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Motivation: 'Classical’ Information Theory

o Kullback-Leibler divergence:

pbotog | 2 [ a
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I (P) = KL(P,P; ®P>).
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Motivation: 'Classical’ Information Theory

o Kullback-Leibler divergence:
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@ Mutual information:
I (P) = KL(P,P; ®P»).

Properties:
Q@ I/P)>0. I(P)=0<P=P,®P,.
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Motivation: 'Classical’ Information Theory

o Kullback-Leibler divergence:

pbotog | 2 [ a

Rd

@ Mutual information:
I (P) = KL(P,P; ®P»).

Properties:
Q@ I/P)>0. I(P)=0<P=P,®P,.

It can be hard to estimate them. Alternatives? Applications? J
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Motivating Examples
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NLP

e Given: two categories of documents (Bayesian inference,
neuroscience).
e Task:

o test their distinguishability,
e most discriminative words — interpretability.
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Computer Vision

e Given: two sets of faces (happy, angry).
o Task:

e check if they are different,
o determine the most discriminative features/regions.
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Phrased as a Two-Sample Testing Task

o Given:
n iid. n .
o X ={x}; ~ P VY={yl}, Q.
o Example: x; = it" happy face, y; = j* sad face.

ii.d
~
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Phrased as a Two-Sample Testing Task

o Given:
n iid. n .
o X ={x}; ~ P VY={yl}, Q.
o Example: x; = it" happy face, y; = j* sad face.

ii.d
~

@ Problem: using X, Y test

Ho :P=Q, vs
Hlipi@.
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Dependency Testing of Media Annotations

@ We are given paired samples. Task: test independence.
@ Examples:
o (song, year of release) pairs
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Dependency Testing of Media Annotations

@ We are given paired samples. Task: test independence.
@ Examples:
o (song, year of release) pairs

e (video, caption) pairs
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Dependency Testing of Media Annotations

@ We are given paired samples. Task: test independence.
@ Examples:
o (song, year of release) pairs

e (video, caption) pairs

?
° {(Xivy/)};;l — Hy: ny = PXPy, Hi - ny # PXIP)y.
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Criminal Data Analysis — Goodness-of-Fit Testing

Given:
@ Density/model: p.
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Criminal Data Analysis — Goodness-of-Fit Testing

Given:
e Density/model: p.
e Samples: X = {x;}7_; ~ g (unknown).




Criminal Data Analysis — Goodness-of-Fit Testing

Given:

e Density/model: p.

e Samples: X = {x;}7_; ~ g (unknown).
Problem: using p, X test
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Dissemination, Code

o ITE toolbox:
https://bitbucket.org/szzoli/ite-in-python/
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https://bitbucket.org/szzoli/ite-in-python/
https://github.com/wittawatj/interpretable-test
.../fsic-test
.../kernel-gof

Dissemination, Code

o |TE toolbox:

https://bitbucket.org/szzoli/ite-in-python/

@ Linear-time testing
o two-sample (NIPS-2016, oral):
https://github.com/wittawatj/interpretable-test

Zoltdn Szabé Linear-Time Divergence Measures with Applications


https://bitbucket.org/szzoli/ite-in-python/
https://github.com/wittawatj/interpretable-test
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Dissemination, Code

o |TE toolbox:

https://bitbucket.org/szzoli/ite-in-python/
@ Linear-time testing
o two-sample (NIPS-2016, oral):
https://github.com/wittawatj/interpretable-test
e independence (ICML-2017):
.../fsic-test
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https://bitbucket.org/szzoli/ite-in-python/
https://github.com/wittawatj/interpretable-test
.../fsic-test
.../kernel-gof

Dissemination, Code

o ITE toolbox:
https://bitbucket.org/szzoli/ite-in-python/
@ Linear-time testing
o two-sample (NIPS-2016, oral):
https://github.com/wittawatj/interpretable-test
e independence (ICML-2017):
.../fsic-test
o goodness-of-fit (NIPS-2017, best paper award):
.../kernel-gof
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https://bitbucket.org/szzoli/ite-in-python/
https://github.com/wittawatj/interpretable-test
.../fsic-test
.../kernel-gof

Divergence & Independence Measures
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Distribution Representation: Examples

o Mean:
P EXNP[X].
@ Cumulative density function:

P— F(z) =P(x < 2)
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Distribution Representation: Examples

o Mean:
P EXNP[X].
@ Cumulative density function:

P F(z) = P(x < z) = Exapl(—o0,2) ().
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Distribution Representation: Examples

@ Mean:
P — Eyop[x].
@ Cumulative density function:
P F(z) = P(x < z) = Exapl(—o0,2) ().

@ Characteristic function:

P cp(z) = J e’ @ dP(x).
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Distribution Representation: Examples

o Mean:
P — Eyop[x].
@ Cumulative density function:
P F(z) = P(x < z) = Exapl(—o0,2) ().
o Characteristic function:

P cp(z) = J e’ @ dP(x).

@ Moment generating function:

P Mp(z) = f eZX)dP (x).
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Distribution Representation: Examples

o Mean:
P — Eyop[x].
@ Cumulative density function:
P F(z) = P(x < z) = Exapl(—o0,2) ().
o Characteristic function:

P cp(z) = J '@ AP (x).

@ Moment generating function:

P Mp(z) = f eZX)dP (x).




Distribution Representation

Wanted:

P pp = J@(X)le’(X)
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Distribution Representation

Wanted:

P pp = J@(X)GUP’(X)

@ How to choose ?

Zoltdn Szabé Linear-Time Divergence Measures with Applications



Distribution Representation

Wanted:

P pp = J@(X)GUP’(X)

@ How to choose ?

@ We use kernels. — Computational tractability: v/

° kx,y) = (p(x), p(¥))-
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Distribution Representation

Wanted:

P pp = J@(X)GUP’(X)

@ How to choose ?

@ We use kernels. — Computational tractability: v/

o k(x.y) = {p(x). £(y)). Examples (v >0, p e Z*):

ko(x,y) = ((x,9) +7)P,  kelx,y) = e VI3,

1
ke(va) = ei’y”X7yH2) kC(X7y) =1+ . 2
Ylx = yl3
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KL Divergence and Mutual Information Alternatives

@ Mean embedding:

iy = wa) dP(x)
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KL Divergence and Mutual Information Alternatives

@ Mean embedding:

puk(P) = jx o(x) dP(x) € Hy = span (k(-,x) : x € X).

k(')X)
@ Maximum mean discrepancy: A

MMDy (P, Q) = ||k (P) — pk(Q) ]3¢, -
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KL Divergence and Mutual Information Alternatives

@ Mean embedding:

puk(P) = fx o(x) dP(x) € Hy = span (k(-,x) : x € X).

k(')X)
@ Maximum mean discrepancy: A

MMDy (P, Q) = [px(P) — s (Q)] ¢, -
@ Hilbert-Schmidt independence criterion, k = k1 ® ko:

HSIC, (P) = MMDy (P,P; ® P5),
(kl ® k2) ((Xay)) (X/7.y/)) = kl(X7X/)k2(.y7y/)‘
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Estimation of MMD and HSIC

2 1 2 <
MMD = = 2 k(xi, x;) + = Z k(yi,yj) — 2 Z k(xi, yj)
ij=1 ij=1 ij=1
within-block similarity between-blc;::k similarity
— 1 /. .
HSIC? = = <GX,Gy>F
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Estimation of MMD and HSIC

n

— 2 2
MMD :n2 Ekx,,xj = Z k(yi,yj) — ?Zk(x,-,yj)
ij=1 ij=1 ij=1
W|th|n-b|ock similarity between-block similarity

N 1 /. . .
ASIC? = =5 (6,6, ) |Gy = [ka(xi, )17
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Estimation of MMD and HSIC

n

2 2
MMD = n2 2 k(xi, x;j) = Z k(yi,yj) — 2 Z k(xi, yj)
ij=1 ij=1 ij=1
W|th|n-b|ock similarity between-blc:::k similarity
— 1 - o~ ~
HSIC? = = <GX,Gy>F,GX = [ki(xi,x)]?j—1, Gx = HGH, H =1,
Bottleneck

Computational time: O(n?).
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Linear-Time "MMD'

Idea [Chwialkowski et al., 2015a]

Replace ||-[|5¢, in MMD with [-[|;2(,,y. Metric a.s. for analytic &
characteristic k = k.

J
p(P,Q) = Z pe(vj) — po(vj)?, V= {Vj}lea

_/:1
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Linear-Time "MMD'

Idea [Chwialkowski et al., 2015a]

Replace ||-[|5¢, in MMD with [-[|;2(,,y. Metric a.s. for analytic &
characteristic k = k.

Plug-in estimate: O(n)-time.

J
p(P,Q) = j Z pe(vj) — po(vj)?, V= {Vj}lea

ﬁ(P* Q) = ] - XI7VJ yl)vj)]j!:la

~
=:2(x;,yi)
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Linear-Time "MMD'

Idea [Chwialkowski et al., 2015a]
Replace ||-|5¢, in MMD with [|-| 2y
characteristic k = k.

. Metric a.s. for analytic &

Plug-in estimate: O(n)-time. Whitened test statistic: x5 null

J
Z pe(vj) — po(vj)?, V= {Vj}lea

P — _
z[z 1
(P Q) J ; XI7VJ y/,Vj)]JJ:y
- = Z(z yi)

j\n: nirz—E;lzm 2n = cov ({Z(Xi,y,')}f':ﬂ )
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Linear-Time "MMD'

Idea [Chwialkowski et al., 2015a],

Replace ||-[|5¢, in MMD with [-[|;2(,,y. Metric a.s. for analytic &
characteristic k = k.

Plug-in estimate: O(n)-time. Whitened test statistic: X3 null. Power opt.

J
p(P,Q) = j Z pe(vj) — po(vj)?, V= {Vj}lea
z[z 1
p(e,Q) = 22 = 25 ko) — kg vl
- =:2(x;,¥i)
j\n: nirz—E;lzm 3n= cov ({Z(Xi,y,')}f':ﬁ )
(0, V*) = argmax ), A=nmm’ 2 Im.
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Linear-Time "HSIC' [Jitkrittum et al., 2017]

Use different norm of the witness function (u):

HSIC(x,y) = ll1xy — bix ®NyH9(kl®k2 y UV, W) = g (V, W) = (V) (W),
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Linear-Time "HSIC' [Jitkrittum et al., 2017]

Use different norm of the witness function (u):

HSIC(x,y) = llpxy — px @ iy |5 Hyy ko u(v, W) = fixy (V, W) — fix (V) 1y (W),

J
FSIC(x,y) = J Z (v}, w;j), V= {(vj,w))}i_;,
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Linear-Time "HSIC' [Jitkrittum et al., 2017]

Use different norm of the witness function (u):

HSIC(x,y) = ll1xy — 1x ® piy |l Hyy ko u(v, W) = fixy (V, W) — fix (V) 1y (W),

J
FSIC(x,y) = J Z (v}, w;j), V= {(vj,w))}i_;,

= [l 2w
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Linear-Time "HSIC' [Jitkrittum et al., 2017]

Use different norm of the witness function (u):

HSIC(x,y) = llpxy — px @ iy |5 Hyy ko u(v, W) = fixy (V, W) — fix (V) 1y (W),

J
FSIC(x,y) = Z (vj,wj), V= {(erwj)}le ’

HUHsz)

e Whitening = x?3 null. Computation: O(n). Power optimization.
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Linear-Time "HSIC' [Jitkrittum et al., 2017]

Use different norm of the witness function (u):

HSIC(x,y) = llpxy — px @ iy |5 Hyy ko u(v, W) = fixy (V, W) — fix (V) 1y (W),

J
FSIC(x,y) = J Z (v}, w;j), V= {(vj,w))}i_;,

= [l 2w
e Whitening = x3 null. Computation: O(n). Power optimization.
o Alternative view: u(v,w) = covxy(ki(x,v), ka(y,w)) = (v,w)™ entry of

Coy = Eyy [p1(x) @ @2(y)] — px & fhy-
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We
@ assumed analytic, characteristic, bounded kernels.
o replaced the RKHS norm with L2(V) norm.

In linear-time '"MMD' and "HSIC’, respectively:

P=Q<« pr—g=0,
P = Pl ®P2 = HP—PiQP, = 0.
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Goodness-of-Fit

Let d = 1. Stein operator of p

o = [ogp(] £ + ().
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Goodness-of-Fit

Let d = 1. Stein operator of p
PG ()]
T,f)(x) = ———=
( P )( ) p(X)
Under lim o f(x)p(x) = O (integration by parts):

= [log p(x)]'F(x) + £'(x).

p=q=Eq,(Tyf)(x)=0.
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Goodness-of-Fit

Let d = 1. Stein operator of p
PG ()]
T,f)(x) = ———=
( P )( ) p(X)
Under lim o f(x)p(x) = O (integration by parts):

= [log p(x)]'F(x) + £'(x).

p=q=Eq,(Tyf)(x)=0.

Let us take the unit ball of H:

sup Exq(Tpf)(x) = gl , g(v) =Exe
||fH%k<1 e ngk/ 7 p(X>

g is the argsup
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Goodness-of-Fit

Let d = 1. Stein operator of p
PG ()]
T,f)(x) = ———=
( P )( ) p(X)
Under lim o f(x)p(x) = O (integration by parts):

= [log p(x)]'F(x) + £'(x).

p=q=Eq,(Tyf)(x)=0.

Let us take the unit ball of H:
sup Exg(Tpf)(x) = lgly, - 8(v) =Exs
o, <t Nl T o(x)

g is the argsup

For universal k:

‘p =g < g = 0 (witness) ‘
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Goodness-of-Fit !

Let d = 1. Stein operator of p
PG ()]
T,f)(x) = ———=
( P )( ) p(X)
Under lim o f(x)p(x) = O (integration by parts):

= [log p(x)]'F(x) + £'(x).

p=q=Eq,(Tyf)(x)=0.

Let us take the unit ball of H:
sup Exg(Tpf)(x) = lgly, - 8(v) =Exs
o, <t Nl T o(x)

g is the argsup

For universal k:

‘p =g < g = 0 (witness) ‘

L2(V) trick goes through.



Numerical lllustrations
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2-Sample Testing: Parameter Settings

o Gaussian kernel (o). @ =0.01. J = 1. Repeat 500 trials.
@ Report rejection rate of Hy
o Compare 4 methods
o ME-full: Optimize V and o.
o ME-grid: Optimize 0. Random V [Chwialkowski et al., 2015b].
o MMD-quad: Test with quadratic-time MMD [Gretton et al., 2012].
o MMD-lin: Test with linear-time MMD [Gretton et al., 2012].
@ Optimize kernels to power in MMD-lin, MMD-quad.

Zoltdn Szabé Linear-Time Divergence Measures with Applications



NLP: Discrimination of Document Categories

@ 5903 NIPS papers (1988-2015).
@ Keyword-based category assignment into 4 groups:

e Bayesian inference, Deep learning, Learning theory, Neuroscience

@ d = 2000 nouns. TF-IDF representation.

Problem nte ME-full  ME-grid MMD-quad MMD-lin
1. Bayes-Bayes 215 .012 .018 .022 .008
2. Bayes-Deep 216 .954 .034 .906 .262
3. Bayes-Learn 138 .990 174 1.00 .238
4. Bayes-Neuro 394 1.00 .300 .952 .972
5. Learn-Deep 149 .956 .052 .876 .500
6. Learn-Neuro 146 .960 572 1.00 .538

o Performance of ME-full [O(n)] is comparable to MMD-quad [O(n?)].
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NLP: Most/Least Discriminative Words

o Aggregating over trials; example: 'Bayes-Neuro'.
@ Most discriminative words:
spike, markov, cortex, dropout, recurr, iii, gibb.
o learned test locations: highly interpretable,

e 'markov’, 'gibb’ (<= Gibbs): Bayesian inference,
e 'spike’, 'cortex’: key terms in neuroscience.
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NLP: Most/Least Discriminative Words

o Aggregating over trials; example: 'Bayes-Neuro'.

@ Least discriminative ones:

circumfer, bra, dominiqu, rhino, mitra, kid, impostor.
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Distinguish Positive/Negative Emotions

e Karolinska Directed Emotional Faces (KDEF) [Lundqvist et al., 1998].
@ 70 actors = 35 females and 35 males.
@ d =48 x 34 = 1632. Grayscale. Pixel features.

-I—:...—:...

happy  neutral surprised afraid angry disgusted

Problem nt® \ ME-full ME-grid MMD-quad MMD-lin
+vs. £ 201 .010 .012 .018 .008
+vs. — 201 .998 .656 1.00 578

@ Learned test location (averaged) =
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Independence Testing: Parameters

@ ki, kp: Gaussian. J = 10.
@ Report: rejection rate of Hp.
o Compare 6 methods:

Method Description Tuning Test size  Complexity
NFSIC-opt  Studied Gradient descent  n/2 O(n)
NFSIC-med  No tuning Random locations n O(n)
QHSIC Full HSIC Median heuristic ~ n O(n?)
NyHSIC Nystrom + HSIC ~ Median heuristic ~ n O(n)
FHSIC RFF + HSIC Median heuristic ~ n O(n)

RDC RFF + CCA Median heuristic ~ n O(nlog n)
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Demo-1: Million Song Data

Song (x) vs. year of release (y).

@ Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].

e x € R%: audio features.

o Left: break (x,y) pairs, i.e. Hp; right: Hi is true.
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Demo-1: Million Song Data

Song (x) vs. year of release (y).
@ Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
e x € R%: audio features.
o Left: break (x,y) pairs, i.e. Hp; right: Hi is true.

‘-—- NFSIC-opt =@ NFSIC-med  e— QHSIC =~ NyHSIC +—e FHSIC +— RDC

0.025 — - . 1.0F
0.020 0.91 1
. + 0.8f 1
e [
5 0.015 §0.7— 1
£ 0.010 7 06f : 1
o U.
& Sosf “ f
0.005 0.4} 1
0.3} « 1
0.000— : : - - -
500 1000 1500 2000 500 1000 1500 2000
Sample size n Sample size n
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Demo-2: Videos and Captions

Youtube video (x) vs. caption (y).

@ VideoStory46K [Habibian et al., 2014]

o x € R?%90: Fisher vector encoding of motion boundary
histograms [Wang and Schmid, 2013].

o y € R1®8: pag of words. TF.

o Left: break (x,y) pairs, i.e. Ho; right: Hj is true.
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Demo-2: Videos and Captions

Youtube video (x) vs. caption (y).
@ VideoStory46K [Habibian et al., 2014]
o x € R?%90: Fisher vector encoding of motion boundary
histograms [Wang and Schmid, 2013].
o y € R1®8: pag of words. TF.
o Left: break (x,y) pairs, i.e. Ho; right: Hj is true.

‘-—- NFSIC-opt  ®-@ NFSIC-med  e— QHSIC +—~ NyHSIC +— FHSIC +— RDC

0.018 : . 1.0
0.016}
0.8}
. 0.014{ =
2 0.012f £ 0.6/
(] o
-+ 0.010 Q
(] +
20.008} 0 0.4f
= F =
0.006 0.2
0.004}
0'O%JOO 2000 6000 8000 02%00 4000 6000 8000
Sample size n Sample size n
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Goodness-of-Fit Demo
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Robbery events (lat/long coordinates) ~ g.
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Model p: 2-component Gaussian mixture.

Linear-Time Divergence Measures with Applications

Zoltan Szabé



Score surface
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* = optimized v.
No robbery in Lake Michigan.

Zoltdn Szabé Linear-Time Divergence Measures with Applications



Model p: 10-component Gaussian mixture.
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Capture the right tail better.
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Still, does not capture the left tail.
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Still, does not capture the left tail.
Sharp boundary (geography of Chicago) # Gaussian tails. —
interpretable features
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@ Hypothesis testing:

e two-sample, independence, goodness-of-fit.
@ MMD, HSIC: expensive = proposed methods

e linear-time.

e adaptive: power/Bahadur-efficiency — max.
@ Applications:

o NLP, computer vision,
e song-year, video-caption,
e criminal data analysis.
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Thank you for the attention!
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