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Basics of reproducing kernel Hilbert spaces
Simple kernel algorithms

Course overview

Part 1:
What is a feature map, what is a kernel, and how do they
relate?
Applications: difference in means, kernel ridge regression
(extra: kernel PCA)

Part 2:
Basics of convex optimization
The support vector machine

Lecture notes will be put online at:
http://www.gatsby.ucl.ac.uk/~gretton/rkhsAdaptModel.html
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Why kernel methods (1): XOR example
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No linear classifier separates red from blue
Map points to higher dimensional feature space:
φ(x) =

[
x1 x2 x1x2

]
∈ R3
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Why kernel methods (2): document classification

Kernels let us compare objects on the basis of features
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Why kernel methods (3): smoothing
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Kernel methods can control smoothness and avoid
overfitting/underfitting.
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What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Outline: reproducing kernel Hilbert space

We will describe in order:
1 Hilbert space (very simple)
2 Kernel (lots of examples: e.g. you can build kernels from

simpler kernels)
3 Reproducing property
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Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function 〈·, ·〉H : H×H → R
is an inner product on H if

1 〈α1f1 + α2f2, g〉H = α1 〈f1, g〉H + α2 〈f2, g〉H
2 〈f , g〉H = 〈g , f 〉H
3 〈f , f 〉H ≥ 0 and 〈f , f 〉H = 0 if and only if f = 0.

Norm induced by the inner product: ‖f ‖H :=
√
〈f , f 〉H

Definition (Hilbert space)

“Well behaved” (complete) inner product space.
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Kernel: inner product between feature maps

Definition

Let X be a non-empty set. A function k : X ×X → R is a kernel
if there exists a Hilbert space and a map φ : X → H such that
∀x , x ′ ∈ X ,

k(x , x ′) :=
〈
φ(x), φ(x ′)

〉
H .

Almost no conditions on X (eg, X itself doesn’t need an inner
product, eg. documents).
Think of kernel as similarity measure between features

What are some simple kernels? E.g for books? For images?
A single kernel can correspond to multiple sets of underlying
features.

φ1(x) = x and φ2(x) =
[
x/
√
2 x/

√
2
]

Arthur Gretton Introduction to Machine Learning: Kernels



Basics of reproducing kernel Hilbert spaces
Simple kernel algorithms

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Kernel: inner product between feature maps

Definition

Let X be a non-empty set. A function k : X ×X → R is a kernel
if there exists a Hilbert space and a map φ : X → H such that
∀x , x ′ ∈ X ,

k(x , x ′) :=
〈
φ(x), φ(x ′)

〉
H .

Almost no conditions on X (eg, X itself doesn’t need an inner
product, eg. documents).
Think of kernel as similarity measure between features

What are some simple kernels? E.g for books? For images?
A single kernel can correspond to multiple sets of underlying
features.

φ1(x) = x and φ2(x) =
[
x/
√
2 x/

√
2
]

Arthur Gretton Introduction to Machine Learning: Kernels



Basics of reproducing kernel Hilbert spaces
Simple kernel algorithms

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Theorem (Sums of kernels are kernels)

Given α ≥ 0 and k , k1 and k2 all kernels on X , then αk and
k1 + k2 are kernels on X .

Proof later! A difference of kernels may not be a kernel (why?)

Theorem (Mappings between spaces)

Let X and X̃ be sets, and define a map A : X → X̃ . Define the
kernel k on X̃ . Then the kernel k(A(x),A(x ′)) is a kernel on X .

Example: k(x , x ′) = x2 (x ′)2 .
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New kernels from old: products

Theorem (Products of kernels are kernels)

Given k1 on X1 and k2 on X2, then k1 × k2 is a kernel on X1 ×X2.
If X1 = X2 = X , then k := k1 × k2 is a kernel on X .

Proof: Main idea only!
k1 is a kernel between shapes,

φ1(x) =

[
I�
I4

]
φ1(�) =

[
1
0

]
, k1(�,4) = 0.

k2 is a kernel between colors,

φ2(x) =

[
I•
I•

]
φ2(•) =

[
0
1

]
k2(•, •) = 1.
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New kernels from old: products

“Natural” feature space for colored shapes:

Φ(x) =

[
I� I4
I� I4

]
=

[
I•
I•

] [
I� I4

]
= φ2(x)φ>1 (x)

Kernel is:

k(x , x ′)

=
∑

i∈{•,•}

∑
j∈{�,4}

Φij(x)Φij(x
′) = trace

φ1(x)φ>2 (x)φ2(x ′)︸ ︷︷ ︸
k2(x ,x ′)

φ>1 (x ′)


= trace

φ>1 (x ′)φ1(x)︸ ︷︷ ︸
k1(x ,x ′)

 k2(x , x ′) = k1(x , x ′)k2(x , x ′)
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Sums and products =⇒ polynomials

Theorem (Polynomial kernels)

Let x , x ′ ∈ Rd for d ≥ 1, and let m ≥ 1 be an integer and c ≥ 0 be
a positive real. Then

k(x , x ′) :=
(〈
x , x ′

〉
+ c
)m

is a valid kernel.

To prove: expand into a sum (with non-negative scalars) of kernels
〈x , x ′〉 raised to integer powers. These individual terms are valid
kernels by the product rule.
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Infinite sequences

The kernels we’ve seen so far are dot products between finitely
many features. E.g.

k(x , y) =
[
sin(x) x3 log x

]> [ sin(y) y3 log y
]

where φ(x) =
[
sin(x) x3 log x

]
Can a kernel be a dot product between infinitely many features?

Arthur Gretton Introduction to Machine Learning: Kernels
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Infinite sequences

Definition
The space `2 of 2-summable sequences is defined as all sequences
(ai )i≥1 for which

‖a‖2`2 =
∞∑
i=1

a2
i <∞.

Kernels can be defined in terms of sequences in `2.

Theorem
Given sequence of functions (φi (x))i≥1 in `2 where φi : X → R.
Then

k(x , x ′) :=
∞∑
i=1

φi (x)φi (x
′) (1)

is a well defined kernel on X .
Arthur Gretton Introduction to Machine Learning: Kernels
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Infinite sequences (proof)

Proof: Cauchy-Schwarz:

∣∣k(x , x ′)
∣∣ =

∣∣∣∣∣
∞∑
i=1

φi (x)φi (x
′)

∣∣∣∣∣ ≤
( ∞∑

i=1

φ2
i (x)

)1/2( ∞∑
i=1

φ2
i (x ′)

)1/2

.
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A famous infinite feature space kernel
Gaussian kernel,

k(x , x ′) = exp
(
−‖x − x ′‖2

2σ2

)
=
∞∑
i=1

(√
λiei (x)

)
︸ ︷︷ ︸

φi (x)

(√
λiei (x

′)
)

︸ ︷︷ ︸
φi (x ′)

λk ∝ bk b < 1

ek(x) ∝ exp(−(c − a)x2)Hk(x
√
2c),

e
1
(x)

e
2
(x)

e
3
(x)

a, b, c are functions of σ,
and Hk is kth order Her-
mite polynomial.
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Positive definite functions

If we are given a “measure of similarity” with two arguments,
k(x , x ′), how can we determine if it is a valid kernel?

1 Find a feature map?
1 Sometimes this is not obvious (eg if the feature vector is

infinite dimensional)
2 In any case, the feature map is not unique.

2 A direct property of the function: positive definiteness.
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Positive definite functions

Definition (Positive definite functions)

A symmetric function k : X × X → R is positive definite if
∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajk(xi , xj) ≥ 0.

Why do we care? One good reason: it makes optimization much
easier (e.g. when doing classification: Part II of the lecture!)
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Kernels are positive definite

Theorem

The kernel k(x , y) := 〈φ(x), φ(y)〉H for Hilbert space H is positive
definite.

Proof.

n∑
i=1

n∑
j=1

aiajk(xi , xj) =
n∑

i=1

n∑
j=1

〈aiφ(xi ), ajφ(xj)〉H

=

∥∥∥∥∥
n∑

i=1

aiφ(xi )

∥∥∥∥∥
2

H

≥ 0.

Reverse also holds: positive definite k(x , x ′) is inner product in H
between φ(x) and φ(x ′).

Arthur Gretton Introduction to Machine Learning: Kernels



Basics of reproducing kernel Hilbert spaces
Simple kernel algorithms

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Sum of kernels is a kernel

Consider two kernels k1(x , x ′) and k2(x , x ′). Then

n∑
i=1

n∑
j=1

aiaj [k1(xi , xj) + k2(xi , xj)]

=
n∑

i=1

n∑
j=1

aiajk1(xi , xj) +
n∑

i=1

n∑
j=1

aiajk2(xi , xj)

≥ 0

Arthur Gretton Introduction to Machine Learning: Kernels
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First example: finite space, polynomial features

Reminder: XOR example:
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First example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

φ : R2 → R3

x =

[
x1
x2

]
7→ φ(x) =

 x1
x2
x1x2

 ,
with kernel

k(x , y) =

 x1
x2
x1x2

>  y1
y2
y1y2


(the standard inner product in R3 between features). Denote this
feature space by H.
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First example: finite space, polynomial features

Define a linear function of the inputs x1, x2, and their product x1x2,

f (x) = f1x1 + f2x2 + f3x1x2.

f in a space of functions mapping from X = R2 to R. Equivalent
representation for f ,

f (·) =
[
f1 f2 f3

]>
.

f (·) refers to the function as an object (here as a vector in R3)
f (x) ∈ R is function evaluated at a point (a real number).

f (x) = f (·)>φ(x) = 〈f (·), φ(x)〉H
Evaluation of f at x is an inner product in feature space (here
standard inner product in R3)
H is a space of functions mapping R2 to R.

Arthur Gretton Introduction to Machine Learning: Kernels
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What if we have infinitely many features?

Gaussian kernel,

k(x , y) = exp
(
−‖x − y‖2

2σ2

)
=
∞∑
i=1

φi (x)φi (x
′)

f (x) =
∞∑
i=1

fiφi (x)
∞∑
i=1

f 2
i <∞.

e
1
(x)

e
2
(x)

e
3
(x)
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What if we have infinitely many features?

Function with Gaussian kernel:

f (x) : =
m∑
i=1

αik(xi , x)

=
m∑
i=1

αi 〈φ(xi ), φ(x)〉H

=

〈
m∑
i=1

αiφ(xi ), φ(x)

〉
H
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f` :=
∑m

i=1 αiφ`(xi )

Much more convenient
way to write functions of
infinitely many features!
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The reproducing property

We can write without ambiguity

φ(x) = k(x , ·).

The two defining features of an RKHS:
The reproducing property:
∀x ∈ X , ∀f ∈ H, 〈f (·), k(·, x)〉 = 〈f (·), φ(x)〉 = f (x)

k(·, x) = φ(x) ∈ H for any x ∈ X , and

k(x , x ′) =
〈
φ(x), φ(x ′)

〉
H =

〈
k(·, x), k(·, x ′)

〉
H

Arthur Gretton Introduction to Machine Learning: Kernels
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A closer look: feature representation, Gaussian kernel
Reminder, Gaussian kernel,

k(x , y) = exp
(
−‖x − y‖2

2σ2

)
=
∞∑
i=1

(√
λiei (x)

)
︸ ︷︷ ︸

φi (x)

(√
λiei (x

′)
)

︸ ︷︷ ︸
φi (x ′)

λk ∝ bk b < 1

e
1
(x)

e
2
(x)

e
3
(x)
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A closer look: feature representation, Gaussian kernel

RKHS function, Gaussian kernel:

f (x) :=
m∑
i=1

αik(xi , x) =
∞∑
`=1

f`

[√
λ`e`(x)

]
︸ ︷︷ ︸

φ`(x)

where f` =
∑m

i=1 αi

√
λ`e`(xi ).

−6 −4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4
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0.8

1

x

f(
x
)

NOTE that this
enforces

smoothing:
λk decay as ek
become rougher,
fj decay since∑

j f
2
j <∞.
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Moore-Aronszajn

Theorem (Moore-Aronszajn)

Every positive definite kernel k uniquely associated with RKHS H.

Recall feature map is not unique (as we saw earlier): only kernel is.

Arthur Gretton Introduction to Machine Learning: Kernels
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Distance between feature means
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Distance between feature means

MMD2 = KPP + KQ,Q − 2KP,Q
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Distance between feature means

Sample (xi )
m
i=1 from P and (yi )

n
i=1 from Q. What is the distance

between their means in feature space?

MMD2(P,Q) =

∥∥∥∥∥∥ 1
m

m∑
i=1

φ(xi )−
1
n

n∑
j=1

φ(yj )

∥∥∥∥∥∥
2

H

=

〈
1
m

m∑
i=1

φ(xi )−
1
n

n∑
j=1

φ(yj ),
1
m

m∑
i=1

φ(xi )−
1
n

n∑
j=1

φ(yj )

〉
H

=
1
m2

〈
m∑
i=1

φ(xi ),
m∑
i=1

φ(xi )

〉
+ . . .

=
1
m2

m∑
i=1

m∑
j=1

k(xi , xj ) +
1
n2

n∑
i=1

n∑
j=1

k(yi , yj )−
2
mn

m∑
i=1

n∑
j=1

k(xi , yj ).
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Distance between feature means

Sample (xi )
m
i=1 from P and (yi )

n
i=1 from Q. What is the distance

between their means in feature space?

MMD2(P,Q) =

∥∥∥∥∥∥ 1
m

m∑
i=1

φ(xi )−
1
n

n∑
j=1

φ(yj)

∥∥∥∥∥∥
2

H

When φ(x) = x , distinguish means. When φ(x) = [x x2],
distinguish means and variances.

There are kernels that can distinguish any two distributions (e.g.
the Gaussian kernel, where the feature space is infinite).
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Kernel ridge regression
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Very simple to implement, works well when no outliers.
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Ridge regression: case of RD

We are given n training points in RD :

X =
[
x1 . . . xn

]
∈ RD×n y :=

[
y1 . . . yn

]>
Define some λ > 0. Our goal is:

f ∗ = arg min
f ∈Rd

(
n∑

i=1

(yi − x>i f )2 + λ‖f ‖2
)

= arg min
f ∈Rd

(∥∥∥y − X>f
∥∥∥2

+ λ‖f ‖2
)
,

The second term λ‖f ‖2 is chosen to avoid problems in high
dimensional spaces (more soon).
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Kernel ridge regression

We begin knowing f is a linear combination of feature space
mappings of points (representer theorem)

f =
n∑

i=1

αiφ(xi ) =
n∑

i=1

αik(xi , ·).
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Kernel ridge regression

We begin knowing f is a linear combination of feature space
mappings of points (representer theorem: second set of notes)

f =
n∑

i=1

αiφ(xi ) =
n∑

i=1

αik(xi , ·).

Then
n∑

i=1

(yi − 〈f , φ(xi )〉H)2 + λ‖f ‖2H = ‖y − Kα‖2 + λα>Kα

= y>y − 2y>Kα + α>
(
K 2 + λK

)
α

Differentiating wrt α and setting this to zero, we get

α∗ = (K + λIn)−1y .

Recall: ∂α>Uα
∂α = (U + U>)α, ∂v>α

∂α = ∂α>v
∂α = v
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Smoothness

What does a small ‖f ‖H achieve? Smoothness!
Recall for the Gaussian kernel:

f (x) =
∞∑
i=1

fi
√
λiei (x), ‖f ‖2H =

∞∑
i=1

f 2
i .

e
1
(x)

e
2
(x)

e
3
(x)
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Parameter selection for KRR

Given the objective

f ∗ = arg min
f ∈H

(
n∑

i=1

(yi − 〈f , φ(xi )〉H)2 + λ‖f ‖2H

)
.

How do we choose
The regularization parameter λ?
The kernel parameter: for Gaussian kernel, σ in

k(x , y) = exp
(
−‖x − y‖2

σ

)
.
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Choice of σ
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Choice of λ
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Choice of λ
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Cross validation

Split n data into training set size ntr and test set size
nte = n − ntr.
Split trainining set into m equal chunks of size nval = ntr/m.
Call these Xval,i ,Yval,i for i ∈ {1, . . . ,m}
For each λ, σ pair

For each Xval,i ,Yval,i

Train ridge regression on remaining trainining set data
Xtr \ Xval,i and Ytr \ Yval,i ,
Evaluate its error on the validation data Xval,i ,Yval,i

Average the errors on the validation sets to get the average
validation error for λ, σ.

Choose λ∗, σ∗ with the lowest average validation error
Measure the performance on the test set Xte,Yte.
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PCA (1)

Goal of classical PCA: to find a d-dimensional subspace of a higher
dimensional space (D-dimensional, RD) containing the directions of
maximum variance.

(Figure from Kenji Fukumizu)
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Application of kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.
We are given a noisy digit x∗.

Pdφ(x∗) = Pf1φ(x∗) + . . . + Pfdφ(x∗)

is the projection of φ(x∗) onto one of the first d eigenvectors from
kernel PCA (these are orthogonal).
Define the nearest point y∗ ∈ X to this feature space projection as

y∗ = arg min
y∈X
‖φ(y)− Pdφ(x∗)‖2H .

In many cases, not possible to reduce the squared error to zero, as no single y∗

corresponds to exact solution.

Arthur Gretton Introduction to Machine Learning: Kernels



Basics of reproducing kernel Hilbert spaces
Simple kernel algorithms

Distance between means
Kernel ridge regression
Kernel PCA

Application of kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.
We are given a noisy digit x∗.

Pdφ(x∗) = Pf1φ(x∗) + . . . + Pfdφ(x∗)

is the projection of φ(x∗) onto one of the first d eigenvectors from
kernel PCA (these are orthogonal).
Define the nearest point y∗ ∈ X to this feature space projection as

y∗ = arg min
y∈X
‖φ(y)− Pdφ(x∗)‖2H .

In many cases, not possible to reduce the squared error to zero, as no single y∗

corresponds to exact solution.

Arthur Gretton Introduction to Machine Learning: Kernels



Basics of reproducing kernel Hilbert spaces
Simple kernel algorithms

Distance between means
Kernel ridge regression
Kernel PCA

Application of kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.
We are given a noisy digit x∗.

Pdφ(x∗) = Pf1φ(x∗) + . . . + Pfdφ(x∗)

is the projection of φ(x∗) onto one of the first d eigenvectors from
kernel PCA (these are orthogonal).
Define the nearest point y∗ ∈ X to this feature space projection as

y∗ = arg min
y∈X
‖φ(y)− Pdφ(x∗)‖2H .

In many cases, not possible to reduce the squared error to zero, as no single y∗

corresponds to exact solution.

Arthur Gretton Introduction to Machine Learning: Kernels



Basics of reproducing kernel Hilbert spaces
Simple kernel algorithms

Distance between means
Kernel ridge regression
Kernel PCA

Application of kPCA: image denoising

Projection onto PCA subspace for denoising. kPCA: data may not
be Gaussian distributed, but can lie in a submanifold in input space.

(Figure
from Kenji Fukumizu)
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What is PCA?

First principal component (max. variance)

u1 = arg max
‖u‖≤1

1
n

n∑
i=1

u>

xi −
1
n

n∑
j=1

xj

2

= arg max
‖u‖≤1

u>Cu

where

C =
1
n

n∑
i=1

xi −
1
n

n∑
j=1

xj

xi −
1
n

n∑
j=1

xj

> =
1
n
XHX>,

X =
[
x1 . . . xn

]
, H = In − n−11n×n, 1n×n a matrix of ones.

Definition (Principal components)

The pairs (λi , ui ) are the eigensystem of nλiui = Cui .
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PCA in feature space

Kernel version, first principal component:

f1 = arg max
‖f ‖H≤1

1
n

n∑
i=1

〈f , φ(xi )−
1
n

n∑
j=1

φ(xj)

〉
H

2

= arg max
‖f ‖H≤1

var(f ).

We can write

f =
n∑

i=1

αi

φ(xi )−
1
n

n∑
j=1

φ(xj)

 ,

=
n∑

i=1

αi φ̃(xi ),

since any component orthogonal to the span of
φ̃(xi ) := φ(xi )− 1

n

∑n
i=1 φ(xi ) vanishes.
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How to solve kernel PCA

We can also define an infinite dimensional analog of the covariance:

C =
1
n

n∑
i=1

φ(xi )−
1
n

n∑
j=1

φ(xj)

⊗
φ(xi )−

1
n

n∑
j=1

φ(xj)

 ,

=
1
n

n∑
i=1

φ̃(xi )⊗ φ̃(xi )

where we use the definition

(a⊗ b)c := a 〈b, c〉H (2)

this is analogous to the case of finite dimensional vectors,
(ab>)c = a(b>c).
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How to solve kernel PCA (1)

Eigenfunctions of kernel covariance:

f`λ` = Cf`

=

(
1
n

n∑
i=1

φ̃(xi )⊗ φ̃(xi )

)
f`

=
1
n

n∑
i=1

φ̃(xi )

〈
φ̃(xi ),

n∑
j=1

α`j φ̃(xj)

〉
H

=
1
n

n∑
i=1

φ̃(xi )

 n∑
j=1

α`j k̃(xi , xj)


k̃(xi , xj) is the (i , j)th entry of the matrix K̃ := HKH (exercise!).
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How to solve kernel PCA (2)

We can now project both sides of

f`λ` = Cf`

onto all of the φ̃(xq):〈
φ̃(xq),LHS

〉
H

= λ`

〈
φ̃(xq), f`

〉
= λ`

n∑
i=1

α`i k̃(xq, xi ) ∀q ∈ {1 . . . n}

〈
φ̃(xq),RHS

〉
H

=
〈
φ̃(xq),Cf`

〉
H

=
1
n

n∑
i=1

k̃(xq, xi )

 n∑
j=1

α`j k̃(xi , xj)

 ∀q ∈ {1 . . . n}

Writing this as a matrix equation,

nλ`K̃α` = K̃ 2α` nλ`α` = K̃α`.
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Projection onto kernel PC

How do you project a new point x∗ onto the principal component f ?
Assuming f is properly normalised, the projection is

Pf φ̃(x∗) =
〈
φ̃(x∗), f

〉
H
f

=
n∑

i=1

αi

 n∑
j=1

αj k̃(xj , x
∗)

 φ̃(xi ).
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