Regression on Probability Measures: A Simple and Consistent Algorithm

Zoltán Szabó (Gatsby Unit, UCL)

Joint work with

- Bharath K. Sriperumbudur (Department of Statistics, PSU),
- Barnabás Póczos (ML Department, CMU),
- Arthur Gretton (Gatsby Unit, UCL)

CRiSM Seminars
Department of Statistics, University of Warwick

May 29, 2015

- Samples: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{\prime}$. Goal: $f\left(x_{i}\right) \approx y_{i}$, find $f \in \mathcal{H}$.

- Distribution regression:
- x_{i}-s are distributions,
- available only through samples: $\left\{x_{i, n}\right\}_{n=1}^{N_{i}}$.
- \Rightarrow Training examples: labelled bags.

Example: aerosol prediction from satellite images

- Bag $:=$ pixels of a multispectral satellite image over an area.
- Label of a bag := aerosol value.

- Relevance: climate research.
- Engineered methods [Wang et al., 2012]: $100 \times$ RMSE $=7.5-8.5$.
- Using distribution regression?

Wider context

- Context:
- machine learning: multi-instance learning,
- statistics: point estimation tasks (without analytical formula).

- Applications:
- computer vision: image $=$ collection of patch vectors,
- network analysis: group of people $=$ bag of friendship graphs,
- natural language processing: corpus = bag of documents,
- time-series modelling: user $=$ set of trial time-series.

Several algorithmic approaches

(1) Parametric fit: Gaussian, MOG, exp. family
[Jebara et al., 2004, Wang et al., 2009, Nielsen and Nock, 2012].
(2) Kernelized Gaussian measures:
[Jebara et al., 2004, Zhou and Chellappa, 2006].
(3) (Positive definite) kernels:
[Cuturi et al., 2005, Martins et al., 2009, Hein and Bousquet, 2005].
(9) Divergence measures (KL, Rényi, Tsallis): [Póczos et al., 2011].
(3) Set metrics: Hausdorff metric [Edgar, 1995]; variants
[Wang and Zucker, 2000, Wu et al., 2010, Zhang and Zhou, 2009, Chen and Wu, 2012].

Theoretical guarantee?

- MIL dates back to [Haussler, 1999, Gärtner et al., 2002].

- Sensible methods in regression: require density estimation [Póczos et al., 2013, Oliva et al., 2014, Reddi and Póczos, 2014] + assumptions:
(1) compact Euclidean domain.
(2) output $=\mathbb{R}$ ([Oliva et al., 2013] allows distribution).

Kernel, RKHS

- $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ kernel on \mathcal{D}, if
- $\exists \varphi: \mathcal{D} \rightarrow H$ (ilbert space) feature map,
- $k(a, b)=\langle\varphi(a), \varphi(b)\rangle_{H}(\forall a, b \in \mathcal{D})$.

Kernel, RKHS

- $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ kernel on \mathcal{D}, if
- $\exists \varphi: \mathcal{D} \rightarrow H$ (ilbert space) feature map,
- $k(a, b)=\langle\varphi(a), \varphi(b)\rangle_{H}(\forall a, b \in \mathcal{D})$.
- Kernel examples: $\mathcal{D}=\mathbb{R}^{d}(p>0, \theta>0)$
- $k(a, b)=(\langle a, b\rangle+\theta)^{p}$: polynomial,
- $k(a, b)=e^{-\|a-b\|_{2}^{2} /\left(2 \theta^{2}\right)}$: Gaussian,
- $k(a, b)=e^{-\theta\|a-b\|_{1}}:$ Laplacian.
- In the $H=H(k) \operatorname{RKHS}(\exists!): \varphi(u)=k(\cdot, u)$.

Kernel: example domains (D)

- Euclidean space: $\mathcal{D}=\mathbb{R}^{d}$.
- Graphs, texts, time series, dynamical systems.

- Distributions!

Problem formulation $(Y=\mathbb{R})$

- Given:
- labelled bags $\hat{\mathbf{z}}=\left\{\left(\hat{x}_{i}, y_{i}\right)\right\}_{i=1}^{\ell}$,
- $i^{\text {th }}$ bag: $\hat{x}_{i}=\left\{x_{i, 1}, \ldots, x_{i, N}\right\} \stackrel{i . i . d .}{\sim} x_{i} \in \mathcal{P}(\mathcal{D}), y_{i} \in \mathbb{R}$.
- Task: find a $\mathcal{P}(\mathcal{D}) \rightarrow \mathbb{R}$ mapping based on $\hat{\mathbf{z}}$.

Problem formulation $(Y=\mathbb{R})$

- Given:
- labelled bags $\hat{\mathbf{z}}=\left\{\left(\hat{x}_{i}, y_{i}\right)\right\}_{i=1}^{\ell}$,
- $i^{\text {th }}$ bag: $\hat{x}_{i}=\left\{x_{i, 1}, \ldots, x_{i, N}\right\} \stackrel{\text { i.i.d. }}{\sim} x_{i} \in \mathcal{P}(\mathcal{D}), y_{i} \in \mathbb{R}$.
- Task: find a $\mathcal{P}(\mathcal{D}) \rightarrow \mathbb{R}$ mapping based on $\hat{\mathbf{z}}$.
- Construction: distribution embedding $\left(\mu_{x}\right)$

$$
\mathcal{P}(\mathcal{D}) \xrightarrow{\mu=\mu(k)} X \subseteq H=H(k)
$$

Problem formulation $(Y=\mathbb{R})$

- Given:
- labelled bags $\hat{\mathbf{z}}=\left\{\left(\hat{x}_{i}, y_{i}\right)\right\}_{i=1}^{\ell}$,
- $i^{\text {th }}$ bag: $\hat{x}_{i}=\left\{x_{i, 1}, \ldots, x_{i, N}\right\} \stackrel{i . i . d .}{\sim} x_{i} \in \mathcal{P}(\mathcal{D}), y_{i} \in \mathbb{R}$.
- Task: find a $\mathcal{P}(\mathcal{D}) \rightarrow \mathbb{R}$ mapping based on $\hat{\mathbf{z}}$.
- Construction: distribution embedding $\left(\mu_{x}\right)+$ ridge regression

$$
\mathcal{P}(D) \xrightarrow{\mu=\mu(k)} X \subseteq H=H(k) \xrightarrow{f \in \mathcal{H}=\mathcal{H}(K)} \mathbb{R} .
$$

Problem formulation $(Y=\mathbb{R})$

- Given:
- labelled bags $\hat{\mathbf{z}}=\left\{\left(\hat{x}_{i}, y_{i}\right)\right\}_{i=1}^{\ell}$,
- $i^{\text {th }}$ bag: $\hat{x}_{i}=\left\{x_{i, 1}, \ldots, x_{i, N}\right\} \stackrel{i . i . d .}{\sim} x_{i} \in \mathcal{P}(\mathcal{D}), y_{i} \in \mathbb{R}$.
- Task: find a $\mathcal{P}(\mathcal{D}) \rightarrow \mathbb{R}$ mapping based on $\hat{\mathbf{z}}$.
- Construction: distribution embedding $\left(\mu_{x}\right)+$ ridge regression

$$
\mathcal{P}(\mathcal{D}) \xrightarrow{\mu=\mu(k)} X \subseteq H=H(k) \xrightarrow{f \in \mathcal{H}=\mathcal{H}(K)} \mathbb{R} .
$$

- Our goal: risk bound compared to the regression function

$$
f_{\rho}\left(\mu_{x}\right)=\int_{\mathbb{R}} y \mathrm{~d} \rho\left(y \mid \mu_{x}\right)
$$

- Expected risk:

$$
\mathcal{R}[f]=\mathbb{E}_{(x, y)}\left|f\left(\mu_{x}\right)-y\right|^{2}
$$

- Contribution: analysis of the excess risk

$$
\mathcal{E}\left(f_{\hat{\mathbf{z}}}^{\lambda}, f_{\rho}\right)=\mathcal{R}\left[f_{\hat{\mathbf{z}}}^{\lambda}\right]-\mathcal{R}\left[f_{\rho}\right]
$$

Goal in details

- Expected risk:

$$
\mathcal{R}[f]=\mathbb{E}_{(x, y)}\left|f\left(\mu_{x}\right)-y\right|^{2}
$$

- Contribution: analysis of the excess risk

$$
\mathcal{E}\left(f_{\hat{\mathbf{z}}}^{\lambda}, f_{\rho}\right)=\mathcal{R}\left[f_{\hat{\mathbf{z}}}^{\lambda}\right]-\mathcal{R}\left[f_{\rho}\right] \leq g(\ell, N, \lambda) \rightarrow 0 \text { and rates, }
$$

Goal in details

- Expected risk:

$$
\mathcal{R}[f]=\mathbb{E}_{(x, y)}\left|f\left(\mu_{x}\right)-y\right|^{2}
$$

- Contribution: analysis of the excess risk

$$
\begin{aligned}
\mathcal{E}\left(f_{\hat{\mathbf{z}}}^{\lambda}, f_{\rho}\right) & =\mathcal{R}\left[f_{\hat{\mathbf{z}}}^{\lambda}\right]-\mathcal{R}\left[f_{\rho}\right] \leq g(\ell, N, \lambda) \rightarrow 0 \text { and rates, } \\
f_{\hat{\mathbf{z}}}^{\lambda} & =\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{\ell} \sum_{i=1}^{\ell}\left|f\left(\mu_{\hat{x}_{i}}\right)-y_{i}\right|^{2}+\lambda\|f\|_{\mathfrak{H}}^{2}, \quad(\lambda>0) .
\end{aligned}
$$

Goal in details

- Expected risk:

$$
\mathcal{R}[f]=\mathbb{E}_{(x, y)}\left|f\left(\mu_{x}\right)-y\right|^{2}
$$

- Contribution: analysis of the excess risk

$$
\begin{aligned}
\mathcal{E}\left(f_{\hat{\mathbf{z}}}^{\lambda}, f_{\rho}\right) & =\mathcal{R}\left[f_{\hat{\mathbf{z}}}^{\lambda}\right]-\mathcal{R}\left[f_{\rho}\right] \leq g(\ell, N, \lambda) \rightarrow 0 \text { and rates, } \\
f_{\hat{\mathbf{z}}}^{\lambda} & =\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{\ell} \sum_{i=1}^{\ell}\left|f\left(\mu_{\hat{x}_{i}}\right)-y_{i}\right|^{2}+\lambda\|f\|_{\mathscr{H}}^{2}, \quad(\lambda>0) .
\end{aligned}
$$

- We consider two settings:
(1) well-specified case: $f_{\rho} \in \mathcal{H}$,
(2) misspecified case: $f_{\rho} \in L_{\rho_{X}}^{2} \backslash \mathcal{H}$.

Step-1: mean embedding

- $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ kernel; canonical feature map: $\varphi(u)=k(\cdot, u)$.
- Mean embedding of a distribution $x, \hat{x}_{i} \in \mathcal{P}(\mathcal{D})$:

$$
\begin{aligned}
\mu_{x} & =\int_{\mathcal{D}} k(\cdot, u) \mathrm{d} x(u) \in H(k), \\
\mu_{\hat{x}_{i}} & =\int_{\mathcal{D}} k(\cdot, u) \mathrm{d} \hat{x}_{i}(u)=\frac{1}{N} \sum_{n=1}^{N} k\left(\cdot, x_{i, n}\right) .
\end{aligned}
$$

Step-1: mean embedding

- $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ kernel; canonical feature map: $\varphi(u)=k(\cdot, u)$.
- Mean embedding of a distribution $x, \hat{x}_{i} \in \mathcal{P}(\mathcal{D})$:

$$
\begin{aligned}
\mu_{x} & =\int_{\mathcal{D}} k(\cdot, u) \mathrm{d} x(u) \in H(k), \\
\mu_{\hat{x}_{i}} & =\int_{\mathcal{D}} k(\cdot, u) \mathrm{d} \hat{x}_{i}(u)=\frac{1}{N} \sum_{n=1}^{N} k\left(\cdot, x_{i, n}\right) .
\end{aligned}
$$

- Linear $K \Rightarrow$ set kernel:

$$
K\left(\mu_{\hat{x}_{i}}, \mu_{\hat{x}_{j}}\right)=\left\langle\mu_{\hat{x}_{i}}, \mu_{\hat{x}_{j}}\right\rangle_{H}=\frac{1}{N^{2}} \sum_{n, m=1}^{N} k\left(x_{i, n}, x_{j, m}\right)
$$

Step-1: mean embedding

- $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ kernel; canonical feature map: $\varphi(u)=k(\cdot, u)$.
- Mean embedding of a distribution $x, \hat{x}_{i} \in \mathcal{P}(\mathcal{D})$:

$$
\begin{aligned}
\mu_{x} & =\int_{\mathcal{D}} k(\cdot, u) \mathrm{d} x(u) \in H(k), \\
\mu_{\hat{x}_{i}} & =\int_{\mathcal{D}} k(\cdot, u) \mathrm{d} \hat{x}_{i}(u)=\frac{1}{N} \sum_{n=1}^{N} k\left(\cdot, x_{i, n}\right) .
\end{aligned}
$$

- Nonlinear K example:

$$
K\left(\mu_{\hat{x}_{i}}, \mu_{\hat{x}_{j}}\right)=e^{-\frac{\left\|\mu_{\hat{x}_{i}}-\mu_{\hat{x}_{j}}\right\|_{H}^{2}}{2 \sigma^{2}}} .
$$

Step-2: ridge regression (analytical solution)

- Given:
- training sample: $\hat{\mathbf{z}}$,
- test distribution: t.
- Prediction on t :

$$
\begin{align*}
\left(f_{\hat{\mathbf{z}}}^{\lambda} \circ \mu\right)(t) & =\mathbf{k}\left(\mathbf{K}+\ell \lambda \mathbf{I}_{\ell}\right)^{-1}\left[y_{1} ; \ldots ; y_{\ell}\right] \tag{1}\\
\mathbf{K} & =\left[K\left(\mu_{\hat{x}_{i}}, \mu_{\hat{x}_{j}}\right)\right] \in \mathbb{R}^{\ell \times \ell}, \tag{2}\\
\mathbf{k} & =\left[K\left(\mu_{\hat{x}_{1}}, \mu_{t}\right), \ldots, K\left(\mu_{\hat{x}_{\ell}}, \mu_{t}\right)\right] \in \mathbb{R}^{1 \times \ell} . \tag{3}
\end{align*}
$$

Blanket assumptions: both settings

- D: separable, topological domain.
- k :
- bounded: $\sup _{u \in \mathcal{D}} k(u, u) \leq B_{k} \in(0, \infty)$,
- continuous.
- K: bounded; Hölder continuous: $\exists L>0, h \in(0,1]$ such that

$$
\left\|K\left(\cdot, \mu_{a}\right)-K\left(\cdot, \mu_{b}\right)\right\|_{\mathcal{H}} \leq L\left\|\mu_{a}-\mu_{b}\right\|_{H}^{h} .
$$

- y : bounded.
- $X=\mu(\mathcal{P}(\mathcal{D})) \in \mathcal{B}(H)$.

Well-specified case: performance guarantee

- Difficulty of the task:
- f_{ρ} is ' c-smooth',
- ' b-decaying covariance operator'.
- Contribution: If $\ell \geq \lambda^{-\frac{1}{b}-1}$, then with high probability

$$
\mathcal{E}\left(f_{\mathbf{z}}^{\lambda}, f_{\rho}\right) \leq \underbrace{\frac{\log ^{h}(\ell)}{N^{h} \lambda^{3}}+\lambda^{c}+\frac{1}{\ell^{2} \lambda}+\frac{1}{\ell \lambda^{\frac{1}{b}}}}_{g(\ell, N, \lambda)} .
$$

Well-specified case: performance guarantee

- Difficulty of the task:
- f_{ρ} is 'c-smooth',
- 'b-decaying covariance operator'.
- Contribution: If $\ell \geq \lambda^{-\frac{1}{b}-1}$, then with high probability

$$
\begin{equation*}
\mathcal{E}\left(f_{\hat{\mathbf{z}}}^{\lambda}, f_{\rho}\right) \leq \underbrace{\frac{\log ^{h}(\ell)}{N^{h} \lambda^{3}}}_{\hat{x}_{i}}+\int_{g(\ell, N, \lambda)}^{\lambda^{c}+\frac{1}{\ell^{2} \lambda}+\frac{1}{\ell \lambda^{\frac{1}{b}}}} . \tag{4}
\end{equation*}
$$

Well-specified case: example

Assume

- b is 'large' $(1 / b \approx 0$, 'small' effective input dimension),
- $h=1$ (K : Lipschitz),
- 1 = 2 in $(4) \Rightarrow \lambda ; \ell=N^{a}(a>0)$,
- $t=\ell N$: total number of samples processed.

Then
(1) $c=2$ ('smooth' $\left.f_{\rho}\right): \mathcal{E}\left(f_{\hat{\mathbf{z}}}^{\lambda}, f_{\rho}\right) \approx t^{-\frac{2}{7}}$ - faster convergence,
(2) $c=1$ ('non-smooth' $\left.f_{\rho}\right): \mathcal{E}\left(f_{\hat{\mathbf{z}}}^{\lambda}, f_{\rho}\right) \approx t^{-\frac{1}{5}}$ - slower.

Misspecified case: performance guarantee

- Difficulty of the task:
- f_{ρ} is 's-smooth' $(s>0)$.
- Contribution:
- If $L_{\rho_{X}}^{2}$ is separable and $\frac{1}{\lambda^{2}} \leq I$,
- then with high probability

$$
\mathcal{E}\left(f_{\hat{\mathrm{z}}}^{\lambda}, f_{\rho}\right) \leq \underbrace{\frac{\log ^{\frac{h}{2}}(I)}{N^{\frac{h}{2}} \lambda^{\frac{3}{2}}}+\frac{1}{\sqrt{I \lambda}}+\frac{\sqrt{\lambda^{\min (1, s)}}}{\lambda \sqrt{I}}+\lambda^{\min (1, s)}}_{g(\ell, N, \lambda)} .
$$

Misspecified case: performance guarantee

- Difficulty of the task:
- f_{ρ} is 's-smooth' $(s>0)$.
- Contribution: If
- $L_{\rho_{X}}^{2}$ is separable and $\frac{1}{\lambda^{2}} \leq 1$,
- then with high probability

$$
\begin{equation*}
\mathcal{E}\left(f_{\hat{\mathbf{z}}}^{\lambda}, f_{\rho}\right) \leq \frac{\frac{\log ^{\frac{h}{2}}(I)}{N^{\frac{h}{2}} \lambda^{\frac{3}{2}}}+\frac{1}{\sqrt{I \lambda}}+\frac{\sqrt{\lambda^{\min (1, s)}}}{\lambda \sqrt{I}}+\lambda^{\min (1, s)}}{\underbrace{\hat{x}_{i} \quad s \text {-smoothness }}_{g(\ell, N, \lambda)}} \tag{5}
\end{equation*}
$$

Misspecified case: example

Assume

- $s \geq 1, h=1$ (K : Lipschitz),
- $1=3$ in $(5) \Rightarrow \lambda ; \ell=N^{a}(a>0)$
- $t=\ell N$: total number of samples processed.

Then
(1) $s=1$ ('non-smooth' f_{ρ}): $\mathcal{E}\left(f_{\hat{z}}^{\lambda}, f_{\rho}\right) \approx t^{-0.25}$ - slower,
(2) $s \rightarrow \infty$ ('smooth' $\left.f_{\rho}\right): \mathcal{E}\left(f_{\hat{\mathbf{z}}}^{\lambda}, f_{\rho}\right) \approx t^{-0.5}$ - faster convergence.

Notes on the assumptions: $\exists \rho, X \in \mathcal{B}(H)$

- k : bounded, continuous \Rightarrow
- $\mu:\left(\mathcal{P}(\mathcal{D}), \mathcal{B}\left(\tau_{w}\right)\right) \rightarrow(H, \mathcal{B}(H))$ measurable.
- μ measurable, $X \in \mathcal{B}(H) \Rightarrow \rho$ on $X \times Y$: well-defined.
- If $\left({ }^{*}\right):=\mathcal{D}$ is compact metric, k is universal, then
- μ is continuous, and
- $X \in \mathcal{B}(H)$.

Notes on the assumptions: Hölder K examples

In case of $\left({ }^{*}\right)$:

K_{G}	K_{e}	K_{C}						
$e^{-\frac{\left\\|\mu_{a}-\mu_{b}\right\\|_{H}^{2}}{2 \theta^{2}}}$	$e^{-\frac{\left\\|\mu_{a}-\mu_{b}\right\\|_{H}}{2 \theta^{2}}}$	$\left(1+\left\\|\mu_{a}-\mu_{b}\right\\|_{H}^{2} / \theta^{2}\right)^{-1}$						
$h=1$	$h=\frac{1}{2}$	$h=1$						

$$
\begin{array}{cc}
K_{t} & K_{i} \\
\hline\left(1+\left\|\mu_{a}-\mu_{b}\right\|_{H}^{\theta}\right)^{-1} & \left(\left\|\mu_{a}-\mu_{b}\right\|_{H}^{2}+\theta^{2}\right)^{-\frac{1}{2}} \\
h=\frac{\theta}{2}(\theta \leq 2) & h=1
\end{array}
$$

Functions of $\left\|\mu_{a}-\mu_{b}\right\|_{H} \Rightarrow$ computation: similar to set kernel.

Notes on the assumptions: misspecified case

$L_{\rho_{X}}^{2}$: separable \Leftrightarrow measure space with $d(A, B)=\rho_{X}(A \triangle B)$ is so [Thomson et al., 2008].

Vector-valued output: $Y=$ separable Hilbert space

- Objective function:

$$
f_{\hat{z}}^{\lambda}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{l} \sum_{i=1}^{l}\left\|f\left(\mu_{\hat{\chi}_{i}}\right)-y_{i}\right\|_{Y}^{2}+\lambda\|f\|_{\mathcal{H}}^{2}, \quad(\lambda>0) .
$$

- $K\left(\mu_{a}, \mu_{b}\right) \in \mathcal{L}(Y)$:
- operator-valued kernel,
- vector-valued RKHS.

Vector-valued output: analytical solution

Prediction on a new test distribution (t) :

$$
\begin{align*}
\left(f_{\hat{\mathbf{z}}}^{\lambda} \circ \mu\right)(t) & =\mathbf{k}\left(\mathbf{K}+I \lambda \mathbf{I}_{I}\right)^{-1}\left[y_{1} ; \ldots ; y_{l}\right], \tag{6}\\
\mathbf{K} & =\left[K\left(\mu_{\hat{x}_{i}}, \mu_{\hat{x}_{j}}\right)\right] \in \mathcal{L}(Y)^{I \times I}, \tag{7}\\
\mathbf{k} & =\left[K\left(\mu_{\hat{x}_{1}}, \mu_{t}\right), \ldots, K\left(\mu_{\hat{x}_{I}}, \mu_{t}\right)\right] \in \mathcal{L}(Y)^{1 \times I} . \tag{8}
\end{align*}
$$

Specifically: $Y=\mathbb{R} \Rightarrow \mathcal{L}(Y)=\mathbb{R} ; Y=\mathbb{R}^{d} \Rightarrow \mathcal{L}(Y)=\mathbb{R}^{d}$.

Vector-valued output: K assumptions

Boundedness and Hölder continuity of K :
(1) Boundedness:

$$
\left\|K_{\mu_{\mathrm{a}}}\right\|_{\mathrm{HS}}^{2}=\operatorname{Tr}\left(K_{\mu_{\mathrm{a}}}^{*} K_{\mu_{\mathrm{a}}}\right) \leq B_{K} \in(0, \infty), \quad\left(\forall \mu_{\mathrm{a}} \in X\right)
$$

(2) Hölder continuity: $\exists L>0, h \in(0,1]$ such that

$$
\left\|K_{\mu_{a}}-K_{\mu_{b}}\right\|_{\mathcal{L}(Y, \mathcal{H})} \leq L\left\|\mu_{a}-\mu_{b}\right\|_{H}^{h}, \quad \forall\left(\mu_{a}, \mu_{b}\right) \in X \times X
$$

- Supervised entropy learning:

- Aerosol prediction from satellite images:
- State-of-the-art baseline: 7.5 - 8.5 (± 0.1 - 0.6).
- MERR: 7.81 (± 1.64).

Summary

- Problem: distribution regression.
- Literature: large number of heuristics.
- Contribution:
- a simple ridge solution is consistent,
- specifically, the set kernel is so (15-year-old open question).
- Simplified version $\left[Y=\mathbb{R}, f_{\rho} \in \mathcal{H}\right]$:
- AISTATS-2015 (oral).

Summary - continued

- Code in ITE, extended analysis (submitted to JMLR):
https://bitbucket.org/szzoli/ite/ http://arxiv.org/abs/1411.2066.
- Closely related research directions (Bayesian world):
- ∞-dimensional exp. family fitting,
- just-in-time kernel EP: accepted at UAI-2015.

Thank you for the attention!

Acknowledgments: This work was supported by the Gatsby Charitable Foundation, and by NSF grants IIS1247658 and IIS1250350. The work was carried out while Bharath K. Sriperumbudur was a research fellow in the Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge, UK.

Appendix: contents

- Topological definitions, separability.
- Prior definitions (ρ).
- Universal kernel: definition, examples.
- Vector-valued RKHS.
- Demos: further details.
- Hausdorff metric.
- Weak topology on $\mathcal{P}(\mathcal{D})$.

Topological space, open sets

- Given: $\mathcal{D} \neq \emptyset$ set.
- $\tau \subseteq 2^{\mathcal{D}}$ is called a topology on \mathcal{D} if:
(1) $\emptyset \in \tau, \mathcal{D} \in \tau$.
(2) Finite intersection: $O_{1} \in \tau, O_{2} \in \tau \Rightarrow O_{1} \cap O_{2} \in \tau$.
(3) Arbitrary union: $O_{i} \in \tau(i \in I) \Rightarrow \cup_{i \in I} O_{i} \in \tau$.

Then, (\mathcal{D}, τ) is called a topological space; $O \in \tau$: open sets.

Closed-, compact set, closure, dense subset, separability

Given: $(\mathcal{D}, \tau) . A \subseteq \mathcal{D}$ is

- closed if $\mathcal{D} \backslash A \in \tau$ (i.e., its complement is open),
- compact if for any family $\left(O_{i}\right)_{i \in I}$ of open sets with

$$
A \subseteq \cup_{i \in I} O_{i}, \exists i_{1}, \ldots, i_{n} \in I \text { with } A \subseteq \cup_{j=1}^{n} O_{i_{j}}
$$

Closure of $A \subseteq \mathcal{D}$:

$$
\begin{equation*}
\bar{A}:=\bigcap_{A \subseteq C \text { closed in } \mathcal{D}} C . \tag{9}
\end{equation*}
$$

- $A \subseteq \mathcal{D}$ is dense if $\bar{A}=\mathcal{D}$.
- ($\mathcal{D}, \tau)$ is separable if \exists countable, dense subset of \mathcal{D}. Counterexample: $\ell^{\infty} / L^{\infty}$.
- Let the $T: \mathcal{H} \rightarrow \mathcal{H}$ covariance operator be

$$
T=\int_{X} K\left(\cdot, \mu_{a}\right) K^{*}\left(\cdot, \mu_{a}\right) \mathrm{d} \rho_{X}\left(\mu_{a}\right)
$$

with eigenvalues $t_{n}(n=1,2, \ldots)$.

- Assumption: $\rho \in \mathcal{P}(b, c)=$ set of distributions on $X \times Y$
- $\alpha \leq n^{b} t_{n} \leq \beta \quad(\forall n \geq 1 ; \alpha>0, \beta>0)$,
- $\exists g \in \mathcal{H}$ such that $f_{\rho}=T^{\frac{c-1}{2}} g$ with $\|g\|_{\mathcal{H}}^{2} \leq R(R>0)$, where $b \in(1, \infty), c \in[1,2]$.
- Intuition: $1 / b$ - effective input dimension, c - smoothness of f_{ρ}.

Prior: misspecified case

Let \tilde{T} be defined as:

$$
\begin{aligned}
S_{K}^{*} & : \mathcal{H} \hookrightarrow L_{\rho_{X}}^{2} \\
S_{K} & : L_{\rho_{X}}^{2} \rightarrow \mathcal{H}, \quad\left(S_{K} g\right)\left(\mu_{u}\right)=\int_{X} K\left(\mu_{u}, \mu_{t}\right) g\left(\mu_{t}\right) \mathrm{d} \rho_{X}\left(\mu_{t}\right) \\
\tilde{T} & =S_{K}^{*} S_{K}: L_{\rho_{X}}^{2} \rightarrow L_{\rho_{X}}^{2}
\end{aligned}
$$

Our range space assumption on $\rho: f_{\rho} \in \operatorname{Im}\left(\tilde{T}^{s}\right)$ for some $s \geq 0$.

Universal kernel: definition

Assume

- D: compact, metric,
- $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ kernel is continuous.

Then

- Def-1: k is universal if $H(k)$ is dense in $\left(C(\mathcal{D}),\|\cdot\|_{\infty}\right)$.

Universal kernel: definition

Assume

- D: compact, metric,
- $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ kernel is continuous.

Then

- Def-1: k is universal if $H(k)$ is dense in $\left(C(\mathcal{D}),\|\cdot\|_{\infty}\right)$.
- Def-2: k is
- characteristic, if $\mu: \mathcal{P}(\mathcal{D}) \rightarrow H(k)$ is injective.

Universal kernel: definition

Assume

- D: compact, metric,
- $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ kernel is continuous.

Then

- Def-1: k is universal if $H(k)$ is dense in $\left(C(D),\|\cdot\|_{\infty}\right)$.
- Def-2: k is
- characteristic, if $\mu: \mathcal{P}(\mathcal{D}) \rightarrow H(k)$ is injective.
- universal, if μ is injective on the finite signed measures of \mathcal{D}.

Universal kernel: examples

On compact subsets of \mathbb{R}^{d}

$$
\begin{aligned}
& k(a, b)=e^{-\frac{\|a-b\|_{2}^{2}}{2 \sigma^{2}}}, \quad(\sigma>0) \\
& k(a, b)=e^{-\sigma\|a-b\|_{1}}, \quad(\sigma>0) \\
& k(a, b)=e^{\beta\langle a, b\rangle},(\beta>0), \text { or more generally } \\
& k(a, b)=f(\langle a, b\rangle), \quad f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad\left(\forall a_{n}>0\right) .
\end{aligned}
$$

Vector-valued RKHS: $\mathcal{H}=\mathcal{H}(K)$

Definition:

- A $\mathcal{H} \subseteq Y^{X}$ Hilbert space of functions is RKHS if

$$
\begin{equation*}
A_{\mu_{x}, y}: f \in \mathcal{H} \mapsto\left\langle y, f\left(\mu_{x}\right)\right\rangle_{Y} \in \mathbb{R} \tag{10}
\end{equation*}
$$

is continuous for $\forall \mu_{x} \in X, y \in Y$.

- $=$ The evaluation functional is continuous in every direction.

Vector-valued RKHS: $\mathcal{H}=\mathcal{H}(K)$ - continued

- Riesz representation theorem $\Rightarrow \exists K\left(\mu_{x} \mid y\right) \in \mathcal{H}$:

$$
\begin{equation*}
\left\langle y, f\left(\mu_{x}\right)\right\rangle_{Y}=\left\langle K\left(\mu_{x} \mid y\right), f\right\rangle_{\mathcal{H}} \quad(\forall f \in \mathcal{H}) \tag{11}
\end{equation*}
$$

- $K\left(\mu_{x} \mid y\right)$: linear, bounded in $y \Rightarrow K\left(\mu_{x} \mid y\right)=K_{\mu_{x}}(y)$ with $K_{\mu_{x}} \in \mathcal{L}(Y, \mathcal{H})$.

Vector-valued RKHS: $\mathcal{H}=\mathcal{H}(K)$ - continued

- Riesz representation theorem $\Rightarrow \exists K\left(\mu_{x} \mid y\right) \in \mathcal{H}$:

$$
\begin{equation*}
\left\langle y, f\left(\mu_{x}\right)\right\rangle_{Y}=\left\langle K\left(\mu_{x} \mid y\right), f\right\rangle_{\mathcal{H}} \quad(\forall f \in \mathcal{H}) \tag{11}
\end{equation*}
$$

- $K\left(\mu_{x} \mid y\right)$: linear, bounded in $y \Rightarrow K\left(\mu_{x} \mid y\right)=K_{\mu_{x}}(y)$ with $K_{\mu_{x}} \in \mathcal{L}(Y, \mathcal{H})$.
- K construction:

$$
\begin{align*}
K\left(\mu_{x}, \mu_{t}\right)(y) & =\left(K_{\mu_{t}} y\right)\left(\mu_{x}\right), \quad\left(\forall \mu_{x}, \mu_{t} \in X\right), \text { i.e., } \\
K\left(\cdot, \mu_{t}\right)(y) & =K_{\mu_{t}} y \tag{12}\\
\mathcal{H}(K) & =\overline{\operatorname{span}}\left\{K_{\mu_{t}} y: \mu_{t} \in X, y \in Y\right\} . \tag{13}
\end{align*}
$$

Vector-valued RKHS: $\mathcal{H}=\mathcal{H}(K)$ - continued

- Riesz representation theorem $\Rightarrow \exists K\left(\mu_{x} \mid y\right) \in \mathcal{H}$:

$$
\begin{equation*}
\left\langle y, f\left(\mu_{x}\right)\right\rangle_{Y}=\left\langle K\left(\mu_{x} \mid y\right), f\right\rangle_{\mathcal{H}} \quad(\forall f \in \mathcal{H}) \tag{11}
\end{equation*}
$$

- $K\left(\mu_{x} \mid y\right)$: linear, bounded in $y \Rightarrow K\left(\mu_{x} \mid y\right)=K_{\mu_{x}}(y)$ with $K_{\mu_{x}} \in \mathcal{L}(Y, \mathcal{H})$.
- K construction:

$$
\begin{align*}
K\left(\mu_{x}, \mu_{t}\right)(y) & =\left(K_{\mu_{t}} y\right)\left(\mu_{x}\right), \quad\left(\forall \mu_{x}, \mu_{t} \in X\right), \text { i.e., } \\
K\left(\cdot, \mu_{t}\right)(y) & =K_{\mu_{t}} y \tag{12}\\
\mathcal{H}(K) & =\overline{\operatorname{span}}\left\{K_{\mu_{t}} y: \mu_{t} \in X, y \in Y\right\} . \tag{13}
\end{align*}
$$

- Shortly: $K\left(\mu_{x}, \mu_{t}\right) \in \mathcal{L}(Y)$ generalizes $k(u, v) \in \mathbb{R}$.

Vector-valued RKHS - examples: $Y=\mathbb{R}^{d}$

(1) $K_{i}: X \times X \rightarrow \mathbb{R}$ kernels $(i=1, \ldots, d)$. Diagonal kernel:

$$
\begin{equation*}
K\left(\mu_{a}, \mu_{b}\right)=\operatorname{diag}\left(K_{1}\left(\mu_{a}, \mu_{b}\right), \ldots, K_{d}\left(\mu_{a}, \mu_{b}\right)\right) \tag{14}
\end{equation*}
$$

(2) Combination of D_{j} diagonal kernels $\left[D_{j}\left(\mu_{a}, \mu_{b}\right) \in \mathbb{R}^{r \times r}\right.$, $\left.A_{j} \in \mathbb{R}^{r \times d}\right]$:

$$
\begin{equation*}
K\left(\mu_{a}, \mu_{b}\right)=\sum_{j=1}^{m} A_{j}^{*} D_{j}\left(\mu_{a}, \mu_{b}\right) A_{j} \tag{15}
\end{equation*}
$$

Demo-1: supervised entropy learning

- Problem: learn the entropy of the $1^{\text {st }}$ coo. of (rotated) Gaussians.
- Baseline: kernel smoothing based distribution regression (applying density estimation) =: DFDR.
- Performance: RMSE boxplot over 25 random experiments.
- Experience:
- more precise than the only theoretically justified method,
- by avoiding density estimation.

Demo-2: aerosol prediction - selected kernels

Kernel definitions ($p=2,3$):

$$
\begin{align*}
k_{G}(a, b) & =e^{-\frac{\|a-b\|_{2}^{2}}{2 \theta^{2}}}, \quad k_{e}(a, b)=e^{-\frac{\|a-b\|_{2}}{2 \theta^{2}}}, \tag{16}\\
k_{C}(a, b) & =\frac{1}{1+\frac{\|a-b\|_{2}^{2}}{\theta^{2}}}, \quad k_{t}(a, b)=\frac{1}{1+\|a-b\|_{2}^{\theta}}, \tag{17}\\
k_{p}(a, b) & =(\langle a, b\rangle+\theta)^{p}, k_{r}(a, b)=1-\frac{\|a-b\|_{2}^{2}}{\|a-b\|_{2}^{2}+\theta}, \tag{18}\\
k_{i}(a, b) & =\frac{1}{\sqrt{\|a-b\|_{2}^{2}+\theta^{2}}}, \tag{19}\\
k_{M, \frac{3}{2}}(a, b) & =\left(1+\frac{\sqrt{3}\|a-b\|_{2}}{\theta}\right) e^{-\frac{\sqrt{3}\|a-b\|_{2}}{\theta}}, \tag{20}\\
k_{M, \frac{5}{2}}(a, b) & =\left(1+\frac{\sqrt{5}\|a-b\|_{2}}{\theta}+\frac{5\|a-b\|_{2}^{2}}{3 \theta^{2}}\right) e^{-\frac{\sqrt{5}\left\|_{a-b}\right\|_{2}}{\theta}} . \tag{21}
\end{align*}
$$

- Hausdorff metric [Edgar, 1995]:

$$
\begin{equation*}
d_{H}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\} \tag{22}
\end{equation*}
$$

- Metric on compact sets of metric spaces $[(M, d) ; X, Y \subseteq M]$.
- 'Slight' problem: highly sensitive to outliers.

Weak topology on $\mathcal{P}(\mathcal{D})$

Def.: It is the weakest topology such that the

$$
\begin{aligned}
L_{h} & :\left(\mathcal{P}(\mathcal{D}), \tau_{w}\right) \rightarrow \mathbb{R} \\
L_{h}(x) & =\int_{\mathcal{D}} h(u) \mathrm{d} x(u)
\end{aligned}
$$

mapping is continuous for all $h \in C_{b}(\mathcal{D})$, where
$C_{b}(\mathcal{D})=\{(\mathcal{D}, \tau) \rightarrow \mathbb{R}$ bounded, continuous functions $\}$.

固 Chen, Y. and Wu, O. (2012).
Contextual Hausdorff dissimilarity for multi-instance clustering.
In International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pages 870-873.
(Cuturi, M., Fukumizu, K., and Vert, J.-P. (2005).
Semigroup kernels on measures.
Journal of Machine Learning Research, 6:11691198.
固 Edgar, G. (1995).
Measure, Topology and Fractal Geometry.
Springer-Verlag.
(iärtner, T., Flach, P. A., Kowalczyk, A., and Smola, A. (2002).

Multi-instance kernels.
In International Conference on Machine Learning (ICML),
pages 179-186.

固 Haussler，D．（1999）．
Convolution kernels on discrete structures．
Technical report，Department of Computer Science，University of California at Santa Cruz．
（http：／／cbse．soe．ucsc．edu／sites／default／files／ convolutions．pdf）．

國 Hein，M．and Bousquet，O．（2005）．
Hilbertian metrics and positive definite kernels on probability measures．
In International Conference on Artificial Intelligence and Statistics（AISTATS），pages 136－143．

围 Jebara，T．，Kondor，R．，and Howard，A．（2004）．
Probability product kernels．
Journal of Machine Learning Research，5：819－844．
（e）Martins，A．F．T．，Smith，N．A．，Xing，E．P．，Aguiar，P．M．Q．， and Figueiredo，M．A．T．（2009）．
Nonextensive information theoretical kernels on measures．

Journal of Machine Learning Research, 10:935-975.
围 Nielsen, F. and Nock, R. (2012).
A closed-form expression for the Sharma-Mittal entropy of exponential families.
Journal of Physics A: Mathematical and Theoretical, 45:032003.

R Oliva, J., Póczos, B., and Schneider, J. (2013).
Distribution to distribution regression.
International Conference on Machine Learning (ICML; JMLR W\&CP), 28:1049-1057.
(is Oliva, J. B., Neiswanger, W., Póczos, B., Schneider, J., and Xing, E. (2014).
Fast distribution to real regression.
International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W\&CP), 33:706-714.

固
Póczos, B., Rinaldo, A., Singh, A., and Wasserman, L. (2013). Distribution-free distribution regression.

International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W\&CP), 31:507-515.

䍰 Póczos, B., Xiong, L., and Schneider, J. (2011).
Nonparametric divergence estimation with applications to machine learning on distributions.
In Uncertainty in Artificial Intelligence (UAI), pages 599-608.
Reddi, S. J. and Póczos, B. (2014).
k-NN regression on functional data with incomplete observations.
In Conference on Uncertainty in Artificial Intelligence (UAI).
(Thomson, B. S., Bruckner, J. B., and Bruckner, A. M. (2008). Real Analysis.
Prentice-Hall.
图 Wang, F., Syeda-Mahmood, T., Vemuri, B. C., Beymer, D., and Rangarajan, A. (2009).
Closed-form Jensen-Rényi divergence for mixture of Gaussians and applications to group-wise shape registration.

Medical Image Computing and Computer-Assisted Intervention, 12:648-655.

國 Wang, J. and Zucker, J.-D. (2000).
Solving the multiple-instance problem: A lazy learning approach.
In International Conference on Machine Learning (ICML), pages 1119-1126.

圁 Wang, Z., Lan, L., and Vucetic, S. (2012).
Mixture model for multiple instance regression and applications in remote sensing.
IEEE Transactions on Geoscience and Remote Sensing, 50:2226-2237.

EWu, O., Gao, J., Hu, W., Li, B., and Zhu, M. (2010). Identifying multi-instance outliers.
In SIAM International Conference on Data Mining (SDM),
pages 430-441.

- Zhang, M.-L. and Zhou, Z.-H. (2009).

Multi-instance clustering with applications to multi-instance prediction.
Applied Intelligence, 31:47-68.
© Zhou, S. K. and Chellappa, R. (2006).
From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel Hilbert space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:917-929.

