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o Samples: {(x;,yi)}_;. Goal: f(x;)~y;, find f € H.
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@ Distribution regression:

@ Xx;-s are distributions,
o available only through samples: {x; o} ..

@ = Training examples: labelled bags.
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Example: aerosol prediction from satellite images

Bag := pixels of a multispectral satellite image over an area.
Label of a bag := aerosol value.

©

Relevance: climate research.
Engineered methods [Wang et al., 2012]: 100 x RMSE = 7.5 — 8.5.
Using distribution regression?

© 6 ¢
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Wider context

o Context:

@ machine learning: multi-instance learning,
o statistics: point estimation tasks (without analytical formula).

@ Applications:
@ computer vision: image = collection of patch vectors,
o network analysis: group of people = bag of friendship graphs,
o natural language processing: corpus = bag of documents,
o time-series modelling: user = set of trial time-series.
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Several algorithmic approaches

© Parametric fit: Gaussian, MOG, exp. family
[Jebara et al., 2004, Wang et al., 2009, Nielsen and Nock, 2012].

@ Kernelized Gaussian measures:
[Jebara et al., 2004, Zhou and Chellappa, 2006].

© (Positive definite) kernels:
[Cuturi et al., 2005, Martins et al., 2009, Hein and Bousquet, 2005].

© Divergence measures (KL, Rényi, Tsallis): [Pdczos et al., 2011].

© Set metrics: Hausdorff metric [Edgar, 1995]; variants
[Wang and Zucker, 2000, Wu et al., 2010, Zhang and Zhou, 2009,
Chen and Wu, 2012].
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Theoretical guarantee?

@ MIL dates back to [Haussler, 1999, Gartner et al., 2002].

S

@ Sensible methods in regression: require density estimation
[Pdczos et al., 2013, Oliva et al., 2014, Reddi and Péczos, 2014]
+ assumptions:

© compact Euclidean domain.
© output = R ([Oliva et al., 2013] allows distribution).
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Kernel, RKHS

@ k:DxD — R kernel on D, if

@ Jdp: D — H(ilbert space) feature map,
° k(a,b) = (¢p(a), p(b))y (Va, b € D).
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Kernel, RKHS

@ k:DxD — R kernel on D, if
@ Jo : D — H(ilbert space) feature map,
° k(a,b) = (¢(a), p(b))y (Va,b € D).

o Kernel examples: D =R9 (p >0, 6 > 0)
o k(a,b) = ({a, b) + 6)": polynomial,
o k(a,b) = e~ lla=bl2/(26%). Gaussian,
o k(a,b) = e ?12=bli: Laplacian.

@ In the H = H(k) RKHS (3!): ¢(u) = k(-, u).

~— —
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Kernel: example domains (D)

o Euclidean space: D = RY.

o Graphs, texts, time series, dynamical systems.

@ Distributions!
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Problem formulation (Y = R)

@ Given:

o labelled bags 2 = {(%;,yi)}'_,.

o i™bag: % = {xi1,...,xin} e P (D), yi € R.
@ Task: find a P (D) — R mapping based on 2.
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Problem formulation (Y = R)

o Given:

o labelled bags 2 = {(%;,yi)}'_,.
) ith bag: )?,' = {X,'71, A ,X,'JV} "f’\'Jd' X € fP(D), yi € R.
@ Task: find a P (D) — R mapping based on 2.

@ Construction: distribution embedding (1)

P (D) “= Y x ¢ H = H(K)
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Problem formulation (Y = R)

o Given:

o labelled bags 2 = {(%;,yi)}'_,.
) ith bag: )?,' = {X,'71, A ,X,'JV} "f’\'Jd' X € fP(D), yi € R.
@ Task: find a P (D) — R mapping based on 2.

@ Construction: distribution embedding (yux) + ridge regression

FEH=0(K)
D

P (D) “= Y x ¢ H = H(K) R.
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Problem formulation (Y = R)

o Given:

o labelled bags 2 = {(%;,yi)}'_,.
) ith bag: )?,' = {X,'71, A ,X,'JV} "f’\'Jd' X € fP(D), yi € R.
@ Task: find a P (D) — R mapping based on 2.

@ Construction: distribution embedding (yux) + ridge regression

FEH=0(K)
D

P (D) “= Y x ¢ H = H(K) R.

@ Our goal: risk bound compared to the regression function

folix) = /Rydp(ylux)-
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Goal in details

@ Expected risk:

R [f] = IE(x,y) |f(,ux) - y|2 .
@ Contribution: analysis of the excess risk

E(K,£) = R[] - R[]
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Goal in details

@ Expected risk:

R [f] = IE(x,y) |f(,ux) - y|2 .
@ Contribution: analysis of the excess risk

E(FN ) = R[] — RIL] < g(£, NV, ) = 0 and rates,
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Goal in details

@ Expected risk:

R [f] = IE(x,y) |f(,ux) - y|2 .
@ Contribution: analysis of the excess risk

E(FN ) = R[] — RIL] < g(£, NV, ) = 0 and rates,

4
o1
B =argmin g 3 |F(u) — il + MFIe. (A >0)
€ i=1
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Goal in details

@ Expected risk:

R [f] = IE(x,y) |f(,ux) - y|2 .
@ Contribution: analysis of the excess risk

£ f,) = R[£] = RIf,] < g(t, N, \) = 0 and rates,
)4
1
£ =argmin ;> F(us) — yil? + AlIFIG. (1> 0).
fel )

@ We consider two settings:
Q well-specified case: f, € I,
© misspecified case: f, € L2 \H.
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Step-1: mean embedding

@ k:D x D — R kernel; canonical feature map: ¢(u) = k(-, u).
@ Mean embedding of a distribution x, X; € P(D):

i :/Dk(-,u)dx(u) € H(k),

) = L3 ko
s, :/Dk(~,u)dx,(u)— N;k(,x,m).
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Step-1: mean embedding

@ k:D x D — R kernel; canonical feature map: ¢(u) = k(-, u).
@ Mean embedding of a distribution x, X; € P(D):

i :/ K(-, u)dx(u) € H(k),
D L
s, = /D K 0)d%(o) = © 2 k(s i),
@ Linear K = set kernel:

1
K(/’L)A(,-a,uf(j) = </’L>A<i7M)A<j>H = m Z k(X/',”?XJ.,m)‘
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Step-1: mean embedding

@ k:D x D — R kernel; canonical feature map: ¢(u) = k(, u).
@ Mean embedding of a distribution x, %; € P(D):

e = [ KC0)dx() € H(K)
D 1 N
ps; = /@ k(- u)d%(u) = N nz_; k(- Xi,n)-
@ Nonlinear K example:

2
ll g i I

K(”%?N%) =e 2
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Step-2: ridge regression (analytical solution)

o Given:
@ training sample: 2,
o test distribution: t.

@ Prediction on t:

(£ 0 u)(2) = k(K + A1) " ya; vl (1)
K = [K(ns, s,)] € B, @)
k= [K(qu?ut)? ) K(Nﬁzﬂ Nt)] e RM, (3)
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Blanket assumptions: both settings

@ D: separable, topological domain.
o k:

@ bounded: sup,cp k(u, u) < By € (0,00),
@ continuous.

@ K: bounded; Holder continuous: 3L > 0, h € (0, 1] such that

1K (s 11a) = KCoin)llge < Lllpta — ol -

@ y: bounded.
o X =pu(P(D)) € B(H).
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Well-specified case: performance guarantee

o Difficulty of the task:
o f, is 'c-smooth’,
e 'b-decaying covariance operator’.
@ Contribution: If £ > )\_%_1, then with high probability
log"(¢) 1 1
AC 4+
Nh )3 TA 022\ T 2\

g(t,N,\)

E(Rf,) <
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Well-specified case: performance guarantee

o Difficulty of the task:
o f, is 'c-smooth’,
e 'b-decaying covariance operator’.

@ Contribution: If £ > )\_%_1, then with high probability

A log"(£) 1 1
E(6 ) <, Tme ;AC et T (4)

/ g(0,N,)\)

X c-smoothness
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Well-specified case: example

Assume
@ bis 'large’ (1/b =0, 'small’ effective input dimension),
@ h=1 (K: Lipschitz),
o (1]=[2]in (4) = X; £=N? (a>0),
@ t = /N: total number of samples processed.
Then
Q c =2 ('smooth’ £,): E(Ff,) ~ £77 — faster convergence,

Q c =1 ('non-smooth’ £,): (£, f,) ~ £75 — slower.
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Misspecified case: performance guarantee

o Difficulty of the task:
o f,is 's-smooth’ (s > 0).
o Contribution:
1
2 .
o If L7, is separable and — </,
@ then with high probability

3 min(1,s
E(R 1) < Ioghz(i) + L + E 4+ Amin(L;s)
Nz )2 VI pYVai
g(4,N,\)
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Misspecified case: performance guarantee

@ Difficulty of the task:
@ f, is 's-smooth’ (s > 0).
o Contribution: If
1
2 .
o L7 isseparable and — </,
o then with high probability

h 1 . .
og2 (/) A/ Amin(L,s) min(1,s)
Vs +——//\; I/ + A . (5)

< / 2(0,N,0)

Xi s-smoothness

5( AA) fp) <

z
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Misspecified case: example

Assume
@ s>1, h=1 (K: Lipschitz),
o (1]=(3)in(5) = \; £=N?(a>0)
@ t = {N: total number of samples processed.
Then
© s =1 ('non-smooth’ f,): (£, f,) ~ t7%% — slower,

Q s — oo ('smooth’ f,): E(K)f,) ~ 705 — faster convergence.
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Notes on the assumptions: Jp, X € B(H)

@ k: bounded, continuous =

o p: (P(D),B(rw)) = (H,B(H)) measurable.

e p measurable, X € B(H) = p on X x Y: well-defined.
o If (*) := D is compact metric, k is universal, then

@ L is continuous, and
e X € B(H).
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Notes on the assumptions: Holder K examples

In case of (*):

Ke Ke Kc
[ llra—rpll -1
T T (L4 s — el /)
h=1 h=1 h=1
Kt Ki
9\t 2 2 -3
(1 = aollfs) — (la = mollly +62)
h=15(0<2) h=1

Functions of ||ps — p||y = computation: similar to set kernel.
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Notes on the assumptions: misspecified case

Lf)X: separable < measure space with d(A, B) = px(A A B) is so
[Thomson et al., 2008].
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Vector-valued output: Y = separable Hilbert space

@ Objective function:
1
f = e g}in 7 > I (us) = villy + MIFl5, (A >0).
€ i=1

® K(fta, pp) € L(Y):

@ operator-valued kernel,
o vector-valued RKHS.
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Vector-valued output: analytical solution

Prediction on a new test distribution (t):

K = [K (s, p3)] € £(Y)™, (7)
k= [K(M9<17Mt)7"'7K(M9</7Nt)] E’C(Y)IXI' (8)

Specifically: Y =R = L(Y)=R; Y = RY = L(Y) = RY.
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Vector-valued output: K assumptions

Boundedness and Holder continuity of K:
© Boundedness:

K llis = Tr (K, Ku) < Bk € (0,00), (a5 € X).
@ Holder continuity: 3L > 0, h € (0, 1] such that

(| Ky — Kub”L(yg{) < Lilpa— NbHIfzh V(pa; ) € X x X.
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Demo

@ Supervised entropy learning:
RMSE: MERR=0.75, DFDR=2.02

2 - :
‘ y(:m m-u\\\ 4
IR . &
2 \‘. ‘./ w3 -
S o \ . 2 :
g \ / —true E . '
{ MERR 2
1 + DFDR :
1B 4

-2
1 2 3 MERR DFDR
rotation angle (B)

@ Aerosol prediction from satellite images:
@ State-of-the-art baseline: 7.5 — 8.5 (+£0.1 — 0.6).
o MERR: 7.81 (£1.64).
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@ Problem: distribution regression.

@ Literature: large number of heuristics.
@ Contribution:

@ a simple ridge solution is consistent,
@ specifically, the set kernel is so (15-year-old open question).

@ Simplified version [Y =R, f, € H]:
o AISTATS-2015 (oral).
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Summary — continued

@ Code in ITE, extended analysis (submitted to JMLR):

https://bitbucket.org/szzoli/ite/
http://arxiv.org/abs/1411.2066.

@ Closely related research directions (Bayesian world):

¢ oo-dimensional exp. family fitting,
@ just-in-time kernel EP: accepted at UAI-2015.
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https://bitbucket.org/szzoli/ite/
http://arxiv.org/abs/1411.2066

Thank you for the attention!
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Appendix: contents

Topological definitions, separability.
Prior definitions (p).

Universal kernel: definition, examples.
Vector-valued RKHS.

Demos: further details.

Hausdorff metric.

Weak topology on P(D).

¢ © ¢ ¢ ¢ ¢ ¢
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Topological space, open sets

o Given: D # () set.
o 7 C 20 is called a topology on D if:

Qlber, Der.
@ Finite intersection: O1 €7, O €7 = 01N0O, € T.
© Arbitrary union: O;e 7 (i €l) = Ui, 0; € 7.

Then, (D, 7) is called a topological space; O € T: open sets.
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Closed-, compact set, closure, dense subset, separability

Given: (D,7). ACDis
@ closed if D\A € 7 (i.e., its complement is open),

@ compact if for any family (O;);c; of open sets with
A CUjgsO;, dir, ..., in € I with A C Uf:lol'j'
Closure of AC D:
A= N C. (9)

ACC closed in D
@ ACDis denseif A=D.

@ (D, ) is separable if 3 countable, dense subset of D.
Counterexample: ¢>°/L>.
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Prior (well-specified case): p € P(b, c)

@ Let the T : H — H covariance operator be

T:/XK(.,MQ)K*(-,ua)dpx(ua)

with eigenvalues t, (n=1,2,...).
@ Assumption: p € P(b, c) = set of distributions on X x Y
o a<nbt,<p (Yn>1;a>0,8>0),
o Jg € H such that f, = T°= g with ||g||2. < R (R > 0),
where b € (1,00), ¢ € [1,2].

@ Intuition: 1/b — effective input dimension, ¢ — smoothness of
f,.
P
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Prior: misspecified case

Let T be defined as:
Si:H— Lf)X,

St L, =90 (Ske)m) = | Klnuwe)(ue)dpx ()

T=SikSk:13, =12 .

Our range space assumption on p: f, € Im (7’5) for some s > 0.

Szabé et al. Regression on Probability Measures



Universal kernel: definition

Assume
@ D: compact, metric,
@ k:D xD — R kernel is continuous.
Then
@ Def-1: k is universal if H(k) is dense in (C(D), ||-||)-
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Universal kernel: definition

Assume
@ D: compact, metric,
@ k:D xD — R kernel is continuous.
Then
@ Def-1: k is universal if H(k) is dense in (C(D), ||-||)-
o Def-2: kis
o characteristic, if pu: P(D) — H(k) is injective.
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Universal kernel: definition

Assume
@ D: compact, metric,
@ k:D xD — R kernel is continuous.
Then
@ Def-1: k is universal if H(k) is dense in (C(D), ||-||)-
o Def-2: kis

o characteristic, if pu: P(D) — H(k) is injective.
@ universal, if p is injective on the finite signed measures of D.
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Universal kernel: examples

On compact subsets of RY

2
lla—=bll5

k(a,b)=e 22> , (0 >0)
k(a, b) = e~?lla=bl (5 > 0)
k(a, b) = %2 (5> 0), or more generally

k(a,b) = f({(a, b)), f(x)= Zanx” (Va, > 0).
n=0
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Vector-valued RKHS: H = H(K)

Definition:
o A H C YX Hilbert space of functions is RKHS if

Apy  FeH =y, f(ux))y €R (10)

is continuous for Vu, € X,y € Y.

@ = The evaluation functional is continuous in every direction.
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Vector-valued RKHS: H{ = H(K') — continued

@ Riesz representation theorem = JIK(ux|y)e H:

(v, fux))y = (K(pxly), flge - (VF € H). (11)
@ K(fx|y): linear, bounded in y = K(ux|y)= K, (y) with
K. € L(Y,H).
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Vector-valued RKHS: H{ = H(K') — continued

@ Riesz representation theorem = JIK(ux|y)e H:

s f(ux))y = (K(pxly) flge - (VF€H). (1)
@ K(fx|y): linear, bounded in y = K(ux|y)= K, (y) with
K. € L(Y,H).
@ K construction:
(Nx;ﬂt)(y) ( uty)(:uX) (VI’I’X7/’I‘t € X)? I.€
K pe)(y) = Kuey, (12)
H(K) =3pan{ K.y : pe € X,y € Y}. (13)
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Vector-valued RKHS: H{ = H(K') — continued

@ Riesz representation theorem = JIK(ux|y)e H:

(v, f(x))y = (K(pxly) f)ae - (VF € 3). (11)

@ K(fx|y): linear, bounded in y = K(ux|y)= K, (y) with
K. € L(Y,H).

@ K construction:

(Nx;ﬂt)(y) ( uty)(:uX) (VI’I’X7/’I‘t € X)? I.€
K pe)(y) = Kuey, (12)
H(K) =3pan{ K.y : pe € X,y € Y}. (13)

@ Shortly: K(ux, pt) € L(Y) generalizes k(u,v) € R.

Szabé et al. Regression on Probability Measures



Vector-valued RKHS — examples: Y = R?

Q Ki: X xX —Rkemels (i =1,...,d). Diagonal kernel:

K(/’La) /,Lb) = diag(Kl(:uav Mb), sy Kd(:uav ,ub)) (]‘4)
@ Combination of D; diagonal kernels [Dj(tta, p1p) € R™",
Aj € R™:
m
K(pas 116) = D A Dj(ttas 116)Aj- (15)
j=1
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Demo-1: supervised entropy learning

@ Problem: learn the entropy of the 1% coo. of (rotated)
Gaussians.

@ Baseline: kernel smoothing based distribution regression
(applying density estimation) =: DFDR.

@ Performance: RMSE boxplot over 25 random experiments.

@ Experience:

@ more precise than the only theoretically justified method,
@ by avoiding density estimation.
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Demo-2: aerosol prediction — selected kernels

Kernel definitions (p = 2, 3):

el _ lla=bl
kG(a) b) = e 262 , ke(37 b) =e 202 , (16)

L 1
k a7b - k a,b = 17
c(a.b)= 1+ ||a b|| «(2,b) 1+ |a— ng (17)

P\ ) ) ’ ||a_b||§_|_07
1
k,‘(a, b) = , (19)
la— b|3 + 62
b V3lla—b]
k3 (a,b) = ( flla ||2> ot 20)
ﬁlla— Bll, , 5lla—bl3) _vsia—si

kag(a’ b) = <1 + 0 + 302 e o . (21)
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Existing methods: set metric based algorithms

@ Hausdorff metric [Edgar, 1995]:

du(X,Y) = max{sup inf d(x,y), sup inf d(x, y)} (22)
xeXYEY yey xeX

sup inf dx,y)
) eV :

TEX WS

sup mf dlx, y)
yey o

@ Metric on compact sets of metric spaces [(M, d); X,Y C M].
@ 'Slight’ problem: highly sensitive to outliers.
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Weak topology on P(D)

Def.: It is the weakest topology such that the
Lp: (P(D),7w) = R,
Ly(x) = / h(u)dx(u)
D
mapping is continuous for all h € Cp(D), where

Cp(D) = {(D,7) — R bounded, continuous functions}.
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