Kernel-based learning on probability distributions

Zoltán Szabó (Gatsby Unit, UCL)

University of California, San Diego

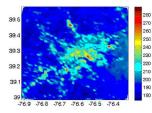
March 16, 2016

Zoltán Szabó Kernel-based learning on probability distributions

Example: sustainability

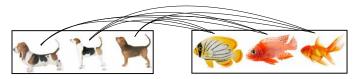
• **Goal**: aerosol prediction = air pollution \rightarrow climate.

- Prediction using labelled bags:
 - bag := multi-spectral satellite measurements over an area,
 - label := local aerosol value.



Multi-instance learning:

• [Haussler, 1999, Gärtner et al., 2002] (set kernel):



- sensible methods in regression: few,

 - restrictive technical conditions.
 - 2 super-high resolution satellite image: would be needed.

Contributions:

- Practical: state-of-the-art accuracy (aerosol).
- 2 Theoretical:
 - General bags: graphs, time series, texts, ...
 - Consistency of set kernel in regression (17-year-old open problem).
 - How many samples/bag?

Contributions:

- Practical: state-of-the-art accuracy (aerosol).
- 2 Theoretical:
 - General bags: graphs, time series, texts, ...
 - Consistency of set kernel in regression (17-year-old open problem).
 - How many samples/bag?
 - AISTATS-2015 (oral 6.11%) \rightarrow JMLR in revision.

• Examples:

- time-series modelling: user = set of time-series,
- computer vision: image = collection of patch vectors,
- NLP: corpus = bag of documents,
- network analysis: group of people = bag of friendship graphs, ...

• Examples:

- time-series modelling: user = set of time-series,
- computer vision: image = collection of patch vectors,
- NLP: corpus = bag of documents,
- network analysis: group of people = bag of friendship graphs, ...
- Wider context (statistics): point estimation tasks.

- Given:
 - labelled bags: $\hat{\mathbf{z}} = \left\{ \left(\hat{P}_i, y_i \right) \right\}_{i=1}^{\ell}$, \hat{P}_i : bag from P_i , $N := |\hat{P}_i|$.
 - test bag: \hat{P} .

- Given:
 - labelled bags: $\hat{\mathbf{z}} = \left\{ \left(\hat{P}_i, y_i \right) \right\}_{i=1}^{\ell}$, \hat{P}_i : bag from P_i , $N := |\hat{P}_i|$. • test bag: \hat{P} .
- Estimator:

$$f_{\hat{\mathbf{z}}}^{\lambda} = \operatorname*{arg\,min}_{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} \left[f(\underline{\mu_{\hat{P}_i}}) - y_i \right]^2 + \lambda \, \|f\|_{\mathcal{H}}^2 \,.$$
feature of \hat{P}_i

- Given:
 - labelled bags: $\hat{\mathbf{z}} = \left\{ \left(\hat{P}_i, y_i \right) \right\}_{i=1}^{\ell}$, \hat{P}_i : bag from P_i , $N := |\hat{P}_i|$. • test bag: \hat{P} .
- Estimator:

$$f_{\hat{\mathbf{z}}}^{\lambda} = \operatorname*{arg\,min}_{f \in \mathcal{H}(\mathcal{K})} \frac{1}{\ell} \sum_{i=1}^{\ell} \left[f\left(\mu_{\hat{\mathbf{P}}_{i}}\right) - y_{i} \right]^{2} + \lambda \|f\|_{\mathcal{H}}^{2}.$$

• Prediction:

$$\begin{split} \hat{y}(\hat{P}) &= \mathbf{g}^{\mathcal{T}} (\mathbf{G} + \ell \lambda \mathbf{I})^{-1} \mathbf{y}, \\ \mathbf{g} &= \big[\mathcal{K}(\mu_{\hat{P}}, \mu_{\hat{P}_i}) \big], \mathbf{G} = \big[\mathcal{K}(\mu_{\hat{P}_i}, \mu_{\hat{P}_j}) \big], \mathbf{y} = [y_i]. \end{split}$$

- Given:
 - labelled bags: $\hat{\mathbf{z}} = \left\{ \left(\hat{P}_i, y_i \right) \right\}_{i=1}^{\ell}$, \hat{P}_i : bag from P_i , $N := |\hat{P}_i|$. • test bag: \hat{P} .
- Estimator:

$$f_{\mathbf{\hat{z}}}^{\lambda} = \operatorname*{arg\,min}_{f \in \mathcal{H}(\mathcal{K})} \frac{1}{\ell} \sum_{i=1}^{\ell} \left[f\left(\mu_{\hat{p}_{i}}\right) - y_{i} \right]^{2} + \lambda \left\| f \right\|_{\mathcal{H}}^{2}.$$

Prediction:

$$\begin{split} \hat{y}(\hat{P}) &= \mathbf{g}^{\mathsf{T}} (\mathbf{G} + \ell \lambda \mathbf{I})^{-1} \mathbf{y}, \\ \mathbf{g} &= \big[\mathsf{K} \big(\mu_{\hat{P}}, \mu_{\hat{P}_i} \big) \big], \mathbf{G} = \big[\mathsf{K} \big(\mu_{\hat{P}_i}, \mu_{\hat{P}_j} \big) \big], \mathbf{y} = [y_i]. \end{split}$$

Challenges

- Inner product of distributions: $K(\mu_{\hat{P}_i}, \mu_{\hat{P}_i}) = ?$
- How many samples/bag?

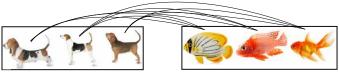
Regression on labelled bags: similarity

Let us define an inner product on distributions $[\tilde{K}(P,Q)]$:

1 Set kernel:
$$A = \{a_i\}_{i=1}^N$$
, $B = \{b_j\}_{j=1}^N$.

$$\tilde{K}(A,B) = \frac{1}{N^2} \sum_{i,j=1}^{N} k(a_i, b_j) = \Big\langle \underbrace{\frac{1}{N} \sum_{i=1}^{N} \varphi(a_i)}_{\text{feature of bag } A}, \frac{1}{N} \sum_{j=1}^{N} \varphi(b_j) \Big\rangle.$$

Remember:



Regression on labelled bags: similarity

Let us define an inner product on distributions $[\tilde{K}(P, Q)]$:

③ Set kernel:
$$A = \{a_i\}_{i=1}^N$$
, $B = \{b_j\}_{j=1}^N$.

$$\tilde{K}(A,B) = \frac{1}{N^2} \sum_{i,j=1}^{N} k(a_i, b_j) = \Big\langle \underbrace{\frac{1}{N} \sum_{i=1}^{N} \varphi(a_i)}_{\text{feature of bag } A}, \frac{1}{N} \sum_{j=1}^{N} \varphi(b_j) \Big\rangle.$$

Taking 'limit' [Berlinet and Thomas-Agnan, 2004, Altun and Smola, 2006, Smola et al., 2007]: a ~ P, b ~ Q

$$\tilde{K}(P,Q) = \mathbb{E}_{a,b}k(a,b) = \left\langle \mathbb{E}_{a}\varphi(a), \mathbb{E}_{b}\varphi(b) \right\rangle.$$
feature of distribution $P = :\mu_P$

Example (Gaussian kernel): $k(\mathbf{a}, \mathbf{b}) = e^{-\|\mathbf{a}-\mathbf{b}\|_2^2/(2\sigma^2)}$.

Quality of estimator, baseline:

$$\mathcal{R}(f) = \mathbb{E}_{(\mu_P, y) \sim \rho} [f(\mu_P) - y]^2,$$

 $f_{
ho} = \mathsf{best regressor.}$

How many samples/bag to get the accuracy of f_{ρ} ? Possible?

Assume (for a moment): $f_{\rho} \in \mathcal{H}(K)$.

Our result: how many samples/bag

• Known [Caponnetto and De Vito, 2007]: best/achieved rate

$$\mathcal{R}(f_{\mathsf{z}}^{\lambda}) - \mathcal{R}(f_{\rho}) = \mathcal{O}\left(\ell^{-\frac{bc}{bc+1}}\right),$$

b – size of the input space, c – smoothness of f_{ρ} .

• Known [Caponnetto and De Vito, 2007]: best/achieved rate

$$\mathcal{R}(f_{\mathsf{z}}^{\lambda}) - \mathcal{R}(f_{\rho}) = \mathcal{O}\left(\ell^{-\frac{bc}{bc+1}}\right)$$

b – size of the input space, c – smoothness of f_{ρ} .

• Let $N = \tilde{\mathcal{O}}(\ell^a)$. N: size of the bags. ℓ : number of bags.

Our result

• If $2 \le a$, then $f_{\hat{z}}^{\lambda}$ attains the best achievable rate.

• Known [Caponnetto and De Vito, 2007]: best/achieved rate

$$\mathcal{R}(f_{\mathsf{z}}^{\lambda}) - \mathcal{R}(f_{\rho}) = \mathcal{O}\left(\ell^{-\frac{bc}{bc+1}}\right)$$

b – size of the input space, c – smoothness of f_{ρ} .

• Let $N = \tilde{\mathcal{O}}(\ell^a)$. N: size of the bags. ℓ : number of bags.

Our result

• If $2 \le a$, then $f_{\hat{z}}^{\lambda}$ attains the best achievable rate.

• In fact,
$$a = \frac{b(c+1)}{bc+1} < 2$$
 is enough.

• Consequence: regression with set kernel is consistent.

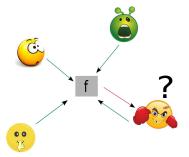
We perform on par with the state-of-the-art, hand-engineered method.

- Zhuang Wang, Liang Lan, Slobodan Vucetic. IEEE Transactions on Geoscience and Remote Sensing, 2012: $7.5 8.5 (\pm 0.1 0.6)$:
 - hand-crafted features.
- Our prediction accuracy: 7.81 (\pm 1.64).
 - no expert knowledge.
- Code in ITE: #2 on mloss,

https://bitbucket.org/szzoli/ite/

Related results

Distribution regression with random Fourier features



- Kernel EP [UAI-2015]:
 - distribution regression phrasing,
 - learn the message-passing operator for 'tricky' factors.

Distribution regression with random Fourier features

- Kernel EP [UAI-2015]:
 - distribution regression phrasing,
 - learn the message-passing operator for 'tricky' factors.
 - extends Infer.NET; speed \leftarrow RFF.

Distribution regression with random Fourier features

- Kernel EP [UAI-2015]:
 - distribution regression phrasing,
 - learn the message-passing operator for 'tricky' factors.
 - extends Infer.NET; speed \leftarrow RFF.
- Random Fourier features [NIPS-2015 (spotlight 3.65%)]:
 - exponentially tighter guarantee.

+Applications, with Gatsby students

- Bayesian manifold learning [NIPS-2015]:
 - App.: climate data \rightarrow weather station location.

- Fast, adaptive sampling method based on RFF [NIPS-2015]:
 - App.: approximate Bayesian computation, hyperparameter inference.

+ Applications, with Gatsby students

- Bayesian manifold learning [NIPS-2015]:
 - App.: climate data \rightarrow weather station location.
- Fast, adaptive sampling method based on RFF [NIPS-2015]:
 - App.: approximate Bayesian computation, hyperparameter inference.
- Interpretable 2-sample testing $[\rightarrow NIPS-2016]$:
 - App.:
 - $\bullet \ \ \text{random} \to \text{smart features,}$
 - discriminative for doc. categories, emotions.
 - empirical process theory (VC subgraphs).

Regression on

- bags/distributions:
 - minimax optimality,
 - set kernel is consistent.

• random Fourier features: exponentially tighter bounds.

Several applications (with open source code).

Acknowledgments: This work was supported by the Gatsby Charitable Foundation.

Why can we get consistency/rates? - intuition

Convergence of the mean embedding:

$$\left\|\mu_{P}-\mu_{\hat{P}}\right\|_{H}=\mathcal{O}\left(\frac{1}{\sqrt{N}}\right).$$

• Hölder property of K (0 < L, $0 < h \le 1$):

$$\left\| \mathsf{K}(\cdot,\mu_{\mathsf{P}}) - \mathsf{K}(\cdot,\mu_{\hat{\mathsf{P}}}) \right\|_{\mathcal{H}} \leq L \left\| \mu_{\mathsf{P}} - \mu_{\hat{\mathsf{P}}} \right\|_{H}^{h}.$$

• $f_{\hat{z}}^{\lambda}$ depends 'nicely' on $K(\mu_{\hat{P}}, \mu_{\hat{Q}}) = \left\langle K(\cdot, \mu_{\hat{P}}), K(\cdot, \mu_{\hat{Q}}) \right\rangle_{\mathcal{H}}$. [39 pages]

• Misspecified setting $(f_{\rho} \in L^2 \setminus \mathcal{H})$:

- Consistency: convergence to $\inf_{f \in \mathcal{H}} \|f f_{\rho}\|_{L^2}$.
- Smoothness on f_{ρ} : computational & statistical tradeoff.

Vector-valued output:

• Y: separable Hilbert space $\Rightarrow K(\mu_P, \mu_Q) \in \mathcal{L}(Y)$.

• Prediction on a test bag \hat{P} :

$$\hat{y}(\hat{P}) = \mathbf{g}^{\mathsf{T}}(\mathbf{G} + \ell \lambda \mathbf{I})^{-1} \mathbf{y}, \\ \mathbf{g} = [\mathcal{K}(\mu_{\hat{P}}, \mu_{\hat{P}_i})], \mathbf{G} = [\mathcal{K}(\mu_{\hat{P}_i}, \mu_{\hat{P}_i})], \mathbf{y} = [y_i].$$

Specifically: $Y = \mathbb{R} \Rightarrow \mathcal{L}(Y) = \mathbb{R}; Y = \mathbb{R}^d \Rightarrow \mathcal{L}(Y) = \mathbb{R}^{d \times d}$.

Other valid similarities

Recall: $\tilde{K}(P,Q) = \langle \mu_P, \mu_Q \rangle$.

	<i>К</i> _G	$ ilde{K}_e$	<i>К</i> _С
e	$\frac{\ \mu_P - \mu_Q\ ^2}{2\theta^2}$	$e^{-rac{\ \mu_P-\mu_Q\ }{2 heta^2}}$	$\left(1+\left\Vert \mu_{P}-\mu_{Q}\right\Vert ^{2}/ heta^{2} ight) ^{-1}$
	$ ilde{K}_t$		<i>K</i> _i
	$\left(1+\left\Vert \mu_{P}-\mu_{Q}\right\Vert ^{ heta} ight) ^{-1}$		$\left(\left\ \mu_{P}-\mu_{Q}\right\ ^{2}+\theta^{2}\right)^{-\frac{1}{2}}$

Functions of $\|\mu_P - \mu_Q\| \Rightarrow$ computation: similar to set kernel.

Altun, Y. and Smola, A. (2006).

Unifying divergence minimization and statistical inference via convex duality.

In Conference on Learning Theory (COLT), pages 139-153.

Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer.

Caponnetto, A. and De Vito, E. (2007).
 Optimal rates for regularized least-squares algorithm.
 Foundations of Computational Mathematics, 7:331–368.

Gärtner, T., Flach, P. A., Kowalczyk, A., and Smola, A. (2002).

Multi-instance kernels.

In International Conference on Machine Learning (ICML), pages 179–186.

🖥 Haussler, D. (1999).

Convolution kernels on discrete structures.

Technical report, Department of Computer Science, University of California at Santa Cruz. (http://cbse.soe.ucsc.edu/sites/default/files/

convolutions.pdf).

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007). A Hilbert space embedding for distributions.

In Algorithmic Learning Theory (ALT), pages 13–31.