N
s.t. ‖gn − gm‖H0

< ε
2A , for n,m ≥ N1, we have that |αn − αm| < ε, for

n,m ≥ max(N1, N2), which means that {αn} is a Cauchy sequence in R, which
is complete, and the sequence is convergent in R.

Proof that limit is independent of the Cauchy sequence chosen:
If some H0-Cauchy sequences {f ′n}, {g′n} also converge pointwise to f and

g, and α′n = 〈f ′n, g′n〉H0
, one similarly shows that

|αn − α′n| ≤ ‖gn‖H0
‖fn − f ′n‖H0

+ ‖f ′n‖H0
‖gn − g′n‖H0

.

Now, since {fn} and {f ′n} both converge pointwise to f , {fn − f ′n} converges
pointwise to 0, and so does {gn − g′n}. But then they also converge to 0 in ‖·‖H0

by the pre-RKHS axiom 2, and therefore {αn} and {α′n} must have the same
limit.

4.2 Does it hold that 〈f, f〉H = 0 iff f = 0?
In this section, we verify that all the expected properties of an inner product
from Definition 10 hold for H. It turns out that the only challenging property
to show is the third one - the others follow from the inner product definition on
the pre-RKHS. This result is from Berlinet & Thomas-Agnan (2004, Lemma 6).
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Lemma 40. Let {fn} be Cauchy sequence in H0 converging pointwise to f ∈ H.
If 〈f, f〉H = limn→∞ ‖fn‖2H0

= 0, then f(x) = 0 pointwise for all x (we assumed
pointwise convergence implies norm convergence - we now want to prove the
other direction, bearing in mind that the inner product in H is defined as the
limit of inner products in H0 by (4.2)).

Proof : We have∀x ∈ X ,

|f(x)| = lim
n→∞

|fn(x)| = lim
n→∞

|δx(fn)| ≤
(a)

lim
n→∞

‖δx‖ ‖fn‖H0
=
(b)

0,

where in (a) we used that the evaluation functional δx is continuous on H0,
by the pre-RKHS axiom 1 (hence bounded, with a well defined operator norm
‖δx‖); and in (b) we used the assumption in the lemma that fn converges to 0
in ‖·‖H0

.

4.3 Are the evaluation functionals continuous on H?
Here we need to establish a preliminary lemma, before we can continue.

Lemma 41. H0 is dense in H (Berlinet & Thomas-Agnan, 2004, Lemma 7,
Corollary 2).

Proof. It suffices to show that given any f ∈ H and its associated Cauchy
sequence {fn} wrt H0 converging pointwise to f (which exists by definition),
{fn} also converges to f in ‖·‖H (note: this is the new norm which we defined
above in terms of limits of Cauchy sequences in H0).

Since{fn} is Cauchy inH0-norm, for all ε > 0, there isN ∈ N, s.t. ‖fm − fn‖H0
≤

ε, ∀m,n ≥ N . Fix n∗ ≥ N . The sequence {fm − fn∗}∞m=1 converges pointwise
to f − fn∗ . We now simply use the definition of the inner product in H from
(4.2),

‖f − fn∗‖2H = lim
m→∞

‖fm − fn∗‖2H0
≤ ε2,

whereby {fn}∞n=1 converges to f in ‖·‖H.

Lemma 42. The evaluation functionals are continuous on H (Berlinet & Thomas-
Agnan, 2004, Lemma 8).

Proof. We show that δx is continuous at f = 0, since this implies by linearity
that it is continuous everywhere. Let x ∈ X , and ε > 0. By pre-RKHS axiom
1, δx is continuous on H0. Thus, ∃η, s.t.

‖g − 0‖H0
= ‖g‖H0

< η ⇒ |δx(g)| = |g(x)| < ε/2. (4.3)

To complete the proof, we just need to show that there is a g ∈ H0 close (in
H-norm) to some f ∈ H with small norm, and that this function is also close
at each point.
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We take f ∈ H with ‖f‖H < η/2. By Lemma 41 there is a Cauchy sequence
{fn} in H0 converging both pointwise to f and in ‖·‖H to f , so one can find
N ∈ N, s.t.

|f(x)− fN (x)| < ε/2,

‖f − fN‖H < η/2.

We have from these definitions that

‖fN‖H0
= ‖fN‖H ≤ ‖f‖H + ‖f − fN‖H < η.

Thus ‖f‖H < η/2 implies ‖fN‖H0
< η. Using (4.3) and setting g := fN , we

have that ‖fN‖H0
< η implies |fN (x)| < ε/2, and thus |f(x)| ≤ |f(x)−fN (x)|+

|fN (x)| < ε. In other words, ‖f‖H < η/2 is shown to imply |f(x)| < ε. This
means that δx is continuous at 0 in the ‖·‖H sense.

4.4 Is H complete (a Hilbert space)?
Our goal is to show that every Cauchy sequence wrt the H-norm converges to
a function in H.
Lemma 43. H is complete.

Let {fn} be any Cauchy sequence in H. Since evaluation functionals are
linear continuous on H by Lemma 42, then for any x ∈ X , {fn(x)} is convergent
in R to some f(x) ∈ R (since R is complete, it contains this limit). The question
is thus whether the function f(x) defined pointwise in this way is still inH (recall
that H is defined as containing the limit of H0-Cauchy sequences that converge
pointwise).

The proof strategy is to define a sequence of functions {gn}, where gn ∈ H0,
which is “close” to the H-Cauchy sequence {fn}. These functions will then be
shown (1) to converge pointwise to f , and (2) to be Cauchy in H0. Hence by
our original construction of H, we have f ∈ H. Finally, we show fn → f in
H-norm.

Define f(x) := limn→∞ fn(x). For n ∈ N, choose gn ∈ H0 such that
‖gn − fn‖H < 1

n . This can be done since H0 is dense in H. From

|gn(x)− f(x)| ≤ |gn(x)− fn(x)|+ |fn(x)− f(x)|
= |δx(gn − fn)|+ |fn(x)− f(x)|.

The first term in this sum goes to zero due to the continuity of δx on H (Lemma
42), and thus {gn(x)} converges to f(x), satisfying criterion (1). For criterion
(2), we have

‖gm − gn‖H0
= ‖gm − gn‖H
≤ ‖gm − fm‖H + ‖fm − fn‖H + ‖fn − gn‖H
≤ 1

m
+

1

n
+ ‖fm − fn‖H ,
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hence {gn} is Cauchy in H0.
Finally, is this limiting f a limit with respect to the H-norm? Yes, since by

Lemma 41 (denseness of H0 in H: see the first lines of the proof), gn tends to
f in the H-norm sense, and thus fn converges to f in H-norm,

‖fn − f‖H ≤ ‖fn − gn‖H + ‖gn − f‖H
≤ 1

n
+ ‖gn − f‖H .

Thus H is complete.

4.5 How to build a valid pre-RKHS H0

Here we show how to build a valid pre-RKHS. Importantly, in doing this, we
prove that for every positive definite function, there corresponds a unique RKHS
H.

Theorem 44. (Moore-Aronszajn)
Let k : X×X → R be positive definite. There is a unique RKHS H ⊂ RX with

reproducing kernel k. Moreover, if space H0 = span
[
{k(·, x)}x∈X

]
is endowed

with the inner product

〈f, g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(xi, yj), (4.4)

where f =
∑n
i=1 αik(·, xi) and g =

∑m
j=1 βjk(·, yj), then H0 is a valid pre-

RKHS.

We first need to show that (4.4) is a valid inner product. First, is it
independent of the particular αi and βi used to define f, g? Yes, since

〈f, g〉H0
=

n∑
i=1

αig(xi) =

m∑
j=1

βjf(yj).

As a useful consequence of this result we get the reproducing property on
H0, by setting g = k(·, x),

〈f, g〉H0
=

n∑
i=1

αig(xi) =

n∑
i=1

αik(xi, x) = f(x).

Next, we check that the form (4.4) is indeed a valid inner product on H0. The
only nontrivial axiom to be verified is

〈f, f〉H0
= 0 =⇒ f = 0.

We provide two different proofs for this statement:
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1. The first proof is based on the Cauchy-Schwarz inequality, which holds for
semi-inner product spaces (where only 〈f, f〉F ≥ 0 is required as the third
property of Definition 10), hence for H0. Let f ∈ H0, then for any x ∈ X
we get

|f(x)| =
∣∣〈f, k(·, x)〉H0

∣∣ ≤ 〈f, f〉H0︸ ︷︷ ︸
=0

√
k(x, x) = 0.

2. The second proof is a straightforward modification of the proof of Lemma 35.
Let f =

∑n
i=1 αik(·, xi), fix x ∈ X and put ai = aαi, i = 1, . . . , n,

an+1 = f(x), xn+1 = x. By the positive definiteness of k:

0 ≤
n+1∑
i=1

n+1∑
j=1

aiajk(xi, xj)

= a2 〈f, f〉H0
+ 2a |f(x)|2 + |f(x)|2 k(x, x),

whereby |f(x)|4 ≤ |f(x)|2 k(x, x) 〈f, f〉H0
, so it is clear that if 〈f, f〉H0

= 0,
f must vanish everywhere.

We now proceed to the main proof.

Proof. (that H0 satisfies the pre-RKHS axioms). Let x ∈ X and f, g ∈ H0.
We have already proved the reproducing property of k on H0, thus δx(f) =
〈f, k(·, x)〉H0

, δx(g) = 〈g, k(·, x)〉H0
. Consequently,

|δx(f)− δx(g)| = | 〈f − g, k(·, x)〉H0
|

≤ k1/2(x, x) ‖f − g‖H0
,

by Cauchy-Schwarz, implying that δx is continuous on H0, and the first pre-
RKHS requirement is satisfied.

Now, take ε > 0 and define a Cauchy {fn} in H0 that converges pointwise to
0. Since Cauchy sequences are bounded, we may define A > 0, s.t. ‖fn‖H0

< A,
∀n ∈ N. Since {fn} is Cauchy one can find N1 ∈ N, s.t. ‖fn − fm‖H0

< ε/2A,
for n,m ≥ N1. Write fN1

=
∑r
i=1 αik(·, xi). Take N2 ∈ N, s.t. n ≥ N2 implies

|fn(xi)| < ε
2r|αi| for i = 1, . . . , r. Now, for n ≥ max(N1, N2)

‖fn‖2H0
≤ | 〈fn − fN1

, fn〉H0
|+ | 〈fN1

, fn〉H0
|

≤ ‖fn − fN1
‖H0
‖fn‖H0

+

r∑
i=1

|αifn(xi)|

< ε,

so fn converges to 0 in ‖·‖H0
. Thus, all the pre-RKHS axioms are satisfied, and

H is an RKHS.
To see that the reproducing kernel on H is k, simply note that if f ∈ H,

and the{fn} Cauchy sequence in H0 converges to f pointwise,
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〈f, k(·, x)〉H =
(a)

lim
n→∞

〈fn, k(·, x)〉H0

= lim
n→∞

fn(x)

= f(x),

where in (a) we use the definition of inner product on H in (4.2). Since H0 is
dense in H, H is the unique RKHS that contains H0. But since k(·, x) ∈ H,
∀x ∈ X , it is clear that any RKHS with reproducing kernel k must contain
H0.

4.6 Summary
Moore-Aronszajn theorem tells us that every positive definite function is a re-
producing kernel. We have previously seen that every reproducing kernel is a
kernel and that every kernel is a positive definite function. Therefore, all three
notions are exactly the same! In addition, we have established a bijection be-
tween the set of all positive definite functions on X ×X , denoted by RX×X+ , and
the set of all reproducing kernel Hilbert spaces, denoted by Hilb(RX ), which
consists of subspaces of RX . It turns out that this bijection also preserves the
geometric structure of these sets, which are in both cases closed convex cones,
and we will give some intuition on this in the next Section.

5 Operations with kernels
Since kernels are just positive definite functions, the following Lemma is imme-
diate:

Lemma 45. (Sum and scaling of kernels)
If k, k1, and k2 are kernels on X , and α ≥ 0 is a scalar, then αk, k1 + k2

are kernels.

Note that a difference of kernels is not necessarily a kernel! This is because
we cannot have k1(x, x) − k2(x, x) < 0, since we would then have a feature
map φ : X → H for which 〈φ(x), φ(x)〉H < 0. Mathematically speaking, these
properties give the set of all kernels the structure of a convex cone (not a linear
space). Now, consider the following: since we know that k = k1 +k2 also has an
RKHS Hk, what is the relationship between Hk and the RKHSs Hk1 and Hk2
of k1 and k2? The following theorem gives an answer.

Theorem 46. (Sum of RKHSs)
Let k1, k2 ∈ RX×X+ , and k = k1 + k2. Then,

Hk = Hk1 +Hk2 = {f1 + f2 : f1 ∈ Hk1 , f2 ∈ Hk2} , (5.1)

and ∀f ∈ Hk,
‖f‖2Hk

= min
f1+f2=f

{
‖f1‖2Hk1

+ ‖f2‖2Hk2

}
. (5.2)
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The product of kernels is also a kernel. Note that this contains as a conse-
quence a familiar fact from linear algebra: that the Hadamard product of two
positive definite matrices is positive definite.

Theorem 47. (Product of kernels)
Let k1 and k2 be kernels on X and Y, respectively. Then

k ((x, y), (x′, y′)) := k1(x, x′)k2(y, y′)

is a kernel on X × Y. In addition, there is an isometric isomorphism between
Hk and the Hilbert space tensor product HkX ⊗HkY . In addition, if X = Y,

k (x, x′) := k1(x, x′)k2(x, x′)

is a kernel on X .

The above results enable us to construct many interesting kernels by multi-
plication, addition and scaling by non-negative scalars. To illustrate this assume
that X = R. The trivial (linear) kernel on Rd is klin(x, x′) = 〈x, x′〉 . Then for
any polynomial p(t) = amt

m + · · · + a1t + a0 with non-negative coefficients
ai, p(〈x, x′〉) defines a valid kernel on Rd. This gives rise to the polynomial
kernel kpoly(x, x′) = (〈x, x′〉+ c)

m, for c ≥ 0. One can extend the same argu-
ment to all functions which have the Taylor series with non-negative coefficients
(Steinwart & Christmann, 2008, Lemma 4.8). This leads us to the exponential
kernel kexp(x, x′) = exp(2σ 〈x, x′〉), for σ > 0. Furthermore, let φ : Rd → R,
φ(x) = exp(−σ ‖x‖2). Then, since it is representable as an inner product in R
(i.e., ordinary product), k̃(x, x′) = φ(x)φ(x′) = exp(−σ ‖x‖2) exp(−σ ‖x′‖2) is
a kernel on Rd. Therefore, by Theorem 47, so is:

kgauss(x, x
′) = k̃(x, x′)kexp(x, x

′)

= exp
(
−σ
[
‖x‖2 + ‖x′‖2 − 2 〈x, x′〉

])
= exp

(
−σ ‖x− x′‖2

)
,

which is the gaussian kernel on Rd.

6 Mercer representation of RKHS
Moore-Aronszajn theorem gives a construction of an RKHS without imposing
any additional assumptions on X (apart from it being a non-empty set) nor
on kernel k (apart from it being a positive definite function). In this Section,
we will consider X to be a compact metric space (with metric dX ) and that
k : X × X → R is a continuous positive definite function. These assumptions
will allow us to give an alternative construction and interpretation of RKHS.
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6.1 Integral operator of a kernel
Definition 48 (Integral operator). Let k be a continuous kernel on compact
metric space X , and let ν be a finite Borel measure on X . Let Sk be the linear
map:

Sk : L2(X ; ν) → C(X ),

(Skf) (x) =

ˆ
k(x, y)f(y)dν(y), f ∈ L2(X ; ν),

and Tk = Ik ◦ Sk its composition with the inclusion Ik : C(X ) ↪→ L2(X ; ν). Tk
is said to be the integral operator of kernel k.

Let us first show that the operator Sk is well-defined, i.e., that Skf is a
continuous function ∀f ∈ L2(X ; ν). Indeed, ∀x, y ∈ X , we have that:

|(Skf) (x)− (Skf) (y)| =

∣∣∣∣ˆ (k(x, z)− k(y, z)) f(z)dν(z)

∣∣∣∣
=

∣∣〈k(x, ·)− k(y, ·), f〉L2

∣∣
≤ ‖k(x, ·)− k(y, ·)‖2 ‖f‖2

≤
[ˆ

(k(x, z)− k(y, z))
2
dν(z)

]1/2
‖f‖2

≤
√
ν(X ) max

z∈X
|k(x, z)− k(y, z)| ‖f‖2 .

At this point, we use the fact that k is uniformly continuous on X × X (as it
is a continuous function on a compact domain. Namely, ∀ε > 0, ∃δ = δ(ε), s.t.
dX (x, y) < δ implies |k(x, z)− k(y, z)| < ε√

ν(X )‖f‖2
, ∀x, y, z ∈ X . From here,

dX (x, y) < δ ⇒ |(Skf) (x)− (Skf) (y)| < ε, ∀x, y ∈ X ,

i.e., Skf is a continuous function on X .
Note that the operator Tk : L2(X ; ν) → L2(X ; ν) is distinct from Sk. In

particular, while Skf is a continuous function, Tkf is an equivalence class, so
(Skf) (x) is defined, while (Tkf) (x) is not.

The integral operator inherits various properties of the kernel function. In
particular, it is readily shown that symmetry of k implies that Tk is a self-adjoint
operator, i.e., that 〈f, Tkg〉 = 〈Tkf, g〉, ∀f, g ∈ L2(X ; ν), and that positive
definiteness of k implies that Tk is a positive operator, i.e., that 〈f, Tkf〉 ≥ 0
∀f ∈ L2(X ; ν). Furthermore, continuity of k implies that Tk is also a compact
operator - the proof of this requires the use of Arzela-Ascoli theorem, which
can be found in Rudin (1987, Theorem 11.28, p.245). Thus, one can apply an
important result of functional analysis, the spectral theorem, to the operator
Tk, which states that any compact, self-adjoint operator can be diagonalized in
an appropriate orthonormal basis.

Theorem 49. (Spectral theorem)
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Let F be a Hilbert space, and T : F → F a compact, self-adjoint operator.
There is an at most countable orthonormal set (ONS) {ej} j∈J of F and {λj}j∈J
with |λ1| ≥ |λ2| ≥ · · · > 0 converging to zero, such that

Tf =
∑
j∈J

λj 〈f, ej〉F ej , f ∈ F .

6.2 Mercer’s theorem
Let us know fix a finite measure ν on X with supp[ν] = X . Recall that the
integral operator Tk is compact, positive and self-adjoint on L2(X ; ν), so, by the
spectral theorem, there exists ONS {ẽj} j∈J and the set of eigenvalues {λj}j∈J ,
where J is at most countable set of indices, corresponding to the strictly positive
eigenvalues of Tk. Note that each ẽj is an equivalence class in the ONS of
L2(X ; ν), but to each equivalence class we can also assign a continuous function
ej = λ−1j Skẽj ∈ C(X ). To show that ej is in the class ẽj , note that:

Ikej = λ−1j Tkẽj = λ−1j λj ẽj = ẽj .

With this notation, the following Theorem holds:

Theorem 50. (Mercer’s theorem)
Let k be a continuous kernel on compact metric space X , and let ν be a finite

Borel measure on X with supp[ν] = X . Then ∀x, y ∈ X

k(x, y) =
∑
j∈J

λjej(x)ej(y),

and the convergence of the sum is uniform on X ×X , and absolute for each
pair (x, y) ∈ X × X .

Note that Mercer’s theorem gives us another feature map for the kernel k,
since:

k(x, y) =
∑
j∈J

λjej(x)ej(y)

=
〈√

λjej(x),
√
λjej(y)

〉
`2(J)

,

so we can take `2(J) as a feature space, and the corresponding feature map is:

φ : X → `2(J)

φ : x 7→
{√

λjej(x)
}
j∈J

.

This map is well defined as
∑
j∈J

∣∣√λjej(x)
∣∣2 = k(x, x) <∞.
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Apart from the representation of the kernel function, Mercer theorem also
leads to a construction of RKHS using the eigenfunctions of the integral operator
Tk. In particular, first note that sum

∑
j∈J ajej(x) converges absolutely ∀x ∈

X whenever sequence
{

aj√
λj

}
∈ `2(J). Namely, from the Cauchy-Schwartz

inequality in `2(J), we have that:

∑
j∈J
|ajej(x)| ≤

∑
j∈J

∣∣∣∣∣ aj√λj
∣∣∣∣∣
2
1/2

·

∑
j∈J

∣∣∣√λjej(x)
∣∣∣2
1/2

=

∥∥∥∥∥
{

aj√
λj

}∥∥∥∥∥
`2

√
k(x, x).

In that case,
∑
j∈J ajej is a well defined function on X . The following

theorem tells us that the RKHS of k is exactly the space of functions of this
form.

Theorem 51. Let X be a compact metric space and k : X×X → R a continuous
kernel. Define:

H =

{
f =

∑
j∈J

ajej :

{
aj√
λj

}
∈ `2(J)

}
,

with inner product: 〈∑
j∈J

ajej ,
∑
j∈J

bjej

〉
H

=
∑
j∈J

ajbj
λj

. (6.1)

Then H = Hk (they are the same spaces of functions with the same inner
product).

Proof. Routine work shows that (6.1) defines an inner product and that H is a
Hilbert space. By Mercer’s theorem, k(·, x) =

∑
j∈J (λjej(x)) ej , and:

∑
j∈J

∣∣∣∣∣λjej(x)√
λj

∣∣∣∣∣
2

=
∑
j∈J

λje
2
j (x)

= k(x, x) <∞,

so k(·, x) ∈ H, ∀x ∈ X . Furthermore, let f =
∑
j∈J ajej ∈ H with

{
aj√
λj

}
∈

`2(J). Then,

〈f, k(·, x)〉H =

〈∑
j∈J

ajej ,
∑
j∈J

(λjej(x)) ej

〉
H

=
∑
j∈J

ajλjej(x)

λj

= f(x).
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Thus, H is a Hilbert space of functions with a reproducing kernel k, so it must
be equal to Hk by the uniqueness of RKHS.

A consequence of the above theorem is that although space H is defined
using the integral operator Tk and its associated eigenfunctions {ej}j∈J which
depend on the underlying measure ν, it coincides exactly with the RKHS Hk
of k, so by uniqueness of the RKHS shown in the Moore-Aronszajn theorem, H
actually does not depend on the choice of ν at all.

6.3 Relation between Hk and L2(X ; ν)
Assume now that {ẽj}j∈J is an orthonormal basis of L2(X ; ν), i.e., that all eigen-
values of Tk are strictly positive. Write f̂(j) = 〈f, ẽj〉L2

for Fourier coefficients
of f ∈ L2(X ; ν), w.r.t. the basis {ẽj}j∈J . Then,

Tkf =
∑
j∈J

λj f̂(j)ẽj , f ∈ L2(X ; ν),

so in the expansion w.r.t. orthonormal basis {ẽj}j∈J , Tk simply scales the

Fourier coefficients with respective eigenvalues. The operator T 1/2
k for which

Tk = T
1/2
k ◦ T 1/2

k is given by:

T
1/2
k f =

∑
j∈J

√
λj f̂(j)ẽj , f ∈ L2(X ; ν).

Note that if we replace classes ẽj with their representers ej = λ−1j Skẽj , we
obtain a function in the RKHS, i.e.,

∑
j∈J

∣∣∣f̂(j)
∣∣∣2 = ‖f‖22 <∞⇒

{
f̂(j)

}
∈ `2(J) ⇒

∑
j∈J

√
λj f̂(j)ej ∈ Hk

Thus, T 1/2
k induces an isometric isomorphism between L2(X ; ν) and Hk (and

both are isometrically isomorphic to `2(J)). In the case where not all eigenvalues
of Tk are strictly positive, {ẽj}j∈J does not span all of L2(X ; ν), but Hk is still
isometrically isomorphic to its subspace span {ẽj : j ∈ J} ⊆ L2(X ; ν).

7 Further results
• Separable RKHS: Steinwart & Christmann (2008, Lemma 4.33)

• Measurability of canonical feature map: Steinwart & Christmann (2008,
Lemma 4.25)

• Relation between RKHS and L2(µ): Steinwart & Christmann (2008, The-
orem 4.26, Theorem 4.27). Note in particular Steinwart & Christmann
(2008, Theorem 4.47): the mapping from L2 to H for the Gaussian RKHS
is injective.
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• Expansion of kernel in terms of basis functions: Berlinet & Thomas-Agnan
(2004, Theorem 14 p. 32)

• Mercer’s theorem: Steinwart & Christmann (2008, p. 150).

8 What functions are in an RKHS?
• Gaussian RKHSs do not contain constants: Steinwart & Christmann

(2008, Corollary 4.44).

• Universal RKHSs are dense in the space of bounded continuous functions:
Steinwart & Christmann (2008, Section 4.6)

• The bandwidth of the kernel limits the bandwidth of the functions in the
RKHS: (c.f., e.g., Appendix of Christian Walder PhD thesis, University of
Queensland, 2008).
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