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Example: sustainability

Goal: aerosol prediction = air pollution → climate.

Prediction using labelled bags:

bag := multi-spectral satellite measurements over an area,
label := local aerosol value.

Zoltán Szabó Kernel-based learning on probability distributions



Example: existing methods

Multi-instance learning:

[Haussler, 1999, Gärtner et al., 2002] (set kernel):

sensible methods in regression: few,
1 restrictive technical conditions,
2 super-high resolution satellite image: would be needed.
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One-page summary

Contributions:

1 Practical: state-of-the-art accuracy (aerosol).
2 Theoretical:

General bags: graphs, time series, texts, . . .
Consistency of set kernel in regression (17-year-old open problem).
How many samples/bag?
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One-page summary

Contributions:

1 Practical: state-of-the-art accuracy (aerosol).
2 Theoretical:

General bags: graphs, time series, texts, . . .
Consistency of set kernel in regression (17-year-old open problem).
How many samples/bag?
AISTATS-2015 (oral – 6.11%) → JMLR in revision.
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Objects in the bags

Examples:

time-series modelling: user = set of time-series,
computer vision: image = collection of patch vectors,
NLP: corpus = bag of documents,
network analysis: group of people = bag of friendship graphs, . . .
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Objects in the bags

Examples:

time-series modelling: user = set of time-series,
computer vision: image = collection of patch vectors,
NLP: corpus = bag of documents,
network analysis: group of people = bag of friendship graphs, . . .

Wider context (statistics): point estimation tasks.
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Regression on labelled bags

Given:
labelled bags: ẑ =

{(
P̂i , yi

)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .
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Regression on labelled bags

Given:
labelled bags: ẑ =

{(
P̂i , yi

)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .

Estimator:

f λẑ = argmin
f ∈H

1

ℓ

∑ℓ

i=1

[

f
(
µ
P̂i

︸︷︷︸

feature of P̂i

)
− yi

]2
+ λ ‖f ‖2

H
.
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Regression on labelled bags

Given:
labelled bags: ẑ =

{(
P̂i , yi

)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .

Estimator:

f λẑ = argmin
f ∈H(K)

1

ℓ

∑ℓ

i=1

[

f
(
µ
P̂i

)
− yi

]2
+ λ ‖f ‖2

H
.

Prediction:

ŷ
(
P̂
)
= gT (G+ ℓλI)−1y,

g =
[
K
(
µ
P̂
, µ

P̂i

)]
,G =

[
K
(
µ
P̂i
, µ

P̂j

)]
, y = [yi ].
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Regression on labelled bags

Given:
labelled bags: ẑ =

{(
P̂i , yi

)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .

Estimator:

f λẑ = argmin
f ∈H(K)

1

ℓ

∑ℓ

i=1

[

f
(
µ
P̂i

)
− yi

]2
+ λ ‖f ‖2

H
.

Prediction:

ŷ
(
P̂
)
= gT (G+ ℓλI)−1y,

g =
[
K
(
µ
P̂
, µ

P̂i

)]
,G =

[
K
(
µ
P̂i
, µ

P̂j

)]
, y = [yi ].

Challenges

1 Inner product of distributions: K
(
µ
P̂i
, µ

P̂j

)
= ?

2 How many samples/bag?
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Regression on labelled bags: similarity

Let us define an inner product on distributions [K̃ (P ,Q)]:

1 Set kernel: A = {ai}Ni=1, B = {bj}Nj=1.

K̃ (A,B) =
1

N2

N∑

i ,j=1

k(ai , bj) =
〈 1

N

N∑

i=1

ϕ(ai )

︸ ︷︷ ︸

feature of bag A

,
1

N

N∑

j=1

ϕ(bj )
〉

.

Remember:
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Regression on labelled bags: similarity

Let us define an inner product on distributions [K̃ (P ,Q)]:

1 Set kernel: A = {ai}Ni=1, B = {bj}Nj=1.

K̃ (A,B) =
1

N2

N∑

i ,j=1

k(ai , bj) =
〈 1

N

N∑

i=1

ϕ(ai )

︸ ︷︷ ︸

feature of bag A

,
1

N

N∑

j=1

ϕ(bj )
〉

.

2 Taking ’limit’ [Berlinet and Thomas-Agnan, 2004,
Altun and Smola, 2006, Smola et al., 2007]: a ∼ P , b ∼ Q

K̃ (P ,Q) = Ea,bk(a, b) =
〈

Eaϕ(a)
︸ ︷︷ ︸

feature of distribution P=:µP

,Ebϕ(b)
〉

.

Example (Gaussian kernel): k(a,b) = e−‖a−b‖22/(2σ
2).
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Regression on labelled bags: baseline

Quality of estimator, baseline:

R(f ) = E(µP ,y)∼ρ[f (µP)− y ]2,

fρ = best regressor.

How many samples/bag to get the accuracy of fρ? Possible?

Assume (for a moment): fρ ∈ H(K ).
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Our result: how many samples/bag

Known [Caponnetto and De Vito, 2007]: best/achieved rate

R(f λz )−R(fρ) = O
(

ℓ−
bc

bc+1

)

,

b – size of the input space, c – smoothness of fρ.
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Our result: how many samples/bag

Known [Caponnetto and De Vito, 2007]: best/achieved rate

R(f λz )−R(fρ) = O
(

ℓ−
bc

bc+1

)

,

b – size of the input space, c – smoothness of fρ.

Let N = Õ(ℓa). N: size of the bags. ℓ: number of bags.

Our result

If 2 ≤ a, then f λẑ attains the best achievable rate.
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Our result: how many samples/bag

Known [Caponnetto and De Vito, 2007]: best/achieved rate

R(f λz )−R(fρ) = O
(

ℓ−
bc

bc+1

)

,

b – size of the input space, c – smoothness of fρ.

Let N = Õ(ℓa). N: size of the bags. ℓ: number of bags.

Our result

If 2 ≤ a, then f λẑ attains the best achievable rate.

In fact, a = b(c+1)
bc+1 < 2 is enough.

Consequence: regression with set kernel is consistent.
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Aerosol prediction result (100× RMSE )

We perform on par with the state-of-the-art, hand-engineered
method.

Zhuang Wang, Liang Lan, Slobodan Vucetic. IEEE Transactions on
Geoscience and Remote Sensing, 2012: 7.5 − 8.5 (±0.1− 0.6):

hand-crafted features.

Our prediction accuracy: 7.81 (±1.64).

no expert knowledge.

Code in ITE: #2 on mloss,

https://bitbucket.org/szzoli/ite/
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Related results

Zoltán Szabó Kernel-based learning on probability distributions



Distribution regression with random Fourier features

Kernel EP [UAI-2015]:

distribution regression phrasing,
learn the message-passing operator for ’tricky’ factors.
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Distribution regression with random Fourier features

Kernel EP [UAI-2015]:

distribution regression phrasing,
learn the message-passing operator for ’tricky’ factors.
extends Infer.NET; speed ⇐ RFF.
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Distribution regression with random Fourier features

Kernel EP [UAI-2015]:

distribution regression phrasing,
learn the message-passing operator for ’tricky’ factors.
extends Infer.NET; speed ⇐ RFF.

Random Fourier features [NIPS-2015 (spotlight - 3.65%)]:

exponentially tighter guarantee.
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+Applications, with Gatsby students

Bayesian manifold learning [NIPS-2015]:

App.: climate data → weather station location.

Fast, adaptive sampling method based on RFF [NIPS-2015]:

App.: approximate Bayesian computation, hyperparameter
inference.
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+Applications, with Gatsby students

Bayesian manifold learning [NIPS-2015]:

App.: climate data → weather station location.

Fast, adaptive sampling method based on RFF [NIPS-2015]:

App.: approximate Bayesian computation, hyperparameter
inference.

Interpretable 2-sample testing [→NIPS-2016]:
App.:

random → smart features,

discriminative for doc. categories, emotions.

empirical process theory (VC subgraphs).
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Summary

Regression on

bags/distributions:

minimax optimality,
set kernel is consistent.

random Fourier features: exponentially tighter bounds.

Several applications (with open source code).

Acknowledgments: This work was supported by the Gatsby Charitable

Foundation.
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Why can we get consistency/rates? – intuition

Convergence of the mean embedding:

∥
∥µP − µ

P̂

∥
∥
H
= O

(
1√
N

)

.

Hölder property of K (0 < L, 0 < h ≤ 1):

∥
∥K (·, µP )− K (·, µ

P̂
)
∥
∥
H
≤ L

∥
∥µP − µ

P̂

∥
∥h

H
.

f λẑ depends ’nicely’ on K (µ
P̂
, µ

Q̂
) =

〈

K (·, µ
P̂
),K (·, µ

Q̂
)
〉

H

.

[39 pages]
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Extensions

1 Misspecified setting (fρ ∈ L2\H):

Consistency: convergence to inf f∈H ‖f − fρ‖L2 .
Smoothness on fρ: computational & statistical tradeoff.
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Extensions

2 Vector-valued output:

Y : separable Hilbert space ⇒ K (µP , µQ) ∈ L(Y ).
Prediction on a test bag P̂ :

ŷ
(
P̂
)
= gT (G+ ℓλI)−1y,

g = [K (µ
P̂
, µ

P̂i
)],G = [K (µ

P̂i
, µ

P̂j
)], y = [yi ].

Specifically: Y = R ⇒ L(Y ) = R; Y = R
d ⇒ L(Y ) = R

d×d .
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Other valid similarities

Recall: K̃ (P ,Q) = 〈µP , µQ〉.

K̃G K̃e K̃C

e−
‖µP−µQ‖2

2θ2 e−
‖µP−µQ‖

2θ2

(

1 + ‖µP − µQ‖2 /θ2
)−1

K̃t K̃i

(

1 + ‖µP − µQ‖θ
)−1 (

‖µP − µQ‖2 + θ2
)− 1

2

Functions of ‖µP − µQ‖ ⇒ computation: similar to set kernel.
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Convolution kernels on discrete structures.
Technical report, Department of Computer Science, University
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