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Recall from Tuesday

e We |projected to a fixed subspace , span({x;}"_,):

y
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Recall from Tuesday

e We |projected to a fixed subspace , span({x;}"_,):

y

@ Non-linear extensions:
e (x): explicit,
o k(x,x") = (p(x), (X)) g,
e implicit usage of features,

° U{k=m'
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Today: dimensionality reduction

e Given: a set of observations X = {x;}7_; = RP.

e Goal: find X' = {x } — R? 'preserving’ the geometry of X .
@ d « D: compression (|mages music, .. .).
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Dimensionality reduction = manifold learning
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@ Visualization, computational reason, noise reduction.
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@ Visualization, computational reason, noise reduction.
@ Simplest example:

We optimize the subspace of projection (PCA).
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Principal Component Analysis (PCA)
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PCA example: 100%

Zoltan Szabd Dimensionality Reduction



PCA example: 100% — 1%
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PCA example: 100% — 20%
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Conjecture? Most important direction?
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Task: find the best d-dimensional subspace approximating
{xi}7_; = RP.
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Cov, var, corr: properties — recall

@ Covariance:

cov(x,y) = Ex[(x = Ex)(y — Ey)].
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Cov, var, corr: properties — recall

e Covariance: — values? cov(ax, by) =7

cov(x,y) = Ex[(x = Ex)(y — Ey)].
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Cov, var, corr: properties — recall

@ Covariance:

cov(x,y) = Ex[(x = Ex)(y — Ey)].
@ Variance:

var(x) = cov(x,x) = E (xz) — E2(x)
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Cov, var, corr: properties — recall

@ Covariance:

cov(x,y) = Ex[(x = Ex)(y — Ey)].

@ Variance, std: — values? min?

var(x) = cov(x,x) = E (xz) —E2(x), o(x)=+/var(x).
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Cov, var, corr: properties — recall

@ Covariance:

cov(x,y) = Ex[(x = Ex)(y — Ey)].

@ Variance, std:

var(x) = cov(x,x) = E (xz) —E2(x), o(x)=+/var(x).

@ Correlation:

cov(x,y)

corr(x,y) = ooy
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Cov, var, corr: properties — recall

@ Covariance:

cov(x,y) = Ex[(x = Ex)(y — Ey)].

@ Variance, std:

var(x) = cov(x,x) = E (xz) —E2(x), o(x)=+/var(x).

@ Correlation: — intuition? values? max? zero?

cov(x,y)

corr(x,y) = ooy
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Eigenvectors, eigenvalues — recall

@ Simplest transformation: scaling.
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Eigenvectors, eigenvalues — recall

@ Simplest transformation: scaling.

@ x # 0 is an eigenvector of A with eigenvalue A € R if

Ax = \x.
Y
Ay
AX =X
y
X
0 X Ax X
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Eigenvectors, eigenvalues — recall

@ Simplest transformation: scaling.

@ x # 0 is an eigenvector of A with eigenvalue A € R if

Ax = \x.
Y
Ay
AX =X
y
X
0 X Ax X

@ Size of A?
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Eigensystems: continued

Examples:
o Identity: A =1
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Eigensystems: continued

Examples:
o Identity: A =1
e Diagonal matrix: A = diag(a;), spec: reflection.
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Eigensystems: continued

Examples:
o Identity: A =1
e Diagonal matrix: A = diag(a;), spec: reflection.

@ Shear mapping on Mona Lisa:
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_EINESES—

@ Diagonal matrix: we saw that the eigensystem is orthogonal.
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_EINESES—

@ Diagonal matrix: we saw that the eigensystem is orthogonal.
o A symmetric A (A = AT) behaves similarly:

A=UxU',
where X = diag();), U: orthogonal.

Let us apply these observations in PCA! J
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PCA formulation:

@ We are looking for the best one-dimensional projection.

/

e [E:= empirical /population expectation: Ex = % Z,N:1 X;.
@ Assumption: Ex = 0.

Zoltan Szabd Dimensionality Reduction



PCA formulation:

@ We are looking for the best one-dimensional projection.

/

e [E:= empirical /population expectation: Ex = % Z,N:1 X;.
@ Assumption: Ex = 0.
e centering: x — x — Ex.
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PCA: projection

Projection (||lw|, = 1):
o X = (w,x)w.

o zero mean: 0 = Ex = E [(w, x) w]
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PCA: projection

Projection (||lw|, = 1):
o X = (w,x)w.

o zero mean: 0 = Ex = E [(w,x) w] = (w,Ex )w.
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PCA: min residual < max squared projection

e Goal: E||x—)“(]|§ — miny.
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PCA: min residual < max squared projection

e Goal: E||x—)“(]|§ — miny.

@ Residual = objective:

512 2
Ix = X[ =[x = {w,x) w3
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PCA: min residual < max squared projection

e Goal: E||x—)“(]|§ — miny.

@ Residual = objective:
512 2
Ix =[5 =[x — (w,x) wi;

w3=1
= Ixl — (w,x)* =
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PCA: min residual < max squared projection

e Goal: E||x—)“(]|§ — miny.

@ Residual = objective:

512 2
Ix = X[ =[x = {w,x) w3

w3=1
= Ixl — (w,x)* =

Elx—%I3 =E[Ixl} - w,x?| = Ex} -Ewx’<

independent of w
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PCA: min residual < max squared projection

e Goal: E||x—)“(]|§ — miny.

@ Residual = objective:

512 2
Ix = X[ =[x = {w,x) w3

w3=1
= Ixl — (w,x)* =

Elx—%5 =E|Ixl} - w,x°| = Exl} -Ewx’e

independent of w
maximizes the mean squared projection.
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PCA: max squared projection < max variance of projection

By using Ey? = (Ey)? + var(y):

max — E (w,x)? = (E (w,x) )2 + var((w, x)).

w J—
~~ -

=0

<
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PCA: max squared projection < max variance of projection

By using Ey? = (Ey)? + var(y):

max — E (w,x)? = (E (w,x) )2 + var((w, x)).

w J—
~~ -

=0

<

To sum up:

Minimize MSE of the residual : minE |x — %||3 <
w
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PCA: max squared projection < max variance of projection

By using Ey? = (Ey)? + var(y):

max — E (w,x)? = (E (w,x) )2 + var((w, x)).

w J—
< ~ —

=0

To sum up:

Minimize MSE of the residual : minE |x — %||3 <
w

.. . . 2
Maximize mean squared projection : max E (w, x)° <
w
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PCA: max squared projection < max variance of projection

By using Ey? = (Ey)? + var(y):

max — E (w,x)? = (E (w,x) )2 + var((w, x)).

w J—
< ~ —

=0
To sum up:
Minimize MSE of the residual : m“ilnE Ix — %3 <
Maximize mean squared projection : mvexE <w,x>2 =

Maximize variance of the projection : maxvar({w,x)).
w
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PCA: optimization

By the bilinearity of cov:

var ({(w, x)) = cov (wa,wa>
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PCA: optimization

By the bilinearity of cov:

var ({(w, x)) = cov (wa,wa> —w! cov(x)w = w' Zw — Hnﬂax .
wi,=1
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PCA: optimization

By the bilinearity of cov:

var ({(w, x)) = cov (wa,wa> —w! cov(x)w = w' Zw — Hnﬂax .
wi,=1

Lagrange function, solving for 'derivatives = 0':
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PCA: optimization

By the bilinearity of cov:

var ({(w, x)) = cov (wa,wa> —w! cov(x)w = w' Zw — Hnﬂax .
wi,=1

Lagrange function, solving for 'derivatives = 0':

Liw, )= w'Zw —A(w'w—1)=
~— —

=objective =condition
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PCA: optimization

By the bilinearity of cov:
var ({(w, x)) = cov (wa,wa> —w! cov(x)w = w' Zw — Hnﬂax .
wi,=1

Lagrange function, solving for 'derivatives = 0':

Liw, )= w'Zw —A(w'w—1)=
~— —

=objective =condition
L
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PCA: optimization

By the bilinearity of cov:

var ({(w, x)) = cov (wa,wa> —w! cov(x)w = w' Zw — Hnﬂax .
wi,=1

Lagrange function, solving for 'derivatives = 0':

Liw, )= w'Zw —A(w'w—1)=
~— —

=objective =condition
L
0= M =2Xw — 2\w =
ow
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PCA: optimization

By the bilinearity of cov:

var ({(w, x)) = cov (wa,wa> —w! cov(x)w = w' Zw — Hnﬂax .
wi,=1

Lagrange function, solving for 'derivatives = 0':

Liw, )= w'Zw —A(w'w—1)=
~— —

=objective =condition
L
0= M =2Xw — 2\w =
ow

w*: eigenvector associated to Amax(X).
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@ Goal: approximate with a d-dimensional subspace.
o ONB in the subspace (WTW = I):

W = [wl,...,wd] S RDXd,

@ Approximation:

d
X = Z (wj,x)w; = WW Tx.
i=1

After similar calculation than ford =1 ... J
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PCA:d>1

@ The d principal components:

{wi}9 | = top d eigenvectors of cov(x) .
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PCA:d>1

@ The d principal components:
{wi}9 | = top d eigenvectors of cov(x) .

o X
Ai

cov(x): symmetric, positive semi-definite = {w;}: ONS,
0.

VAT
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PCA:d>1

@ The d principal components:
{wi}9 | = top d eigenvectors of cov(x) .

@ X := cov(x): symmetric, positive semi-definite = {w;}: ONS,
Ai =

D
e Variance decomposition: cov(x) = Y.i ; Aiw;w/ .
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PCA:d>1

@ The d principal components:
{wi}9 | = top d eigenvectors of cov(x) .

@ X := cov(x): symmetric, positive semi-definite = {w;}: ONS,
Ai=0
@ Variance decomposition: cov(x) = ZiDzl Aiwiw]

@ Energy preserved using d components: Z?zl A=

R = R(d) := %}12 e [0,1].
=17
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PCA:d>1

@ The d principal components:
{wi}9 | = top d eigenvectors of cov(x) .

@ X := cov(x): symmetric, positive semi-definite = {w;}: ONS,
Ai = 0.

, i D
Variance decomposition: cov(x) = > ; \iw;w, .

Energy preserved using d components: 27:1 Ai =

R = R(d) := %}12 e [0,1].
=17

In practice: choose d such that R ~ 0.8 — 0.9.
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Non-linear PCA
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Non-linear PCA: idea

e PCA:

e objective: maximize the variance of the projection.
o solution: leading eigenvectors of X = cov(x).
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Non-linear PCA: idea

e PCA:

e objective: maximize the variance of the projection.
o solution: leading eigenvectors of X = cov(x).

@ Non-linear PCA:
o Take ¢(x).
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Non-linear PCA: idea

e PCA:

e objective: maximize the variance of the projection.
o solution: leading eigenvectors of X = cov(x).

@ Non-linear PCA:
o Take ¢(x).
o What is X := [cov(p(x)) ?
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Non-linear PCA: idea

e PCA:

e objective: maximize the variance of the projection.
o solution: leading eigenvectors of X = cov(x).

@ Non-linear PCA:
o Take ¢(x).
o What is X := [eov(p(x)) ?
e Eigenvectors of an operator?
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Non-linear PCA: idea

e PCA:

e objective: maximize the variance of the projection.
o solution: leading eigenvectors of X = cov(x).

@ Non-linear PCA:
o Take ¢(x).
o What is X := [cov(p(x)) ?

Eigenvectors of an operator?
Computational tractability?
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Kernel PCA: idea for 'd = 1" < f

Let H = Hy.

@ Objective function:

2
1o 1<
J(f) = n2< ,o(xi) ;Z > ar(f) — N

i=1
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Kernel PCA: idea for 'd = 1" < f

Let H = Hy.

@ Objective function:

n

2
1 n
A =5 0 < ebi) = 3 Z > var(f) — FAFla<t’

BI—‘

i=1

i

=: (Xi)

@ The solution can be searched in the form (H 5 f < aeR"):

f=> ag(x)
i=1

since component L span ({$(x;)}7_;) has no contribution.
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Kernel PCA: idea for 'd = 1" < f

Let H = Hy.

@ Objective function:

2
1 n n
A =5 0 < ebi) = 3 Z > var(f) — FAFla<t’

BI—‘

n
i=1

i

=: (Xi)

@ The solution can be searched in the form (H 5 f < aeR"):

f=> ag(x)
i=1

since component L span ({$(x;)}7_;) has no contribution.

@ We will get an eigenvalue problem for a.
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(Empirical) covariance operator

1 -
;;9’7 xi) ® P(xi).

c ® d is the analogue of cd’:

(c®d)(e) = c(d,e)y
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(Empirical) covariance operator

1 -
; ; B(xi) ® P(x;)-

c ® d is the analogue of cd’:
(c®d)(e) = c(d,e)y

Similarly to the finite-dimensional case:

Challenge
How do we solve this eigenvalue problem?

(%)
<h
Il
>
<h
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Computation of Cf;

Assume j is fixed (Cf = Af):

Cf = [,17 2, P0a)® @(m)] f

i=1
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Computation of Cf;

Assume j is fixed (Cf = Af):

Cf = [1 DE)® sD(XI)] f
i=1
@ def % Z &(x7) <S5(Xi)a Z aJ‘/N’(XJ)>
i=1 Jj=1 H
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Computation of Cf;

Assume j is fixed (Cf = Af):
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Computation of Cf;

Assume j is fixed (Cf = Af):

multiplying by @(x;) [r = 1,..., n] gives expressions in terms of G.
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Eigenvalue problem

e We want to solve Cf = Af; Cf and f: functions of [@(x;)|.
e By multipling with [@(x;) :

<¢(Xr)7)‘f>ﬂ{ = /\<éa)f7
($x), CFlac = - (a).

e Eigenvalue problem: G2a = n\Ga, i.e. Ga = (n))a.
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Orthogonal eigenvectors in kernel PCA

Taking two eigenvectors:

=) aud(x), Ga; = \jay,
i=1
f2 = Z azng(Xj), éag = /\282.
j=1
one has
0= <f17 F2>ﬂ-(
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Orthogonal eigenvectors in kernel PCA

Taking two eigenvectors:

n
=) aud(x), Ga; = \ay,
p
n ~
fp = Z a2;p(x;), Gay = \ay.
=

one has
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Orthogonal eigenvectors in kernel PCA

Taking two eigenvectors:

n
=) aud(x), Ga; = \ay,
p
n ~
fp = Z a2;p(x;), Gay = \ay.
=

one has
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Orthogonal eigenvectors in kernel PCA

Taking two eigenvectors:

n
=) aud(x), Ga; = \ay,
p
n ~
fp = Z a2;p(x;), Gay = \ay.
=

one has

(fi, Ry = <Z a1iB(xi), ) | 92185(Xj)> = a/ Ga, = a \oa,.
=1

i=1 J H
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Orthogonality = projection is easy

@ Projection of a new x™* to the first d-PCs:

d
NG ()] = D5 (B (), g 6
j=1
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Orthogonality = projection is easy

@ Projection of a new x™* to the first d-PCs:
d
M@ (x*)] = D (@ (x*) fidgc -
j=1

@ The pre-image problem we solved in denoising:
—~ . ~ 2
x* = argmin [G(x) = M (x*)] 5 -

xeX
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Canonical Correlation Analysis (CCA)
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CCA definition

@ Given a pair of random variables: (x,y) € R?9.

o Find the directions (a € R?, b € RY) in which x and y are
maximally correlated:

CCA(x,y) = max [COlxy (aTx,bTy) .
a

)

follow where dependence measures are useful!
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Outlier-robust image registration

Given two images:

..
il

Goal: find the transformation which takes the right one to the left.
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Outlier-robust image registration

Given two images:

..
il

Goal: find the transformation which takes the right one to the left.

Zoltan Szabd Dimensionality Reduction



Outlier-robust image registration: equations

o Reference image: Yief,
@ test image: Yiest,

@ possible transformations: ©.

Objective:
J(H) = I(Yrefa Ytest(e)) g rgezg
similarity
In the example: | = Non-linear CCA.
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Independent subspace analysis & ca

Cocktail party problem:
e independent groups of people / music bands,

@ observation = mixed sources.
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ISA equations

Observation:
x; = Asy, s=[sl;...;sM].

Goal: § from {x3,...,x7}. Assumptions:
e independent groups: | (s!,...,sM) =0,
@ s-s: non-Gaussian,

@ A: invertible.
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ISA solution

Find W which makes the estimated components independent:
y =Wx = [yl;...;yM]7

J(W) :I(yl,...,yM> —>n\1Ailn.
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Recall: feature selection

e Goal: find

o the feature subset (# of rooms, criminal rate, local taxes)
e most relevant for house price prediction (y).

Here we consider a [non-linear alternative of Lassol. )
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Feature selection: equations

o Features: x!,...,x". Subset: S {1,...,F}.

@ MaxRelevance - MinRedundancy principle:

1 )
_ J
J(S) = 5] E | (x 7y ‘ ‘2 E x x — < m{Laxf}

i,jes
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Example: independence testing-1

@ We are given paired samples. Task: test independence.
@ Examples:
o (song, year of release) pairs
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Example: independence testing-1

@ We are given paired samples. Task: test independence.
@ Examples:
o (song, year of release) pairs

o (video, caption) pairs
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Example: independence testing-1

@ We are given paired samples. Task: test independence.
@ Examples:
o (song, year of release) pairs

o (video, caption) pairs

?
° {(Xiayi)}?:l - ny = ]P)XIP)y-
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Example: independence testing-2

@ How do we detect dependency? (paired samples)

x1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

x2: No doubt there is great pressure on
provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal
government to the provinces. In fact, we
have increased federal investments for early
childhood development.

y1: Honorables sénateurs, ma question
s'adresse au leader du gouvernement au
Sénat et concerne |'aide financiére qu'on a
annoncée pour les agriculteurs. La plupart
des agriculteurs n’ont encore rien reu de
cet argent.

yo: I est évident que les ordres de
gouvernements provinciaux et municipaux
subissent de fortes pressions en ce qui
concerne les services de garde, mais le
gouvernement n'a pas réduit le
financement qu'il verse aux provinces pour
les services de garde. Au contraire, nous
avons augmenté le financement fédéral
pour le développement des jeunes enfants.
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Example: indepen

nce testing-2

@ How do we detect dependency? (paired samples)

x1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

x2: No doubt there is great pressure on
provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal
government to the provinces. In fact, we
have increased federal investments for early
childhood development.

y1: Honorables sénateurs, ma question
s'adresse au leader du gouvernement au
Sénat et concerne |'aide financiére qu'on a
annoncée pour les agriculteurs. La plupart
des agriculteurs n’ont encore rien reu de
cet argent.

yo: I est évident que les ordres de
gouvernements provinciaux et municipaux
subissent de fortes pressions en ce qui
concerne les services de garde, mais le
gouvernement n'a pas réduit le
financement qu'il verse aux provinces pour
les services de garde. Au contraire, nous
avons augmenté le financement fédéral
pour le développement des jeunes enfants.

Are the French paragraphs translations of the English ones, or have
nothing to do with it, i.e. P,, = P[P, ?
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Towards non-linear CCA — History

@ Given: random variable (x,y) € X x Y, (x,y) ~ Pyy.

@ Goal: measure the dependence of x and y.
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Towards non-linear CCA — History

@ Given: random variable (x,y) € X x ), (x,y) ~ Py,
@ Goal: measure the dependence of x and y.
° Desiderata for a Q(Pyy) independence measure:

Q(Pyy) is well-defined,

Q(Py) € [0.1],

Q(Pyy) =0iff. x Ly.

Q(Py) = Liff. y = f(x) or x = g(y). g
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Independence measures

o Q(Pyy) = sups . corr(f(x), g(y)) satisfies 1-4.
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Independence measures

o Q(Pyy) = sups . corr(f(x), g(y)) satisfies 1-4.
@ Too ambitious:

e computationally intractable.
e many functions.
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Independence measures: restriction to continuous functions

o Cp(X)={f:X — R, bounded continuous} would also work.
o Still too large!
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Independence measures: restriction to continuous functions

o Cp(X)={f:X — R, bounded continuous} would also work.

o Still too large!
o ldea:

e certain Hy function classes are dense in Cp(X).
e computationally tractable.
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KCCA: definition

@ Given: k : X xX >R, /:YxY—->R.
@ Associated:

o feature maps ¢(x) = k(-,x), ¥(y) = £(-,y),
e RKHS-s ﬂ'fk, g‘fg.
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KCCA: definition

@ Given: k : X xX >R, /:YxY—->R.
@ Associated:

o feature maps ¢(x) = k(-,x), ¥(y) = £(-,y),
e RKHS-s ﬂ'fk, g‘fg.

@ KCCA measure of (x,y) e X x Y
preca(x,yi Hi, He) = sup  corr(f(x),g(y)),
ng‘fk,gEU‘fé
_covy(f(x),8(y))
\/vary f(x) var, g(y)

corr(f(x), g(y))
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KCCA: notes

e Optimization domain: H, x Hy 3 (f, g).
@ By reproducing property: we will get a finite-D task.
@ k¢ linear: traditional CCA.
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KCCA: notes

Optimization domain: Hy x Hy 3 (f, g).
By reproducing property: we will get a finite-D task.

k,¢ linear: traditional CCA.
In practice:

o we have {(xn, y,)}"_; samples from (x,y),
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KCCA: notes

Optimization domain: Hy x Hy 3 (f, g).
By reproducing property: we will get a finite-D task.

k,¢ linear: traditional CCA.
In practice:

o we have {(xn, y,)}"_; samples from (x,y),
e it is worth applying regularization

Precal(x, y; Hy, He, k) = | SUPfede, gedt, COME(F(X), g(¥)i k) ,
Covyy (f(x),8(y))

corr(f(x), g(y)i k) = —= 7 = 2
\/Varxf(x) + kK Hng{k var,g(y) + Hg”}cg
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KCCA solution: one-page summary

@ Representer theorem = f = Z,N:1 ¢ip(xi), g = Z,N=1 d,-lZ(y,-).
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KCCA solution: one-page summary

@ Representer theorem = f = Z,N:1 ¢ip(xi), g = Z,N=1 diab(y;).
@ Objective in terms of c and d:

preca(x,y) == sup = . :
ceRN,deRN \/CT(GX + H'N)2C\/dT(Gy + "LIN)Qd
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KCCA solution: one-page summary

@ Representer theorem = f = Z,N:1 ¢ip(xi), g = Z,N=1 diab(y;).
@ Objective in terms of c and d:

o c’G,G,d
PKCCA(X,y) :=  sup - 5 ~ 2,
ceRN deRN \/cT(GX + kly) c\/dT(Gy + kly)°d

@ Stationary points of pkcca(x,y):

0 — IPrecalx.y) 0 = JPrecalx,y)
oc ’ od '
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KCCA solution: one-page summary

@ Representer theorem = f = Z,N 1 GP(xi), & = Z, L i (yi).
@ Objective in terms of c and d:

o c’G,G,d
PKCCA(X,y) :=  sup - 5 ~ 2,
ceRN deRN \/cT(GX + kly) c\/dT(Gy + kly)°d

@ Stationary points of pkcca(x,y):

0 — IPrecalx.y) 0 = JPrecalx,y)
oc ’ od '

@ We just need the maximal eigenvalues ({Az = ABz|) of

[(G G, gl g (c”;yéji{,\,y] [3] =2 {(éx +0m,\,)2 (Gx +0/£|N)2] m
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KCCA: M-variables

2-variables [(x, y)]:

[(éxétgimz (éyéﬁifw] H - {(éx +0MN)2 (6 +OKIN>2} [d]

Zoltan Szabd Dimensionality Reduction



KCCA: M-variables

2-variables [(x, y)]:
0

e @l %0 e ]l

For M-variables (pairwise dependence):

(cl:‘r vaN)z . élég 919/\/] Ci
G,G; (G2 + H'N)2 GGy Co _
Gmél GMGQ (éM + Iil/\/)2 Cwm

(él + HlN)z 0 0 Ci
) 0 (GQ + Iﬁ:lN)z 0 C2
0 0 (GM + /ilN)2 Cwv

Zoltan Szabd Dimensionality Reduction



KCCA as an independence measure

If x Ly, then pkcea(x,y; Hi, He, k) = 0. Opposite direction:
@ For 'rich’” H,, H,.
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KCCA as an independence measure

If x Ly, then pkcea(x,y; Hi, He, k) = 0. Opposite direction:
@ For 'rich’” H,, H,.

@ Enough: universal kernel.
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KCCA as an independence measure

If x Ly, then pkcea(x,y; Hi, He, k) = 0. Opposite direction:
@ For 'rich" Hy, H,.
@ Enough: universal kernel.
e Example (y > 0):
o Gaussian: k(x,x') = erHX*X’H;

o Laplacian kernel: k(x,x’) = e M=l
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Universality

Definition

Assume:
@ X: compact metric space.
@ k: continuous kernel on X.
k is called [universal if 3, is dense in (Cp(X), | - [o0)-
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Properties of universal kernels

If k is universal, then

@ k(x,x) >0 forall xe X.
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Properties of universal kernels

If k is universal, then
@ k(x,x) >0 forall xe X.

@ Every restriction of k to an X’ € X compact set is universal.
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Properties of universal kernels

If k is universal, then
@ k(x,x) >0 forall xe X.
@ Every restriction of k to an X’ € X compact set is universal.

@ p(x) = k(-,x) is injective, i.e.

pk(x,y) = llo(x) — o),

is a metric.
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Properties of universal kernels

If k is universal, then
@ k(x,x) >0 forall xe X.
@ Every restriction of k to an X’ € X compact set is universal.

@ p(x) = k(-,x) is injective, i.e.

pk(x,y) = llo(x) — o),

is a metric.

@ The normalized kernel

P L k(va)
Koor) = ek y)

is universal.
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Universal Taylor kernels

@ Foran C®*sf :(—r,r) >R
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Universal Taylor kernels

@ Foran C®*sf :(—r,r) >R

f(t) = i ant" te(—r,r),re(0,0].
n=0

e If a, > 0 Vn, then

k<X7Y) - f(<Xy>>

is universal on X := {x e RY : x|, < +/r}.
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Universal kernels, o > 0

a”

o k(x,y) = e**¥): previous result with a, = =
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Universal kernels, o > 0

a”

o k(x,y) = e**¥): previous result with a, = =

2 . .
o k(x,y) = e~ ®Ix=¥l2: exp. kernel & normalization.
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Universal kernels, o > 0

® k(x,y) = (1—(x,y))"“ binomial kernel
e on X compact = {x e RY : ||x||, < 1}.

o (0= (-0 = Sy ()2 (1l < ),
0

where (%) = S0, b2,
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KCCA estimation: [ITE

Artifacts of too much free time

https://bitbucket.org/szzoli/ite-in-python/
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https://bitbucket.org/szzoli/ite-in-python/

KCCA estimation: [ITE

Artifacts of too much free time

https://bitbucket.org/szzoli/ite-in-python/

Import ITE, generate observations:

>>> import ite

>>> from numpy.random import randn
>>> from numpy import array

>>> ds = array([2, 3, 4])

>>> ¢ 1000

>>> y = randn(t, sum(ds))
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https://bitbucket.org/szzoli/ite-in-python/

estimation: ITE

Estimate KCCA:

>>> co = ite.cost.BIKCCA()
>>> kcca = co.estimation(y, ds)
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estimation: ITE

Estimate KCCA:

>>> co = ite.cost.BIKCCA()
>>> kcca = co.estimation(y, ds)

Alternative initialization:

>>> co2 = ite.cost.BIKCCA(eta=le-4, kappa=0.02)
>>> kcca2 = co2.estimation(y, ds)

where 7): low-rank approximation, x: regularization constant.
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Recall: outlier-robust image registration (it was KCCA)




Recall: outlier-robust image registration (it was KCCA)

Can solving eigenvalue problems be avoided? Analytical solution? )
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CCA Alternative: HSIC
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Text from dogtime.com and petfinder.com

Zoltan Szabd

Their noses guide them through life, and
they're never happier than when following
an interesting scent. They need plenty of
exercise, about an hour a day if possible.

A large animal who slings slobber, exudes a
distinctive houndy odor, and wants nothing more
than to follow his nose. They need a significant
amount of exercise and mental stimulation.

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.

Dimensionality Reduction



HSIC intuition: Gram matrices

3
v
‘ J ~ Their noses guide them through life, and
they're never happier than when following
G X an interesting scent. They need plenty of

exercise, about an hour a day if possible.

A large animal who slings slol
distinctive houndy odor, and
than to follow his nose. They
amount of exercise and ment;

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.




HSIC intuition: Gram matrices

v
', ~ Their noses guide them through life, and ~
they're never happier than when following
GX an interesting scent. They need plenty of Gy

exercise, about an hour a day if possible.

A large animal who slings slol
distinctive houndy odor, and
than to follow his nose. They
amount of exercise and ment|

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.

Empirical estimate!:

. < analytical!

T Visual illustration credit: Arthur Gretton



Cocktail party: HSIC demo
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ISA reminder

x = As, s=[sl;...;sM],

where s™-s are non-Gaussian & independent.
o Goal: {x;}_; ->W=A""1{s}],,
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ISA reminder

x = As, s=[sl;...;sM],

where s™-s are non-Gaussian & independent.
o Goal: {x;}_; ->W=A""1{s}],,

@ Objective function:
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ISA: source, observation

@ Hidden sources (s

A%CDEF
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ISA: source, observation

@ Hidden sources (

A}'CD

@ Observation (x)
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ISA: estimated sources using HSIC, ambiguity

e Estimated sources (

BEOADNY
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ISA: estimated sources using HSIC, ambiguity

e Estimated sources (

RLUO4DN

@ Performance ( WA) amblgwty
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Conjecture: ISA separation theorem

@ ISA = ICA + permutation.
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Conjecture: ISA separation theorem

e ISA = ICA + permutation. I-TSI\C(é‘,-,s?J-). Here: dim(s™) = 3.
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Conjecture: ISA separation theorem

e ISA = ICA + permutation. I-TSI\C(§,-,§J-). Here: dim(s™) = 3.

Zoltdn Szabé Dimensionality Reduction



Conjecture: ISA separation theorem

e ISA = ICA + permutation. I-TSI\C(§,-,§J-). Here: dim(s™) = 3.

@ Basis of the state-of-the-art ISA solvers.
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Conjecture: ISA separation theorem

e ISA = ICA + permutation. I-TSI\C(§,-,§J-). Here: dim(s™) = 3.

@ Basis of the state-of-the-art ISA solvers.
o Sufficient conditions:
e s™: spherical.
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ISA separation theorem

For dim(s™) = 2: less is sufficient.

= T Vs »,"ﬁr\.
' p Rw‘i\ N . ( » S \
0s| / \\ N ()
[ “r/.\ ,//’\
o} e
\ o — \ 1
ﬁzw \ /
-0} \ \ / ~\
\Riy )
R e . )
4 05 ) 05 1 - 5

Invariance to

@ 90° rotation: f(u1, up) = f(—up, 1) = f(—uw1, —u2) = f(u2, —un).
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ISA separation theorem

For dim(s™) = 2: less is sufficient.

P G o ! ~ Loy
SN (» e ) / (e 9. )
05} / \ \ (N 2y (NG )7 e )
[ \q - g -
0 “ 3 C 0
05 ﬁzw \\ "/‘ 05 "
h \ s/ ( A COTEE ax 7 e
D L ee .) ) ) W)
=5 o o5 1 St - . L N

Invariance to

@ 90° rotation: f(u1, up) = f(—up, 1) = f(—uw1, —u2) = f(u2, —un).
e permutation and sign: f(Zu1, tup) = f(Lup, tuy).
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ISA separation theorem

For dim(s™) = 2: less is sufficient.

L (’: =N .r"“‘s
o/ ) By e
v" “‘v/ " \ (.
ol //4\;‘/— [ - -
- / - S
05} \ \ / . 05) \ [\ . .
\ e ( A () " SN raN e
D e @}) Ly Lo 8%)

4 05 0 05 1 R
Invariance to
@ 90° rotation: f(u1, up) = f(—up, 1) = f(—uw1, —u2) = f(u2, —un).
@ permutation and sign: f(tu1, tu) = f(tu, +u1).
o [P-spherical: f(uy,up) = h (X5 |uilP) (p>0).
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HSIC: view-1

Idea: Py, — C,y.

@ Covariance matrix

Gy =By | (x— Ex) (y ~ Ey)] |
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HSIC: view-1

Idea: Py, — C,y.

@ Covariance matrix

Co = By | (x—Ex) (y —=Ey) ],

S= ”CXyHF
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HSIC: view-1

Idea: Py, — C,y.

@ Covariance matrix

Co = By | (x—Ex) (y —=Ey) ],

?
S =[Colle 20
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HSIC: view-1

Idea: Py, — C,y.

@ Covariance matrix

Co = By | (x—Ex) (y —=Ey) ],

S=|Cylg 20 < linear dependence.
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HSIC: view-1

Idea: Py, — C,y.

o Covariance matrix
Co = Exy [(x—Ex) (v —E)7 |,
S=|Cylg 20 < linear dependence.

@ Covariance operator: take features of x and y

Co =Exy| (0(x) —Exp(x)) @(W(y) —Eydb(y)) ]

centering in feature space
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HSIC: view-1

Idea: Py, — C,y.

o Covariance matrix
Co = Exy [(x—Ex) (v —E)7 |,
S=|Cylg 20 < linear dependence.

@ Covariance operator: take features of x and y

Co =Exy| (0(x) —Exp(x)) @(@(y) —Eyp(y)) ],
centering in feature space

S = |Gy, s = HSIC(P,).

We capture | non-linear dependencies via ¢, 1! J
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HSIC: view-2

@ Independence: P,, = P, ®P,.

e How do we check this equality?

e How can distributions be represented?
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Representations of distributions:

@ Given: 2 Gaussians with different means.

@ Solution: t-test.

Two Gaussian variables: different means
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Representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.

@ ldea: look at the 2nd-order features of RVs.

Two Gaussian variables: different variances

0.4 =
—Q
0.3
Bo02
0.1
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Representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.
@ ldea: look at the 2nd-order features of RVs.
e p(x) = x?> = difference in EX2.

2
Two Gaussian variables: different variances . Pdf-s of X

0.4

—p | ‘ —p
—a 12 —aqj

0.3 1l
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Representations of distributions:

@ Setup: a Gaussian and a Laplacian distribution.
@ Challenge: their means and variances are the same.

@ Idea: look at higher-order features.

Gaussian & Laplacian variables
0.7

0.5¢
0.4f

pdf

0.3f
0.2f
0.1f

©(x) = e'X): [characteristic function, X = R¢. J
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Distribution representation via functions

P pp = {5 o(x)dP(x) .
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Distribution representation via functions

P pp = {5 o(x)dP(x) .

o Cdf:

P Fp(z) = Ex pX(—c0,2)(%)-
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Distribution representation via functions

P pp = {5 o(x)dP(x) .

o Cdf:

P Fp(z) = Ex pX(—c0,2)(%)-

@ Characteristic function:

P cp(z) = J e/ @X dP(x).
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Distribution representation via functions

P pp = {5 o(x)dP(x) .

o Cdf:

P Fp(z) = Ex pX(—c0,2)(%)-

@ Characteristic function:
P cp(z) = J e/ @X dP(x).
@ Moment generating function:

P — Mp(z) = Je<27X>dIP> (x).
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Distribution representation via functions

P pp = {5 o(x)dP(x) .

o Cdf:

P — Fp(z) = ExapX(—c0,z)(X)-

@ Characteristic function:
P cp(z) = J e/ @X dP(x).

@ Moment generating function:

P — Mp(z) = Je<zvx>dIP> (x).

©: on any kernel-endowed domain! ¢(x) := k(-, x), pup € Hy.
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@ Mean embedding:

pri= | o0 dP()
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@ Mean embedding:

Up 1= J o(x) dP(x) € Hy.
X~
k(-,x)

@ Maximum mean discrepancy:
MMDy (P, Q) := [|pk(P) — 1k (Q)]lae
Recall: <uk(]f”),uk(@)>g{k
7 >
e W [
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@ Mean embedding:

pp = J o(x) dP(x) € Hy.
X S——
k('vx)

@ Maximum mean discrepancy:
MMD (P, Q) := [k () = 11 (Q@)l 3¢,
Recall: (pui(P), 1k (Q))ge,
- - p
Dyt o W |02, S

o Hilbert-Schmidt independence criterion, k = @M_, km:

HSIC, (P) := MMDj (P,@QLW,,,) .
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MMD =<, HSIC

MMD with k = @Y _ k.,

M
k (X,x’) = H Km (xm,x,’n),

m=1

HSIC, (P) = MMD, (]P’, @,’ﬂzlpm) .
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MMD £, HSIC

MMD with k = @Y _ k.,

M
1_[ km va m Y
m=1

HSIC, (P) = MMD, (P M P, )

Applications :

@ blind source separation,
o feature selection, post selection inference,
@ independence testing, causal inference.
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MMD £, HSIC

MMD with k = @Y _ k.,

M
1_[ km va m Y
m=1

HSIC, (P) = MMD, (P M P, )

Applications :

@ blind source separation,
o feature selection, post selection inference,
@ independence testing, causal inference.

The 2 views are equivalent; we estimated HSIC empirically.
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Mean embedding, MMD: [applications

Applications:

@ two-sample testing,

@ domain adaptation, -generalization,
@ kernel Bayesian inference,
°

approximate Bayesian computation, probabilistic
programming,

model criticism, goodness-of-fit,
@ distribution classification, distribution regression,

@ topological data analysis.
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Critical in applications

o MMD((P,Q) := |pk(P) — 1k (Q) |5, a metric? In this case k
is called characteristic.

@ HSIC(P) an independence measure?
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Critical in applications

o MMD((P,Q) := |pk(P) — 1k (Q) |5, a metric? In this case k
is called characteristic.

@ HSIC(P) an independence measure?

MMD: for continuous, bounded, shift-invariant k

@ By the Bochner’s theorem:

k(x,x') = ko(x — x') = J e/ X @ N (w).
Rd
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Critical in applications

o MMD((P,Q) := |pk(P) — 1k (Q) |5, a metric? In this case k
is called characteristic.

@ HSIC(P) an independence measure?

MMD: for continuous, bounded, shift-invariant k

@ By the Bochner’s theorem:

k(x,x') = ko(x — x') = J e/ X @ N (w).
Rd

@ = MMD in terms of characteristic functions:

MMD? (P, Q) = [ — cgl72(s, -
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Simple description for |shift=invariant kernels on IR

k is characteristic iff. supp(\) = RY.
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Simple description for |shift=invariant kernels on IR

k is characteristic iff. supp(\) = RY.

Example on R:

kernel name kg l?o(w) supp(kAo)
. _ 2 2w

Gaussian e 22 ge 2 R

Laplacian el \/gﬁ R

Sinc w \/?X[—mo’](w) [_U’J]
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Simple description for |shift=invariant kernels on IR

k is characteristic iff. supp(\) = RY.

Example on R:

kernel name kg l?o(w) supp(kAo)
. _ 2 2w

Gaussian e 22 ge 2 R

Laplacian el \/gﬁ R

Sinc w \/?X[—a,o’](w) [_U’J]

Note:
@ universality = characteristic.
@ k = ®mkm: characteristic = HSIC: v'. How about in terms

of kp-s?
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Description when HSIC is 'valid’

Proposition (characteristic property)

o @Y km: characteristic = (kn)M_, are characteristic.
° = [[Xm| = 2, km(x,x") = 205 50 — 1]
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Description when HSIC is 'valid’

Proposition (characteristic property)

o @Y km: characteristic = (kn)M_, are characteristic.
° = [[Xm| = 2, km(x,x") = 205 50 — 1]

Proposition (Z-characteristic property)
@ ki, ko: characteristic = ki ® ko: Z-characteristic.
° <: for VM = 2.

@ ki, ko, k3: characteristic = ®?n:1km: T-characteristic [Ex].
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Description when HSIC is 'valid’
Proposition (characteristic property)

o @Y km: characteristic = (kn)M_, are characteristic.
° = [[Xm| = 2, km(x,x") = 205 50 — 1]

Proposition (Z-characteristic property)
@ ki, ko: characteristic = ki ® ko: Z-characteristic.
° <: for VM = 2.

@ ki, ko, k3: characteristic = ®?n:1km: T-characteristic [Ex].

Proposition (X, = R k,.: continuous, shift-invariant, bounded)

(km)M_,-s are characteristic < @Y_, km: I-characteristic <
®n’\le km: characteristic.
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Description when HSIC is 'valid’

Proposition (characteristic property)

o @Y km: characteristic = (kn)M_, are characteristic.
° = [[Xm| = 2, km(x,x") = 205 50 — 1]

Proposition (Z-characteristic property)
@ ki, ko: characteristic = ki ® ko: Z-characteristic.
° <: for VM = 2.

@ ki, ko, k3: characteristic = ®?n:1km: T-characteristic [Ex].

Proposition (X, = R k,.: continuous, shift-invariant, bounded)

(km)M_,-s are characteristic < @Y_, km: I-characteristic <
®M=1 km: characteristic.

Proposition (universality)

QM _ k: universal < (km)M_, are universal.
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Other dimensionality reduction techniques
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Other non-linear methods

Goal: {x;}" ; = RP N {x;}7_, = RY, retaining the geometry of {x;}7_;.
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Multidimensional scaling (MDS)

o Given: D = [dj]},_, distance matrix, djj = [x; — x;]],.
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Multidimensional scaling (MDS)

o Given: D = [dj]},_, distance matrix, djj = [x; — x;]],.
@ Objective function:
. 2 )
min > ( — |xi = xj| ) , st X = Wx;, [w;|5 = 1,Vi.
Iy

preserve (Iarge) distances
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Multidimensional scaling (MDS)

o Given: D = [dj]},_, distance matrix, djj = [x; — x;]],.

@ Objective function:

m|n ( ||x — Xk H ) , s.t. xi = Wx;, Hw,||§ =1,Vi.

ij -
preserve (Iarge) distances

e Solution: G = X'X = [(xi,x;)]7;,—y Gram matrix.

@ Top d eigenvalues, eigenvectors of G: \;, v; (i =1,...,d).
Q x; = VA,
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Idea: For curved manifold let us rely on neighborhoods.
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@ Idea: For curved manifold let us rely on neighborhoods.
@ Steps:

(4] cAlgeodesic(x,-,xj) = shortest path of x; and x; on kNN graph.
(Dijkstra/Floyd's alg.)
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@ Idea: For curved manifold let us rely on neighborhoods.
@ Steps:
Qo cAlgeodesic(x,-,xj) = shortest path of x; and x; on kNN graph.
(Dijkstra/Floyd's alg.)

N

Q@ D:= [dgeodesic(xhxj)]-
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@ Idea: For curved manifold let us rely on neighborhoods.
@ Steps:
Qo cAlgeodesic(x,-,xj) = shortest path of x; and x; on kNN graph.
(Dijkstra/Floyd's alg.)

N

Q@ D:= [dgeodesic(xhxj)]-
@ Call MDS on D.
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@ Idea: For curved manifold let us rely on neighborhoods.
@ Steps:
Qo cAlgeodesic(x,-,xj) = shortest path of x; and x; on kNN graph.
(Dijkstra/Floyd's alg.)
Q@ D:= [3geodesic(xi>xj)]-
@ Call MDS on D.

@ It can be slow.
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Sammon mapping = MDS & local distance preservation

@ Recall (MDS):

. 2 2 :
n)](l/nZ (dg —[x; - Xj”z) , st X = Wx;, [w;[5 = 1,Vi.
I’J . J/

preserve (large) distances

@ MDS cares mostly about large distances.

@ Sammon mapping: weights := di
ij
/ / 2
1 (di' = Ixi - Xj”z)
min
X’ Zi;éj dU i) dU
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MVU = MDS & explicit unfolding

G := kNN graph of {x;}7_;.
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MVU = MDS & explicit unfolding

G := kNN graph of {x;}"_;. Objective:

max ) [ = x5 st xi =[5 = [xi —xil3 (i) 6

)
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MVU = MDS & explicit unfolding

G := kNN graph of {x;}"_;. Objective:

max ) [ = x5 st xi =[5 = [xi —xil3 (i) 6

)

Leads to SDP: linear objective on positive-semidefinite matrices.
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Locally linear embedding (LLE)

@ Assumption: local linearity.
@ Steps:
@ G:=kNN graph = x; := j NN of x;.
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Locally linear embedding (LLE)

@ Assumption: local linearity.
@ Steps:
@ G:=kNN graph = x; := j NN of x;.

k
X; — Zj:l W,'J'X,'j

Q w; :=argmin, . Objective:
2

X; _EWU

local linearity preserving

mln

, 2
s.t. Hx (k) H =1,Vk.
2
i —_—
to avoid X’ = 0
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Locally linear embedding (LLE)

@ Assumption: local linearity.
@ Steps:
@ G:=kNN graph = x; := j NN of x;.

@ w; = argmin,, |x; — Zj;l WX | - Objective:
‘W

m|n X! —EWU s.t. Hx H2 =1,Vk.

| S —

1

to avoid X' = 0
local linearity preserving

e Solution: from eigensystem of (I —W)"(1-W), W = 1 —xg.
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Manifold embedding: demo'

MDS: 2.2242m

PCA: 0.425s

fTodd Wittman

-0 o 10

0 002 004
LLE: 2.578s
2
1 ..
a
# A
-2 0 2
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Manifold embedding: demo'

MDS: 2.2242m

PCA: 0.425s

LLE: 2.5785
“ 2
S Sey E 1
o # ..
0 2 . 'a,,:‘(_ : a
-5&'.":;3 .
0 SR L
40 20 0 20 2 0 2

MDS, ISOMAP: slow. MDS, PCA: fail to unroll (no manifold info).
TTodd Wittman
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Techniques:
o PCA, KPCA: maximum variance projection.

o CCA, KCCA: maximally dependent projection.
e HSIC:

e analytical KCCA alternative,
e norm of covariance operator.

MDS: (large) distance retaining.
ISOMAP: geodesic distance preserving.
Sammon mapping: distance retaining (including small ones).

MVU: kNN distance preserving & explicit unrolling.

e 6 66 o6 o

LLE: local linearity preserving.
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Applications:
@ image compression & registration,
@ non-linear feature selection,
@ media annotation, translation testing,
@ cocktail party (ISA).

Zoltan Szabd Dimensionality Reduction



Thank you for the attention!
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Why do we get i

@ A e R™": symmetric matrix.

@ Objective:

max Tr (VTAV> .
VeRMxd:\TV=|
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Why do we get i

@ A e R™": symmetric matrix.

@ Objective:

max Tr (VTAV> .
VeRMxd:\TV=|

@ Optimal solution:

e V* = d leading eigenvectors of A.
e uniqueness up to subspace.

Zoltan Szabd Dimensionality Reduction



Why do we get 'generalized eigenvalue problems ’

@ A e R™": symmetric matrix. B € R™": positive definite.

@ Objective:

max Tr (VTAV> .
VeR*d:VTBV=I
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Why do we get 'generalized eigenvalue problems ’

@ A e R™": symmetric matrix. B € R™": positive definite.

@ Objective:

max Tr (VTAV> .
VeR*d:VTBV=I

@ Solution: V* = d leading (B-orthogonal) eigenvectors of the
generalized eigenvalue problem

Ax = \Bx.
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