Shape-Constrained Kernel Machines

Zoltán Szabó

Joint work with: Pierre-Cyril Aubin-Frankowski @ MINES ParisTech

Department of Statistics
Texas A\&M University
February 12, 2021

Shape constraints

Pattern

$$
0 \leq D f(x) \quad \forall x .
$$

Shape constraints

Pattern

$$
0 \leq D f(x) \quad \forall x .
$$

Examples:
(1) non-negativity: $0 \leq f(x)$,

Shape constraints

Pattern

$$
0 \leq D f(x) \quad \forall x .
$$

Examples:
(1) non-negativity: $0 \leq f(x)$,
(2) monotonicity $(\nearrow): 0 \leq f^{\prime}(x)$,

Shape constraints

Pattern

$$
0 \leq D f(x) \quad \forall x .
$$

Examples:
(1) non-negativity: $0 \leq f(x)$,
(2) monotonicity $(\nearrow): 0 \leq f^{\prime}(x)$,
(3) convexity: $0 \leq f^{\prime \prime}(x)$,

Shape constraints

Pattern

$$
0 \leq D f(x) \quad \forall x .
$$

Examples:
(1) non-negativity: $0 \leq f(x)$,
(2) monotonicity $(\nearrow): 0 \leq f^{\prime}(x)$,
(3) convexity: $0 \leq f^{\prime \prime}(x)$,
(4) n-monotonicity: $0 \leq f^{(n)}(x)$,

Shape constraints

Pattern

$$
0 \leq D f(x) \quad \forall x .
$$

Examples:
(1) non-negativity: $0 \leq f(x)$,
(2) monotonicity $(\nearrow): 0 \leq f^{\prime}(x)$,
(3) convexity: $0 \leq f^{\prime \prime}(x)$,
(4) n-monotonicity: $0 \leq f^{(n)}(x)$,
(3) ($n-1$)-alternating monotonicity: for $n \geq 2$

$$
(-1)^{j} f^{(j)}: \geq 0, \nearrow \text { and convex } \forall j \in \llbracket 0, n-2 \rrbracket .
$$

Example: generator of a d-variate Archimedean copula is ($d-2$)-alternating monotone.

Examples continued

(0) Monotonicity w.r.t. partial ordering $(u \preccurlyeq v \Rightarrow f(u) \leq f(v))$:

$$
u \preccurlyeq v \text { iff }
$$

- $u_{i} \leq v_{i} \quad$ ($\forall i$; product ordering),
- $\sum_{j \in[i]} u_{j} \leq \sum_{j \in[i]} v_{j}$ ($\forall i$; unordered weak majorization).

Examples continued

(6) Monotonicity w.r.t. partial ordering $(u \preccurlyeq v \Rightarrow f(u) \leq f(v))$:

$$
\begin{aligned}
& 0 \leq \partial^{\mathrm{e}_{j}} f(x), \quad(\forall j \in[d], \forall x) \\
& 0 \leq \partial^{\mathrm{e}_{d}} f(x) \leq \ldots \leq \partial^{\mathrm{e}_{1}} f(x) \quad(\forall x)
\end{aligned}
$$

$u \preccurlyeq v$ iff

- $u_{i} \leq v_{i} \quad$ ($\forall i$; product ordering),
- $\sum_{j \in[i]} u_{j} \leq \sum_{j \in[i]} v_{j}$ ($\forall i$; unordered weak majorization).

Examples continued

(6) Monotonicity w.r.t. partial ordering $(u \preccurlyeq v \Rightarrow f(u) \leq f(v))$:

$$
\begin{aligned}
& 0 \leq \partial^{\mathrm{e}_{j}} f(x), \quad(\forall j \in[d], \forall x), \\
& 0 \leq \partial^{\mathrm{e}_{d}} f(x) \leq \ldots \leq \partial^{\mathrm{e}_{1}} f(x) \quad(\forall x)
\end{aligned}
$$

$u \preccurlyeq v$ iff

- $u_{i} \leq v_{i} \quad$ ($\forall i$; product ordering),
- $\sum_{j \in[i]} u_{j} \leq \sum_{j \in[i]} v_{j}$ ($\forall i$; unordered weak majorization).
(1) Supermodularity:

$$
0 \leq \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}} \quad(\forall i \neq j \in[d], \forall x)
$$

i.e. $f(u \vee v)+f(u \wedge v) \geq f(u)+f(v)$ for all $u, v \in \mathbb{R}^{d}$.

Shape constraints are omnipresent [Johnson and Jiang, 2018, Guntuboyina and Sen, 2018, Chetverikov et al., 2018]

- Economics:
- utility functions are \nearrow and concave [Matzkin, 1991].

Shape constraints are omnipresent [Johnson and Jiang, 2018, Guntuboyina and Sen, 2018, Chetverikov et al., 2018]

- Economics:
- utility functions are \nearrow and concave [Matzkin, 1991].
- demand functions of normal goods are downward sloping [Lewbel, 2010, Blundell et al., 2012],

Shape constraints are omnipresent

[Johnson and Jiang, 2018, Guntuboyina and Sen, 2018, Chetverikov et al., 2018]

- Economics:
- utility functions are \nearrow and concave [Matzkin, 1991].
- demand functions of normal goods are downward sloping [Lewbel, 2010, Blundell et al., 2012],
- production functions are concave [Varian, 1984] or S-shaped [Yagi et al., 2020].

Shape constraints are omnipresent

[Johnson and Jiang, 2018, Guntuboyina and Sen, 2018, Chetverikov et al., 2018]

- Economics:
- utility functions are \nearrow and concave [Matzkin, 1991].
- demand functions of normal goods are downward sloping [Lewbel, 2010, Blundell et al., 2012],
- production functions are concave [Varian, 1984] or S-shaped [Yagi et al., 2020].
- panel multinomial choice problems [Shi et al., 2018]: cyclic monotonicity ,

Shape constraints are omnipresent

[Johnson and Jiang, 2018, Guntuboyina and Sen, 2018, Chetverikov et al., 2018]

- Economics:
- utility functions are \nearrow and concave [Matzkin, 1991].
- demand functions of normal goods are downward sloping [Lewbel, 2010, Blundell et al., 2012],
- production functions are concave [Varian, 1984] or S-shaped [Yagi et al., 2020].
- panel multinomial choice problems [Shi et al., 2018]: cyclic monotonicity,
- single index model: most link functions are monotone
[Li and Racine, 2007, Chen and Samworth, 2016, Balabdaoui et al., 2019].

Shape constraints are omnipresent
 [Johnson and Jiang, 2018, Guntuboyina and Sen, 2018, Chetverikov et al., 2018]

- Economics:
- utility functions are \nearrow and concave [Matzkin, 1991].
- demand functions of normal goods are downward sloping [Lewbel, 2010, Blundell et al., 2012],
- production functions are concave [Varian, 1984] or S-shaped [Yagi et al., 2020].
- panel multinomial choice problems [Shi et al., 2018]: cyclic monotonicity,
- single index model: most link functions are monotone
[Li and Racine, 2007, Chen and Samworth, 2016, Balabdaoui et al., 2019].
- Biology (monotone regression): identify genome interactions [Luss et al., 2012], dose-response studies [Hu et al., 2005].

Few applications

- Statistics: quantile function \nearrow w.r.t. the quantile level, pdfs are non-negative and often log-concave.

Few applications

- Statistics: quantile function w.r.t. the quantile level, pdfs are non-negative and often log-concave.
- Finance:
- European and American call option prices: convex \& monotone in the underlying stock price and \nearrow in volatility [Aït-Sahalia and Duarte, 2003].

Few applications

- Statistics: quantile function \nearrow w.r.t. the quantile level, pdfs are non-negative and often log-concave.
- Finance:
- European and American call option prices: convex \& monotone in the underlying stock price and \nearrow in volatility [Aït-Sahalia and Duarte, 2003].
- RL and stochastic optimization: value functions are often convex [Keshavarz et al., 2011, Shapiro et al., 2014].

Few applications

- Statistics: quantile function \nearrow w.r.t. the quantile level, pdfs are non-negative and often log-concave.
- Finance:
- European and American call option prices: convex \& monotone in the underlying stock price and \nearrow in volatility [Aït-Sahalia and Duarte, 2003].
- RL and stochastic optimization: value functions are often convex [Keshavarz et al., 2011, Shapiro et al., 2014].
- Supply chain models, stochastic multi-period inventory problems, pricing models and game theory: supermodularity [Topkis, 1998, Simchi-Levi et al., 2014].

Typical setting: supervised learning

- Find $f \in \mathcal{H}$ such that $f\left(x_{n}\right) \approx y_{n}, 0 \leq \operatorname{Df}(\mathrm{x}) \forall x \in K$.

Typical setting: supervised learning

- Find $f \in \mathcal{H}$ such that $f\left(x_{n}\right) \approx y_{n}, 0 \leq \operatorname{Df}(\mathrm{x}) \forall x \in K$.
- Various exciting approaches with asymptotic guarantees [Han and Wellner, 2016, Chen and Samworth, 2016, Freyberger and Reeves, 2018, Lim, 2020, Deng and Zhang, 2020, Kur et al., 2020], but
(1) they are often 'soft': restriction at finite many points,

Typical setting: supervised learning

- Find $f \in \mathcal{H}$ such that $f\left(x_{n}\right) \approx y_{n}, 0 \leq \operatorname{Df}(\mathrm{x}) \forall x \in K$.
- Various exciting approaches with asymptotic guarantees [Han and Wellner, 2016, Chen and Samworth, 2016, Freyberger and Reeves, 2018, Lim, 2020, Deng and Zhang, 2020, Kur et al., 2020], but
(1) they are often 'soft': restriction at finite many points,
(2) use simplistic function classes: polynomials, polynomial splines,

Typical setting: supervised learning

- Find $f \in \mathcal{H}$ such that $f\left(x_{n}\right) \approx y_{n}, 0 \leq \operatorname{Df}(\mathrm{x}) \forall x \in K$.
- Various exciting approaches with asymptotic guarantees [Han and Wellner, 2016, Chen and Samworth, 2016, Freyberger and Reeves, 2018, Lim, 2020, Deng and Zhang, 2020, Kur et al., 2020], but
(1) they are often 'soft': restriction at finite many points,
(2) use simplistic function classes: polynomials, polynomial splines,
(3) apply hard-wired parameterizations: exponential, quadratic, or

Typical setting: supervised learning

- Find $f \in \mathcal{H}$ such that $f\left(x_{n}\right) \approx y_{n}, 0 \leq \operatorname{Df}(\mathrm{x}) \forall x \in K$.
- Various exciting approaches with asymptotic guarantees [Han and Wellner, 2016, Chen and Samworth, 2016, Freyberger and Reeves, 2018, Lim, 2020, Deng and Zhang, 2020, Kur et al., 2020], but
(1) they are often 'soft': restriction at finite many points,
(2) use simplistic function classes: polynomials, polynomial splines,
(3) apply hard-wired parameterizations: exponential, quadratic, or
(9) only work for (a few) fixed Ds.

Typical setting: supervised learning

- Find $f \in \mathcal{H}$ such that $f\left(x_{n}\right) \approx y_{n}, 0 \leq \operatorname{Df}(\mathrm{x}) \forall x \in K$.
- Various exciting approaches with asymptotic guarantees [Han and Wellner, 2016, Chen and Samworth, 2016, Freyberger and Reeves, 2018, Lim, 2020, Deng and Zhang, 2020, Kur et al., 2020], but
(1) they are often 'soft': restriction at finite many points,
(2) use simplistic function classes: polynomials, polynomial splines,
(3) apply hard-wired parameterizations: exponential, quadratic, or
(9) only work for (a few) fixed Ds.

Today: optimization framework

 rich \mathcal{H}, hard $(\forall x \in K)$ shape constraints, modularity in D.
Typical setting: supervised learning

- Find $f \in \mathcal{H}$ such that $f\left(x_{n}\right) \approx y_{n}, 0 \leq \operatorname{Df}(\mathrm{x}) \forall x \in K$.
- Various exciting approaches with asymptotic guarantees [Han and Wellner, 2016, Chen and Samworth, 2016, Freyberger and Reeves, 2018, Lim, 2020, Deng and Zhang, 2020, Kur et al., 2020], but
(1) they are often 'soft': restriction at finite many points,
(2) use simplistic function classes: polynomials, polynomial splines,
(3) apply hard-wired parameterizations: exponential, quadratic, or
(9) only work for (a few) fixed Ds.

Today: optimization framework

 rich \mathcal{H}, hard $(\forall x \in K)$ shape constraints, modularity in D.Towards flexible $\mathcal{H}-s$

Kernel motivation

- $\ln \mathbb{R}^{d}:\left\langle\mathrm{x}, \mathrm{x}^{\prime}\right\rangle=\sum_{i \in[d]} x_{i} x_{i}^{\prime} \Rightarrow\left\|\mathrm{x}-\mathrm{x}^{\prime}\right\|_{2}$ and $\varangle\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$.

Kernel motivation

- In $\mathbb{R}^{d}:\left\langle\mathrm{x}, \mathrm{x}^{\prime}\right\rangle=\sum_{i \in[d]} x_{i} x_{i}^{\prime} \Rightarrow\left\|\mathrm{x}-\mathrm{x}^{\prime}\right\|_{2}$ and $\varangle\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$.
- Nonlinear features $(d=2)$:

$$
\begin{aligned}
\varphi(x) & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right), \\
\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle & =\left\langle\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right],\left[\begin{array}{c}
\left(x_{1}^{\prime}\right)^{2} \\
\sqrt{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right) \\
\left(x_{2}^{\prime}\right)^{2}
\end{array}\right]\right\rangle
\end{aligned}
$$

Kernel motivation

- In $\mathbb{R}^{d}:\left\langle\mathrm{x}, \mathrm{x}^{\prime}\right\rangle=\sum_{i \in[d]} x_{i} x_{i}^{\prime} \Rightarrow\left\|\mathrm{x}-\mathrm{x}^{\prime}\right\|_{2}$ and $\varangle\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$.
- Nonlinear features $(d=2)$:

$$
\begin{aligned}
\varphi(\mathrm{x}) & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right), \\
\left\langle\varphi(\mathrm{x}), \varphi\left(\mathrm{x}^{\prime}\right)\right\rangle & =\left\langle\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right],\left[\begin{array}{c}
\left(x_{1}^{\prime}\right)^{2} \\
\sqrt{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right) \\
\left(x_{2}^{\prime}\right)^{2}
\end{array}\right]\right\rangle \\
& =x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+\underbrace{\sqrt{2} \sqrt{2}}_{2} x_{1} x_{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right)+x_{2}^{2}\left(x_{2}^{\prime}\right)^{2}
\end{aligned}
$$

Kernel motivation

- In $\mathbb{R}^{d}:\left\langle\mathrm{x}, \mathrm{x}^{\prime}\right\rangle=\sum_{i \in[d]} x_{i} x_{i}^{\prime} \Rightarrow\left\|\mathrm{x}-\mathrm{x}^{\prime}\right\|_{2}$ and $\varangle\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$.
- Nonlinear features $(d=2)$:

$$
\begin{aligned}
\varphi(\mathrm{x}) & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right), \\
\left\langle\varphi(\mathrm{x}), \varphi\left(\mathrm{x}^{\prime}\right)\right\rangle & =\left\langle\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right],\left[\begin{array}{c}
\left(x_{1}^{\prime}\right)^{2} \\
\sqrt{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right) \\
\left(x_{2}^{\prime}\right)^{2}
\end{array}\right]\right\rangle \\
& =x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+\underbrace{\sqrt{2} \sqrt{2}}_{2} x_{1} x_{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right)+x_{2}^{2}\left(x_{2}^{\prime}\right)^{2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}
\end{aligned}
$$

Kernel motivation

- In $\mathbb{R}^{d}:\left\langle\mathrm{x}, \mathrm{x}^{\prime}\right\rangle=\sum_{i \in[d]} x_{i} x_{i}^{\prime} \Rightarrow\left\|\mathrm{x}-\mathrm{x}^{\prime}\right\|_{2}$ and $\varangle\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$.
- Nonlinear features $(d=2)$:

$$
\begin{aligned}
\varphi(\mathrm{x}) & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right), \\
\left\langle\varphi(\mathrm{x}), \varphi\left(\mathrm{x}^{\prime}\right)\right\rangle & =\left\langle\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right],\left[\begin{array}{c}
\left(x_{1}^{\prime}\right)^{2} \\
\sqrt{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right) \\
\left(x_{2}^{\prime}\right)^{2}
\end{array}\right]\right\rangle \\
& =x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+\underbrace{\sqrt{2} \sqrt{2}}_{2} x_{1} x_{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right)+x_{2}^{2}\left(x_{2}^{\prime}\right)^{2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left\langle\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]\right\rangle^{2}=\left\langle x, x^{\prime}\right\rangle^{2}=: k\left(x, x^{\prime}\right) .
\end{aligned}
$$

Kernel motivation

- In $\mathbb{R}^{d}:\left\langle\mathrm{x}, \mathrm{x}^{\prime}\right\rangle=\sum_{i \in[d]} x_{i} x_{i}^{\prime} \Rightarrow\left\|\mathrm{x}-\mathrm{x}^{\prime}\right\|_{2}$ and $\varangle\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$.
- Nonlinear features $(d=2)$:

$$
\begin{aligned}
\varphi(\mathrm{x}) & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right), \\
\left\langle\varphi(\mathrm{x}), \varphi\left(\mathrm{x}^{\prime}\right)\right\rangle & =\left\langle\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right],\left[\begin{array}{c}
\left(x_{1}^{\prime}\right)^{2} \\
\sqrt{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right) \\
\left(x_{2}^{\prime}\right)^{2}
\end{array}\right]\right\rangle \\
& =x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+\underbrace{\sqrt{2} \sqrt{2}}_{2} x_{1} x_{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right)+x_{2}^{2}\left(x_{2}^{\prime}\right)^{2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left\langle\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]\right\rangle^{2}=\left\langle x, x^{\prime}\right\rangle^{2}=: k\left(x, x^{\prime}\right) .
\end{aligned}
$$

$$
\left\langle x, x^{\prime}\right\rangle^{d}=\left\langle\varphi(\mathrm{x}), \varphi\left(\mathrm{x}^{\prime}\right)\right\rangle: \varphi(\mathrm{x})=d \text {-order polynomial. } \Rightarrow
$$

Kernel motivation

- In $\mathbb{R}^{d}:\left\langle\mathrm{x}, \mathrm{x}^{\prime}\right\rangle=\sum_{i \in[d]} x_{i} x_{i}^{\prime} \Rightarrow\left\|\mathrm{x}-\mathrm{x}^{\prime}\right\|_{2}$ and $\varangle\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$.
- Nonlinear features $(d=2)$:

$$
\begin{aligned}
\varphi(\mathrm{x}) & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right), \\
\left\langle\varphi(\mathrm{x}), \varphi\left(\mathrm{x}^{\prime}\right)\right\rangle & =\left\langle\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right],\left[\begin{array}{c}
\left(x_{1}^{\prime}\right)^{2} \\
\sqrt{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right) \\
\left(x_{2}^{\prime}\right)^{2}
\end{array}\right]\right\rangle \\
& =x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+\underbrace{\sqrt{2} \sqrt{2}}_{2} x_{1} x_{2}\left(x_{1}^{\prime}\right)\left(x_{2}^{\prime}\right)+x_{2}^{2}\left(x_{2}^{\prime}\right)^{2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left\langle\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]\right\rangle^{2}=\left\langle x, x^{\prime}\right\rangle^{2}=: k\left(x, x^{\prime}\right) .
\end{aligned}
$$

$\left\langle x, x^{\prime}\right\rangle^{d}=\left\langle\varphi(\mathrm{x}), \varphi\left(\mathrm{x}^{\prime}\right)\right\rangle: \varphi(\mathrm{x})=d$-order polynomial. \Rightarrow
Explicit computation would be heavy!

Kernel, RKHS: definition

- Def-1 (feature space): $k: X \times X \rightarrow \mathbb{R}$ kernel if

$$
k(x, y)=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}} .
$$

Kernel, RKHS: definition

- Def-1 (feature space): $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ kernel if

$$
k(x, y)=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}} .
$$

- Def-2 (evaluation): $\delta_{x}(f)=f(x)$ is continuous for all x.

Kernel, RKHS: definition

- Def-1 (feature space): $k: X \times X \rightarrow \mathbb{R}$ kernel if

$$
k(x, y)=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}} .
$$

- Def-2 (evaluation): $\delta_{x}(f)=f(x)$ is continuous for all x.
- Def-3 (Gram matrix): $\mathrm{G}=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \succeq 0$.

Kernel, RKHS: definition

- Def-1 (feature space): $k: X \times X \rightarrow \mathbb{R}$ kernel if

$$
k(x, y)=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}} .
$$

- Def-2 (evaluation): $\delta_{x}(f)=f(x)$ is continuous for all x.
- Def-3 (Gram matrix): $\mathrm{G}=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \succeq 0$.
- Def-4 (reproducing kernel):

$$
k(\cdot, x):=\left[x^{\prime} \mapsto k\left(x^{\prime}, x\right)\right] \in \mathcal{H}, \quad f(x)=\langle f, k(\cdot, x)\rangle_{\mathcal{H}} .
$$

Constructively, $\mathcal{H}_{k}=\overline{\left\{\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right): \alpha_{i} \in \mathbb{R}, x_{i} \in \mathcal{X}, n \in \mathbb{N}^{*}\right\}}$.

Kernel, RKHS: definition

- Def-1 (feature space): $k: X \times X \rightarrow \mathbb{R}$ kernel if

$$
k(x, y)=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}} .
$$

- Def-2 (evaluation): $\delta_{x}(f)=f(x)$ is continuous for all x.
- Def-3 (Gram matrix): $\mathrm{G}=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \succeq 0$.
- Def-4 (reproducing kernel):

$$
k(\cdot, x):=\left[x^{\prime} \mapsto k\left(x^{\prime}, x\right)\right] \in \mathcal{H}, \quad f(x)=\langle f, k(\cdot, x)\rangle_{\mathcal{H}} .
$$

Constructively, $\mathcal{H}_{k}=\overline{\left\{\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right): \alpha_{i} \in \mathbb{R}, x_{i} \in \mathcal{X}, n \in \mathbb{N}^{*}\right\}}$.

- All these definitions are equivalent, $k \stackrel{1: 1}{\leftrightarrows} \mathcal{H}_{k}$.
- Included: Fourier analysis, polynomials, splines, ...

Kernel examples on $\mathbb{R}^{d}\left(\gamma, \sigma, v>0, c \geq 0, p \in \mathbb{Z}^{+}\right)$

$$
k_{p}(\mathrm{x}, \mathrm{y})=(\langle\mathrm{x}, \mathrm{y}\rangle+c)^{p}
$$

$$
\begin{array}{ll}
k_{p}(\mathrm{x}, \mathrm{y})=(\langle\mathrm{x}, \mathrm{y}\rangle+c)^{p}, & k_{G}(\mathrm{x}, \mathrm{y})=e^{-\gamma\|\mathrm{x}-\mathrm{y}\|_{2}^{2}} \\
k_{e}(\mathrm{x}, \mathrm{y})=e^{-\gamma\|\mathrm{x}-\mathrm{y}\|_{2}}, & k_{L}(\mathrm{x}, \mathrm{y})=e^{-\gamma\|\mathrm{x}-\mathrm{y}\|_{1}} \\
k_{C}(\mathrm{x}, \mathrm{y})=\frac{1}{1+\gamma\|\mathrm{x}-\mathrm{y}\|_{2}^{2}}, & k_{\tilde{e}}(\mathrm{x}, \mathrm{y})=e^{\gamma(\mathrm{x}, \mathrm{y}\rangle}
\end{array}
$$

$$
\begin{array}{ll}
k_{p}(\mathrm{x}, \mathrm{y})=(\langle\mathrm{x}, \mathrm{y}\rangle+c)^{p}, & k_{G}(\mathrm{x}, \mathrm{y})=e^{-\gamma\|\mathrm{x}-\mathrm{y}\|_{2}^{2}} \\
k_{e}(\mathrm{x}, \mathrm{y})=e^{-\gamma\|\mathrm{x}-\mathrm{y}\|_{2}}, & k_{L}(\mathrm{x}, \mathrm{y})=e^{-\gamma\|\mathrm{x}-\mathrm{y}\|_{1}} \\
k_{C}(\mathrm{x}, \mathrm{y})=\frac{1}{1+\gamma\|\mathrm{x}-\mathrm{y}\|_{2}^{2}}, & k_{\tilde{e}}(\mathrm{x}, \mathrm{y})=e^{\gamma(\mathrm{x}, \mathrm{y}\rangle}
\end{array}
$$

Or the flexible Matérn family:

$$
k_{M}(\mathrm{x}, \mathrm{y})=\frac{2^{1-v}}{\Gamma(v)}\left(\frac{\sqrt{2 v}\|\mathrm{x}-\mathrm{y}\|_{2}}{\sigma}\right)^{v} K_{v}\left(\frac{\sqrt{2 v}\|\mathrm{x}-\mathrm{y}\|_{2}}{\sigma}\right)
$$

where

- K_{v} : modified Bessel function of the second kind of order v,
- Specific cases: For $v=\frac{1}{2}$ one gets $k(x, y)=e^{-\frac{\|x-y\|_{2}}{\sigma}}$. Gaussian kernel: $v \rightarrow \infty$.

Kernels on other domains (X)

- Strings [Watkins, 1999, Lodhi et al., 2002, Leslie et al., 2002, Kuang et al., 2004, Leslie and Kuang, 2004, Saigo et al., 2004, Cuturi and Vert, 2005],
- time series [Rüping, 2001, Cuturi et al., 2007, Cuturi, 2011, Király and Oberhauser, 2019],
- trees [Collins and Duffy, 2001, Kashima and Koyanagi, 2002],
- groups and specifically rankings
[Cuturi et al., 2005, Jiao and Vert, 2016],
- sets [Haussler, 1999, Gärtner et al., 2002],
- various generative models [Jaakkola and Haussler, 1999, Tsuda et al., 2002, Seeger, 2002, Jebara et al., 2004],
- fuzzy domains [Guevara et al., 2017], or
- graphs [Kondor and Lafferty, 2002, Gärtner et al., 2003, Kashima et al., 2003, Borgwardt and Kriegel, 2005, Shervashidze et al., 2009, Vishwanathan et al., 2010, Kondor and Pan, 2016, Bai et al., 2020, Borgwardt et al., 2020].

Why kernel and RKHSs?

(1) Numerous data types.

Why kernel and RKHSs?

(1) Numerous data types.
(2) RKHS can

- be dense in various function spaces
[Steinwart, 2001, Micchelli et al., 2006, Sriperumbudur et al., 2011,
Simon-Gabriel and Schölkopf, 2018],
- encode probability measures injectively
[Fukumizu et al., 2008, Sriperumbudur et al., 2010]

$$
\mathbb{P} \mapsto \int_{x} \varphi(x) \operatorname{d} \mathbb{P}(x) \in \mathcal{H}_{k}
$$

- characterize independence of random variables
[Bach and Jordan, 2002, Blanchard et al., 2011, Gretton, 2015, Szabó and Sriperumbudur, 2018].

Why kernel and RKHSs?

(1) Numerous data types.
(2) RKHS can

- be dense in various function spaces
[Steinwart, 2001, Micchelli et al., 2006, Sriperumbudur et al., 2011,
Simon-Gabriel and Schölkopf, 2018],
- encode probability measures injectively
[Fukumizu et al., 2008, Sriperumbudur et al., 2010]

$$
\mathbb{P} \mapsto \int_{x} \varphi(x) \mathrm{d} \mathbb{P}(x) \in \mathcal{H}_{k}
$$

- characterize independence of random variables
[Bach and Jordan, 2002, Blanchard et al., 2011, Gretton, 2015, Szabó and Sriperumbudur, 2018].
(3) Computationally tractable: $k\left(x_{i}, x_{j}\right)$.

Why kernel and RKHSs?

(1) Numerous data types.
(2) RKHS can

- be dense in various function spaces
[Steinwart, 2001, Micchelli et al., 2006, Sriperumbudur et al., 2011,
Simon-Gabriel and Schölkopf, 2018],
- encode probability measures injectively
[Fukumizu et al., 2008, Sriperumbudur et al., 2010]

$$
\mathbb{P} \mapsto \int_{x} \varphi(x) \mathrm{d} \mathbb{P}(x) \in \mathcal{H}_{k}
$$

- characterize independence of random variables [Bach and Jordan, 2002, Blanchard et al., 2011, Gretton, 2015, Szabó and Sriperumbudur, 2018].
(3) Computationally tractable: $k\left(x_{i}, x_{j}\right)$.
(4) Hilbert structure \Rightarrow statistical analysis.

Why kernel and RKHSs?

(1) Numerous data types.
(2) RKHS can

- be dense in various function spaces
[Steinwart, 2001, Micchelli et al., 2006, Sriperumbudur et al., 2011,
Simon-Gabriel and Schölkopf, 2018],
- encode probability measures injectively
[Fukumizu et al., 2008, Sriperumbudur et al., 2010]

$$
\mathbb{P} \mapsto \int_{x} \varphi(x) \operatorname{dP}(x) \in \mathcal{H}_{k},
$$

- characterize independence of random variables [Bach and Jordan, 2002, Blanchard et al., 2011, Gretton, 2015, Szabó and Sriperumbudur, 2018].
(3) Computationally tractable: $k\left(x_{i}, x_{j}\right)$.
(9) Hilbert structure \Rightarrow statistical analysis.
(5) Vector-valued RKHSs
[Pedrick, 1957, Micchelli and Pontil, 2005, Carmeli et al., 2006].

Task-1: joint quantile regression (JQR)

- Given: $\left(\tau_{q}\right)_{q \in[Q]} \subset(0,1)$ levels $\nearrow,\left\{\left(x_{n}, y_{n}\right)\right\}_{n \in[N]}$ samples.
- Estimate jointly the τ_{q}-quantiles of $\mathbb{P}(Y \mid X=x)$.

Task-1: joint quantile regression (JQR)

- Given: $\left(\tau_{q}\right)_{q \in[Q]} \subset(0,1)$ levels $\nearrow,\left\{\left(x_{n}, y_{n}\right)\right\}_{n \in[N]}$ samples.
- Estimate jointly the τ_{q}-quantiles of $\mathbb{P}(Y \mid X=x)$ [Sangnier et al., 2016].
- Objective:

$$
\begin{aligned}
\mathcal{L}(\mathrm{f}, \mathrm{~b}) & =\frac{1}{N} \sum_{q \in[Q]} \sum_{n \in[N]} I_{\tau_{q}}\left(y_{n}-\left[f_{q}\left(\mathrm{x}_{n}\right)+b_{q}\right]\right)+\lambda_{\mathrm{b}}\|\mathrm{~b}\|_{2}^{2}+\lambda_{f} \sum_{q \in[Q]}\left\|f_{q}\right\|_{k}^{2}, \\
I_{\tau}(e) & =\max (\tau e,(\tau-1) e) .
\end{aligned}
$$

Task-1: joint quantile regression (JQR)

- Given: $\left(\tau_{q}\right)_{q \in[Q]} \subset(0,1)$ levels $\nearrow,\left\{\left(x_{n}, y_{n}\right)\right\}_{n \in[N]}$ samples.
- Estimate jointly the τ_{q}-quantiles of $\mathbb{P}(Y \mid X=x)$ [Sangnier et al., 2016].
- Objective:

$$
\begin{aligned}
\mathcal{L}(\mathrm{f}, \mathrm{~b}) & =\frac{1}{N} \sum_{q \in[Q]} \sum_{n \in[N]} I_{\tau_{q}}\left(y_{n}-\left[f_{q}\left(\mathrm{x}_{n}\right)+b_{q}\right]\right)+\lambda_{\mathrm{b}}\|\mathrm{~b}\|_{2}^{2}+\lambda_{f} \sum_{q \in[Q]}\left\|f_{q}\right\|_{k}^{2}, \\
I_{\tau}(e) & =\max (\tau e,(\tau-1) e) .
\end{aligned}
$$

- Constraint (non-crossing): $K:=$ smallest rectangle containing $\left\{x_{n}\right\}_{n \in[N]}$,

$$
f_{q}(x)+b_{q} \leq f_{q+1}(\mathrm{x})+b_{q+1}, \forall q \in[Q-1], \forall x \in K
$$

Task-1: joint quantile regression (JQR)

- Given: $\left(\tau_{q}\right)_{q \in[Q]} \subset(0,1)$ levels $\nearrow,\left\{\left(x_{n}, y_{n}\right)\right\}_{n \in[N]}$ samples.
- Estimate jointly the τ_{q}-quantiles of $\mathbb{P}(Y \mid X=\mathrm{x})$ [Sangnier et al., 2016].
- Objective:

$$
\begin{aligned}
\mathcal{L}(\mathrm{f}, \mathrm{~b}) & =\frac{1}{N} \sum_{q \in[Q]} \sum_{n \in[N]} I_{\tau q}\left(y_{n}-\left[f_{q}\left(x_{n}\right)+b_{q}\right]\right)+\lambda_{b}\|\mathrm{~b}\|_{2}^{2}+\lambda_{f} \sum_{q \in[Q]}\left\|f_{q}\right\|_{k}^{2}, \\
I_{\tau}(e) & =\max (\tau e,(\tau-1) e) .
\end{aligned}
$$

- Constraint (non-crossing): $K:=$ smallest rectangle containing $\left\{\mathrm{x}_{n}\right\}_{n \in[N]}$,

$$
f_{q}(\mathrm{x})+b_{q} \leq f_{q+1}(\mathrm{x})+b_{q+1}, \forall q \in[Q-1], \forall x \in K .
$$

Constraints

function values $\left(f_{q}\right)$ with interaction $\left(f_{q+1}-f_{q}\right)$, bias terms $\left(b_{q}\right)$ with interaction ($b_{q}-b_{q+1}$).

Task-2: convoy localization, one vehicle $(Q=1)$

- Given: noisy time-location samples $\left\{\left(t_{n}, x_{n}\right)\right\}_{n \in[N]} \subset \underbrace{[0, T]}_{=: \mathcal{T}} \times \mathbb{R}$.
- Goal: learn the (t, x) relation.
- Constraint: lower bound on speed $\left(v_{\text {min }}\right)$.
- Given: noisy time-location samples $\left\{\left(t_{n}, x_{n}\right)\right\}_{n \in[N]} \subset \underbrace{[0, T]}_{=: \mathcal{T}} \times \mathbb{R}$.
- Goal: learn the (t, x) relation.
- Constraint: lower bound on speed $\left(v_{\text {min }}\right)$.
- Objective:

$$
\begin{aligned}
& \min _{b \in \mathbb{R}, f \in \mathcal{H}_{k}}\left[\frac{1}{N} \sum_{n \in[N]}\left|x_{n}-\left(b+f\left(t_{n}\right)\right)\right|^{2}+\lambda\|f\|_{\mathcal{H}_{k}}^{2}\right] \\
& \quad \text { s.t. } \\
& v_{\min } \leq f^{\prime}(t), \quad \forall t \in \mathcal{T} .
\end{aligned}
$$

- Data: $\left\{\left(t_{q, n}, x_{q, n}\right)_{n \in\left[N_{q}\right]}\right\}_{q \in[Q]} \subseteq \mathcal{T} \times \mathbb{R}$.
- Constraints: speed ($v_{\text {min }}$), inter-vehicular distance ($d_{\text {min }}$).
- Objective:

$$
\begin{aligned}
& \min _{\substack{f_{1}, \ldots, f_{Q} \in \mathcal{H}_{k}, b_{1}, \ldots, b_{Q} \in \mathbb{R}}} \frac{1}{Q} \sum_{q=1}^{Q}\left[\left(\frac{1}{N_{q}} \sum_{n=1}^{N_{q}}\left|x_{q, n}-\left(b_{q}+f_{q}\left(t_{q, n}\right)\right)\right|^{2}\right)+\lambda\left\|f_{q}\right\|_{\mathcal{H}_{k}}^{2}\right] \\
& \quad \text { s.t. } \\
& d_{\text {min }}+b_{q+1}+f_{q+1}(t) \leq b_{q}+f_{q}(t), \forall q \in[Q-1], t \in \mathcal{T} \\
& \quad v_{\text {min }} \leq f_{q}^{\prime}(t), \quad \forall q \in[Q], t \in \mathcal{T} .
\end{aligned}
$$

Task-2b: convoy localization, multiple vehicles $(Q \geq 1)$

- Data: $\left\{\left(t_{q, n}, x_{q, n}\right)_{n \in\left[N_{q}\right]}\right\}_{q \in[Q]} \subseteq \mathcal{T} \times \mathbb{R}$.
- Constraints: speed ($v_{\text {min }}$), inter-vehicular distance $\left(d_{\text {min }}\right)$.
- Objective:

$$
\begin{aligned}
& \min _{\substack{f_{1}, \ldots, f_{Q} \in \mathcal{H}_{k}, b_{1}, \ldots, b_{Q} \in \mathbb{R}}} \frac{1}{Q} \sum_{q=1}^{Q}\left[\left(\left.\frac{1}{N_{q}} \sum_{n=1}^{N_{q}} \right\rvert\, x_{q, n}-\left(b_{q}+\left.f_{q}\left(t_{q, n}\right)\right|^{2}\right)+\lambda\left\|f_{q}\right\|_{\mathscr{H}_{k}}^{2}\right]\right. \\
& \quad \text { s.t. } \\
& d_{\text {min }}+b_{q+1}+f_{q+1}(t) \leq b_{q}+f_{q}(t), \forall q \in[Q-1], t \in \mathcal{T}, \\
& \quad v_{\min } \leq f_{q}^{\prime}(t), \quad \forall q \in[Q], t \in \mathcal{T} .
\end{aligned}
$$

Constraints

function values $\left(f_{q}\right)$ and derivatives $\left(f_{q}^{\prime}\right)$ with interaction $\left(f_{q}-f_{q+1}\right)$, bias terms $\left(b_{q}\right)$ with interaction $\left(b_{q+1}-b_{q}\right)$.

Task-3: safety-critical control

- Trajectory of an underwater vehicle:

$$
t \in \mathcal{T}:=[0,1] \mapsto[x(t) ; z(t)] \in \mathbb{R}^{2} .
$$

- Trajectory of an underwater vehicle:

$$
t \in \mathcal{T}:=[0,1] \mapsto[x(t) ; z(t)] \in \mathbb{R}^{2} .
$$

- Simplifying assumption: $x(0)=0, \dot{x}(t)=1 \forall t \in \mathcal{T} \Rightarrow x(t)=t$.
- Trajectory of an underwater vehicle:

$$
t \in \mathcal{T}:=[0,1] \mapsto[x(t) ; z(t)] \in \mathbb{R}^{2} .
$$

- Simplifying assumption: $x(0)=0, \dot{x}(t)=1 \forall t \in \mathcal{T} \Rightarrow x(t)=t$.
- Requirement: stay between the floor and the ceiling of the cavern

$$
z(t) \in\left[z_{\text {low }}(t), z_{\mathrm{up}}(t)\right] \forall t \in \mathcal{T}
$$

- Trajectory of an underwater vehicle:

$$
t \in \mathcal{T}:=[0,1] \mapsto[x(t) ; z(t)] \in \mathbb{R}^{2}
$$

- Simplifying assumption: $x(0)=0, \dot{x}(t)=1 \forall t \in \mathcal{T} \Rightarrow x(t)=t$.
- Requirement: stay between the floor and the ceiling of the cavern

$$
z(t) \in\left[z_{\text {low }}(t), z_{\text {up }}(t)\right] \forall t \in \mathcal{T}
$$

- Initial condition: $z(0)=0$ and $\dot{z}(0)=0$.

Task-3: safety-critical control

- Trajectory of an underwater vehicle:

$$
t \in \mathcal{T}:=[0,1] \mapsto[x(t) ; z(t)] \in \mathbb{R}^{2} .
$$

- Simplifying assumption: $x(0)=0, \dot{x}(t)=1 \forall t \in \mathcal{T} \Rightarrow x(t)=t$.
- Requirement: stay between the floor and the ceiling of the cavern

$$
z(t) \in\left[z_{\text {low }}(t), z_{\text {up }}(t)\right] \forall t \in \mathcal{T}
$$

- Initial condition: $z(0)=0$ and $\dot{z}(0)=0$.
- Control task (LQ = linear dynamics \& quadratic cost):

$$
\begin{aligned}
& \min _{u \in L^{2}(\mathcal{T}, \mathbb{R})} \quad \int_{\mathcal{T}}|u(t)|^{2} \mathrm{~d} t \\
& \text { s.t. } \\
& z(0)=0, \quad \dot{z}(0)=0, \\
& \ddot{z}(t)=-\dot{z}(t)+u(t), \forall t \in \mathcal{T}, \\
& z_{\text {low }}(t) \leq z(t) \leq z_{\text {up }}(t), \forall t \in \mathcal{T} .
\end{aligned}
$$

Task-3: safety-critical control - continued

- With full state $f(t):=[z(t) ; \dot{z}(t)] \in \mathbb{R}^{2}$

$$
\dot{f}(t)=\operatorname{Af}(t)+\mathrm{B} u(t), \quad \mathrm{f}(0)=0, \quad \mathrm{~A}=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] \in \mathbb{R}^{2 \times 2}, \quad \mathrm{~B}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \in \mathbb{R}^{2}
$$

Task-3: safety-critical control - continued

- With full state $\mathrm{f}(t):=[z(t) ; \dot{z}(t)] \in \mathbb{R}^{2}$

$$
\dot{\mathrm{f}}(t)=\operatorname{Af}(t)+\mathrm{Bu}(t), \quad \mathrm{f}(0)=0, \quad \mathrm{~A}=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] \in \mathbb{R}^{2 \times 2}, \quad \mathrm{~B}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \in \mathbb{R}^{2}
$$

- The controlled trajectories f belong to a \mathbb{R}^{2}-valued RKHS with kernel

$$
k(s, t):=\int_{0}^{\min (s, t)} e^{(s-\tau) \mathrm{A}} \mathrm{BB}^{\top} e^{(t-\tau) \mathrm{A}^{\top}} \mathrm{d} \tau, \quad s, t \in \mathcal{T},
$$

and the task is

$$
\begin{aligned}
& \min _{\mathrm{f}=\left[f_{1} ; f_{2}\right] \in \mathcal{H}_{k}}\|\mathrm{f}\|_{k}^{2} \\
& \quad \text { s.t. } \\
& \text { zlow }(t) \leq f_{1}(t) \leq z_{\text {up }}(t), \forall t \in \mathcal{T} .
\end{aligned}
$$

- Assume for simplicity: $z_{\text {low }}$ and $z_{\text {up }}$ are piece-wise constant.
- Task:

$$
\begin{aligned}
& \min _{\mathrm{f}=\left[f_{1} ; f_{2}\right] \in \mathcal{H}_{k}}\|\mathrm{f}\|_{k}^{2} \\
& \quad \text { s.t. } \\
& z_{\text {low }, m} \leq f_{1}(t) \leq z_{\text {up }, m}, \forall t \in \mathcal{T}_{m}, \forall m \in[M] .
\end{aligned}
$$

Task-3: safety-critical control - finished

- Assume for simplicity: $z_{\text {low }}$ and $z_{\text {up }}$ are piece-wise constant.
- Task:

$$
\begin{aligned}
& \min _{\mathrm{f}=\left[f_{1} ; f_{2}\right] \in \mathcal{H}_{k}}\|\mathrm{f}\|_{k}^{2} \\
& \quad \text { s.t. } \\
& z_{\text {low }, m} \leq f_{1}(t) \leq z_{\text {up }, m}, \forall t \in \mathcal{T}_{m}, \forall m \in[M] .
\end{aligned}
$$

Constraints

linear transformation of functions $\left(f_{1}\right)$, with matrix-valued kernel.

Our task

$$
(\overline{\mathrm{f}}, \overline{\mathrm{~b}})=\underset{\substack{\mathrm{f}=\left(f_{q}\right)_{q \in[\mathcal{Q}]} \in\left(\mathcal{H}_{k}\right)^{Q}, \mathrm{~b}=\left(b_{q}, q_{\in} \in[Q] \in \mathcal{B},(\mathrm{f}, \mathrm{~b}) \in \mathrm{C}\right.}}{\arg \min } \underset{\mathrm{L}}{ } \mathcal{L}(\mathrm{f},
$$

Our task

$$
\begin{aligned}
(\overline{\mathrm{f}}, \overline{\mathrm{~b}})= & \left.\underset{\substack{\mathrm{f}=\left(f_{q}\right)_{q \in[Q]} \in\left(\mathcal{H}_{k}\right)^{Q}, \mathrm{~b}=\left(b_{q}\right)_{q \in[Q]} \in \mathcal{B},(\mathrm{f}, \mathrm{~b}) \in C}}{\arg \min } \mathcal{L}, \mathrm{~b}\right), \\
\mathcal{L}(\mathrm{f}, \mathrm{~b})= & L\left(\mathrm{~b},\left(\mathrm{x}_{n}, y_{n},\left(f_{q}\left(\mathrm{x}_{n}\right)\right)_{q \in[Q]}\right)_{n \in[N]}\right)+\Omega\left(\left(\left\|f_{q}\right\|_{\mathcal{H}_{k}}\right)_{q \in[Q]}\right),
\end{aligned}
$$

Our task

$$
\begin{aligned}
(\overline{\mathrm{f}}, \overline{\mathrm{~b}})= & \underset{\substack{\mathrm{f}=\left(\mathrm{f}_{q}\right)_{q \in[\mathcal{Q}]} \in\left(\mathcal{H}_{k} Q \\
\mathrm{~b}=\left(b_{q}\right)_{q \in[Q]} \in \mathcal{B},(\mathrm{f}, \mathrm{~b}) \in \mathrm{C}\right.}}{\arg \min } \mathcal{L}(\mathrm{b}), \\
\mathcal{L}(\mathrm{f}, \mathrm{~b})= & L\left(\mathrm{~b},\left(\mathrm{x}_{n}, y_{n},\left(f_{q}\left(\mathrm{x}_{n}\right)\right)_{q \in[Q]}\right)_{n \in[N]}\right)+\Omega\left(\left(\left\|f_{q}\right\|_{\mathcal{H}_{k}}\right)_{q \in[Q]}\right), \\
C= & \left\{(\mathrm{f}, \mathrm{~b}) \mid\left(\mathrm{b}_{0}-\mathrm{Ub}\right)_{i} \leq D_{i}\left(\mathrm{Wf}-\mathrm{f}_{0}\right)_{i}(\mathrm{x}), \quad \forall \mathrm{x} \in K_{i}, \forall i \in[l]\right\},
\end{aligned}
$$

Our task

$$
\begin{aligned}
& (\overline{\mathrm{f}}, \overline{\mathrm{~b}})=\underset{\mathrm{f}=\left(\mathrm{f}_{\mathrm{a}}\right)}{\arg \min } \operatorname{Le}_{\mathcal{L}} \mathcal{L}(\mathrm{f}, \mathrm{~b}), \\
& \mathrm{f}=\left(f_{q}\right)_{q \in[Q]} \in\left(\mathcal{H}_{k}\right)^{Q} \text {, } \\
& \mathrm{b}=\left(b_{q}\right)_{q \in[Q]} \in \mathcal{B} \text {, } \\
& (f, b) \in C \\
& \mathcal{L}(\mathrm{f}, \mathrm{~b})=L\left(\mathrm{~b},\left(\mathrm{x}_{n}, y_{n},\left(f_{q}\left(\mathrm{x}_{n}\right)\right)_{q \in[Q]}\right)_{n \in[N]}\right)+\Omega\left(\left(\left\|f_{q}\right\|_{\mathcal{H}_{k}}\right)_{q \in[Q]}\right), \\
& C=\left\{(\mathrm{f}, \mathrm{~b}) \mid\left(\mathrm{b}_{0}-\mathrm{Ub}\right)_{i} \leq D_{i}\left(\mathrm{Wf}-\mathrm{f}_{0}\right)_{i}(\mathrm{x}), \quad \forall \mathrm{x} \in K_{i}, \forall i \in[I]\right\}, \\
& (\mathrm{Wf})_{i}=\sum_{q \in[Q]} W_{i, q} f_{q},
\end{aligned}
$$

Our task

$$
\begin{aligned}
(\overline{\mathrm{f}}, \overline{\mathrm{~b}})= & \left.\underset{\substack{\mathrm{f}=\left(f_{q}\right)_{q \in[Q]} \in\left(\mathcal{H}_{k}\right)^{Q}, \mathrm{~b}=\left(b_{q}\right) \\
(\mathrm{f}, \mathrm{~b}) \in \mathrm{CQ} \in \mathcal{C}}}{\arg \min } \mathcal{L}, \mathrm{~b}\right), \\
\mathcal{L}(\mathrm{f}, \mathrm{~b})= & L\left(\mathrm{~b},\left(\mathrm{x}_{n}, y_{n},\left(f_{q}\left(\mathrm{x}_{n}\right)\right)_{q \in[Q]}\right)_{n \in[N]}\right)+\Omega\left(\left(\left\|f_{q}\right\|_{\mathcal{H}_{k}}\right)_{q \in[Q]}\right), \\
C= & \left\{(\mathrm{f}, \mathrm{~b}) \mid\left(\mathrm{b}_{0}-\mathrm{Ub}\right)_{i} \leq D_{i}\left(\mathrm{Wf}-\mathrm{f}_{0}\right)_{i}(\mathrm{x}), \quad \forall \mathrm{x} \in K_{i}, \forall i \in[l]\right\}, \\
(\mathrm{Wf})_{i}= & \sum_{q \in[Q]} W_{i, q} f_{q},
\end{aligned}
$$

$$
D_{i}=\sum_{j \in\left[n_{i, j}\right]} \gamma_{i, j} \partial^{r_{i, j}},\left|r_{i, j}\right| \leq s, \gamma_{i, j} \in \mathbb{R}, \partial^{r} f(x)=\frac{\partial^{|r|} f(x)}{\partial_{x_{1}}^{r_{1}} \cdots \partial_{x_{d}}^{r_{d}}}
$$

Blanket assumptions

(1) Domain $X \subseteq \mathbb{R}^{d}$: open. Kernel $k \in \mathcal{C}^{s}(X \times X)$.
(2) $K_{i} \subset \mathcal{X}$: compact, $\forall i$.
(3) $\mathrm{f}_{0, i} \in \mathcal{H}_{k}$ for $\forall i$.
(9) Bias domain $\mathcal{B} \subseteq \mathbb{R}^{Q}$: convex.
(5) Loss L restricted to \mathcal{B} : strictly convex in b.
(0) Regularizer Ω : strictly increasing in each of its argument.

Our strenghtened SOC-constrained formulation

$$
\begin{align*}
& \left(\mathrm{f}_{\boldsymbol{\eta}}, \mathrm{b}_{\boldsymbol{\eta}}\right)=\underset{\mathrm{f} \in\left(\mathcal{H}_{k}\right)^{Q}, \mathrm{~b} \in \mathcal{B}}{\arg \min } \mathcal{L}(\mathrm{f}, \mathrm{~b}) \\
& \quad \text { s.t. } \\
& \quad\left(\mathrm{b}_{0}-\mathrm{Ub}\right)_{i}+\eta_{i}\left\|\left(\mathrm{Wf}-\mathrm{f}_{0}\right)_{i}\right\|_{\mathcal{H}_{k}},[I],
\end{align*}
$$

where

- $\left\{\tilde{x}_{i, m}\right\}_{m \in\left[M_{i}\right]}$: a δ_{i}-net of K_{i} in $\|\cdot\|_{x}$,
- $\eta_{i}=\sup _{m \in\left[M_{i}\right], \mathbf{u} \in \mathbb{B}_{\|\cdot\|}(0,1)}\left\|D_{i, \mathrm{x}} k\left(\tilde{\mathrm{x}}_{i, m}, \cdot\right)-D_{i, \mathrm{x}} k\left(\tilde{\mathrm{x}}_{i, m}+\delta_{i} \mathbf{u}, \cdot\right)\right\|_{\mathcal{H}_{k}}$,
- $D_{i, \mathrm{x}} k\left(\mathrm{x}_{0}, \cdot\right):=\mathrm{y} \mapsto D_{i}(\mathrm{x} \mapsto k(\mathrm{x}, \mathrm{y}))\left(\mathrm{x}_{0}\right)$.
- Minimal values: $v_{\text {disc }}=$ value of $\left(\mathcal{P}_{\boldsymbol{\eta}}\right)$ with ' $\boldsymbol{\eta}=0^{\prime}$, $\bar{v}=\mathcal{L}(\bar{f}, \bar{b})$, $v_{\eta}=\mathcal{L}\left(f_{\eta}, b_{\eta}\right)$.
- Let $f_{\eta}=\left(f_{\eta, q}\right)_{q \in[Q]}$.
- Minimal values: $v_{\text {disc }}=$ value of $\left(\mathcal{P}_{\boldsymbol{\eta}}\right)$ with ' $\boldsymbol{\eta}=0^{\prime}$ ', $\bar{v}=\mathcal{L}(\bar{f}, \bar{b})$, $v_{\eta}=\mathcal{L}\left(f_{\eta}, b_{\eta}\right)$.
- Let $f_{\eta}=\left(f_{\eta, q}\right)_{q \in[Q]}$.

Then,

- (i) Tightening: any (f, b) satisfying $\left(\mathcal{C}_{\eta}\right)$ also satisfies (\mathcal{C}), hence

$$
v_{\text {disc }} \leq \bar{v} \leq v_{\eta} .
$$

- Minimal values: $v_{\text {disc }}=$ value of $\left(\mathcal{P}_{\boldsymbol{\eta}}\right)$ with ' $\boldsymbol{\eta}=0$ ', $\bar{v}=\mathcal{L}(\bar{f}, \overline{\mathrm{~b}})$, $v_{\eta}=\mathcal{L}\left(f_{\eta}, \mathrm{b}_{\eta}\right)$.
- Let $\mathrm{f}_{\boldsymbol{\eta}}=\left(f_{\eta, q}\right)_{q \in[Q]}$.

Then,

- (i) Tightening: any (f, b) satisfying $\left(\mathcal{C}_{\boldsymbol{\eta}}\right)$ also satisfies (\mathcal{C}), hence

$$
v_{\mathrm{disc}} \leq \bar{v} \leq v_{\eta} .
$$

- (ii) Representer theorem: For $\forall q \in[Q], \exists \tilde{a}_{i, 0, q}, \tilde{a}_{i, m, q}, a_{n, q} \in \mathbb{R}$ s.t.

$$
\begin{aligned}
f_{\eta, q}= & \sum_{i \in[l]}\left[\tilde{a}_{i, 0, q} f_{0, i}+\sum_{m \in\left[M_{i}\right]} \tilde{a}_{i, m, q} D_{i, x} k\left(\tilde{x}_{i, m}, \cdot\right)\right] \\
& +\sum_{n \in[N]} a_{n, q} k\left(x_{n}, \cdot\right)
\end{aligned}
$$

- (iii) Performance guarantee: if \mathcal{L} is $\left(\mu_{f_{q}}, \mu_{\mathrm{b}}\right)$-strongly convex w.r.t. $\left(f_{q}, b\right)$ for any $q \in[Q]$, then

$$
\left\|f_{\eta, q}-\bar{f}_{q}\right\|_{\mathcal{H}_{k}} \leq \sqrt{\frac{2\left(v_{\eta}-v_{\text {disc }}\right)}{\mu_{f_{q}}}}, \quad\left\|\mathrm{~b}_{\eta}-\overline{\mathrm{b}}\right\|_{2} \leq \sqrt{\frac{2\left(v_{\eta}-v_{\text {disc }}\right)}{\mu_{\mathrm{b}}}} .
$$

- (iii) Performance guarantee: if \mathcal{L} is $\left(\mu_{f_{q}}, \mu_{\mathrm{b}}\right)$-strongly convex w.r.t. $\left(f_{q}, b\right)$ for any $q \in[Q]$, then

$$
\left\|f_{\eta, q}-\bar{f}_{q}\right\|_{\mathcal{H}_{k}} \leq \sqrt{\frac{2\left(v_{\eta}-v_{\mathrm{disc}}\right)}{\mu_{f_{q}}}}, \quad\left\|\mathrm{~b}_{\eta}-\overline{\mathrm{b}}\right\|_{2} \leq \sqrt{\frac{2\left(v_{\eta}-v_{\mathrm{disc}}\right)}{\mu_{\mathrm{b}}}}
$$

If in addition U is surjective, $\mathcal{B}=\mathbb{R}^{Q}$, and $\mathcal{L}(\bar{f}, \cdot)$ is L_{b}-Lipschitz continuous on $\mathbb{B}_{\|\cdot\|_{2}}\left(\overline{\mathrm{~b}}, c_{f}\|\boldsymbol{\eta}\|_{\infty}\right)$ where

$$
c_{f}=\sqrt{d}\left\|\left(U^{T} U\right)^{-1} U^{T}\right\| \max _{i \in[!]}\left\|\left(W \bar{f}-f_{0}\right)_{i}\right\|_{\mathcal{H}_{k}} \text {, then }
$$

$$
\left\|f_{\eta, q}-\bar{f}_{q}\right\|_{\mathcal{H}_{k}} \leq \sqrt{\frac{2 L_{b} c_{f}\|\boldsymbol{\eta}\|_{\infty}}{\mu_{f_{q}}}},\left\|\mathrm{~b}_{\boldsymbol{\eta}}-\overline{\mathrm{b}}\right\|_{2} \leq \sqrt{\frac{2 L_{b} c_{f}\|\boldsymbol{\eta}\|_{\infty}}{\mu_{\mathrm{b}}}}
$$

Theorem - continued

- (iii) Performance guarantee: if \mathcal{L} is $\left(\mu_{f_{q}}, \mu_{\mathrm{b}}\right)$-strongly convex w.r.t. $\left(f_{q}, b\right)$ for any $q \in[Q]$, then

$$
\left\|f_{\eta, q}-\bar{f}_{q}\right\|_{\mathcal{H}_{k}} \leq \sqrt{\frac{2\left(v_{\eta}-v_{\text {disc }}\right)}{\mu_{f_{q}}}}, \quad\left\|\mathrm{~b}_{\eta}-\overline{\mathrm{b}}\right\|_{2} \leq \sqrt{\frac{2\left(v_{\eta}-v_{\mathrm{disc}}\right)}{\mu_{\mathrm{b}}}}
$$

If in addition U is surjective, $\mathcal{B}=\mathbb{R}^{Q}$, and $\mathcal{L}(\overline{\mathrm{f}}, \cdot)$ is L_{b}-Lipschitz continuous on $\mathbb{B}_{\|\cdot\|_{2}}\left(\overline{\mathrm{~b}}, c_{f}\|\boldsymbol{\eta}\|_{\infty}\right)$ where

$$
c_{f}=\sqrt{d}\left\|\left(U^{T} U\right)^{-1} U^{T}\right\| \max _{i \in[I]}\left\|\left(W \bar{f}-f_{0}\right)_{i}\right\|_{\mathcal{H}_{k}} \text {, then }
$$

$$
\left\|f_{\eta, q}-\bar{f}_{q}\right\|_{\mathcal{H}_{k}} \leq \sqrt{\frac{2 L_{b} c_{f}\|\boldsymbol{\eta}\|_{\infty}}{\mu_{f_{q}}}},\left\|\mathrm{~b}_{\boldsymbol{\eta}}-\overline{\mathrm{b}}\right\|_{2} \leq \sqrt{\frac{2 L_{b} c_{f}\|\boldsymbol{\eta}\|_{\infty}}{\mu_{\mathrm{b}}}}
$$

1st bound: computable. 2nd: Larger $M_{i} \Rightarrow$ smaller $\delta_{i} \Rightarrow$ smaller η_{i} \Rightarrow tighter bound.

Let $s=0, I=1$. Recall constraint (C):

$$
\{(\mathrm{f}, \mathrm{~b}) \mid \underbrace{\left(b_{0}-\mathrm{Ub}\right)}_{\beta} \leq \underbrace{\left(\mathrm{Wf}-f_{0}\right)}_{\langle\phi, k(x, \cdot)\rangle_{\mathscr{H}_{k}}}(\mathrm{x}), \quad \forall x \in K\}
$$

Let $s=0, I=1$. Recall constraint (C):
$\{(\mathrm{f}, \mathrm{b}) \mid \underbrace{\left(b_{0}-\mathrm{Ub}\right)}_{\beta} \leq \underbrace{\left(\mathrm{Wf}-f_{0}\right)(\mathrm{x})}_{\langle\phi, k(\mathrm{x}, \cdot)\rangle_{\mathcal{H}_{k}}}, \quad \forall \mathrm{x} \in K\}$, i.e.

$$
\Phi(K):=\{k(x, \cdot): x \in K\} \subseteq H_{\phi, \beta}^{+}:=\left\{g \in \mathcal{H}_{k} \mid \beta \leq\langle\phi, g\rangle_{\mathcal{H}_{k}}\right\}
$$

Tightening idea

Let $s=0, I=1$. Recall constraint (C):
$\{(\mathrm{f}, \mathrm{b}) \mid \underbrace{\left(b_{0}-\mathrm{Ub}\right)}_{\beta} \leq \underbrace{\left(\mathrm{Wf}-f_{0}\right)(\mathrm{x})}_{\langle\phi, k(\mathrm{x}, \cdot)\rangle_{\mathcal{H}_{k}}}, \quad \forall \mathrm{x} \in K\}$, i.e.
$\Phi(K):=\{k(x, \cdot): x \in K\} \subseteq H_{\phi, \beta}^{+}:=\left\{g \in \mathcal{H}_{k} \mid \beta \leq\langle\phi, g\rangle_{\mathcal{H}_{k}}\right\}$

- $\left(\mathcal{C}_{\boldsymbol{\eta}}\right)$ means: covering of $\Phi(K)$ by balls with η-radius centered at the $k\left(\tilde{x}_{m}, \cdot\right)$ is in the halfspace $H_{\phi, \beta}^{+}$; hence it is tightening.

Tightening idea

Let $s=0, I=1$. Recall constraint (C):
$\{(\mathrm{f}, \mathrm{b}) \mid \underbrace{\left(b_{0}-\mathrm{Ub}\right)}_{\beta} \leq \underbrace{\left(\mathrm{Wf}-f_{0}\right)(\mathrm{x})}_{\langle\phi, k(\mathrm{x}, \cdot)\rangle_{\mathcal{H}_{k}}}, \quad \forall \mathrm{x} \in K\}$, i.e.
$\Phi(K):=\{k(x, \cdot): x \in K\} \subseteq H_{\phi, \beta}^{+}:=\left\{g \in \mathcal{H}_{k} \mid \beta \leq\langle\phi, g\rangle_{\mathcal{H}_{k}}\right\}$

- $\left(\mathcal{C}_{\boldsymbol{\eta}}\right)$ means: covering of $\Phi(K)$ by balls with η-radius centered at the $k\left(\tilde{x}_{m}, \cdot\right)$ is in the halfspace $H_{\phi, \beta}^{+}$; hence it is tightening.
- η is obtained as the minimal radius.

Demo (task-1): convoy localization with traffic jam

Setting: $Q=6, d_{\text {min }}=5 m, v_{\text {min }}=0$.

Demo (task-1): continued

Pairwise distances: $t \mapsto f_{q}(t)-f_{q+1}(t)$

Demo (task-1): continued

Pairwise distances: $t \mapsto f_{q}(t)-f_{q+1}(t) \quad$ Speed: $t \mapsto f_{q}^{\prime}(t)$

Demo (task-1): continued

Pairwise distances: $t \mapsto f_{q}(t)-f_{q+1}(t) \quad$ Speed: $t \mapsto f_{q}^{\prime}(t)$

Shape constraints: especially relevant in noisy situations.

Demo (task-2): joint quantile regression

Economics

- x : annual household income, y : food expenditure. $d=1, N=235$.
- Engel's law $\Rightarrow \nearrow$, concave.
- Demo: $\tau_{q} \in\{0.1,0.3,0.5,0.7,0.9\}$.
- Left: non-crossing, \nearrow.

Right: non-crossing, \nearrow, concave.

Demo (task-2): joint quantile regression

Analysis of aircraft trajectories, ENAC:

- y : radar-measured altitude of aircrafts flying between two cities (Paris \& Toulouse); x : time. $d=1, N=15657$.
- Demo: $\tau_{q} \in\{0.1,0.3,0.5,0.7,0.9\}$.
- Constraint: non-crossing, \nearrow (takeoff).

Demo (task-3): control of underwater vehicle

Vs discretization-based approach (which might crash):

Summary

- Focus: hard affine shape constraints on derivatives \& RKHS.
- Proposed framework: SOC-based tightening.
- Applications:
- convoy localization,
- joint quantile regression: economics, aircraft trajectories,
- safety-critical control.

References \& acknowledgements

- Transportation systems [Aubin-Frankowski et al., 2020].
- Control aspect [Aubin-Frankowski, 2020].
- Method:
- $\operatorname{dim}(y)=1$: [Aubin-Frankowski and Szabó, 2020]. Code @ GitHub.
- $\operatorname{dim}(y) \geq 1$ and SDP constraints (say joint convexity, production functions): [Aubin-Frankowski and Szabó, 2021].

Acknowledgements: ZSz benefited from the support of the Europlace Institute of Finance and that of the Chair Stress Test, RISK Management and Financial Steering, led by the French École Polytechnique and its Foundation and sponsored by BNP Paribas.

INSTITUT
Louis Bachelier

References \& acknowledgements

- Transportation systems [Aubin-Frankowski et al., 2020].
- Control aspect [Aubin-Frankowski, 2020].
- Method:
- $\operatorname{dim}(y)=1$: [Aubin-Frankowski and Szabó, 2020]. Code @ GitHub.
- $\operatorname{dim}(y) \geq 1$ and SDP constraints (say joint convexity, production functions): [Aubin-Frankowski and Szabó, 2021].

Acknowledgements: ZSz benefited from the support of the Europlace Institute of Finance and that of the Chair Stress Test, RISK Management and Financial Steering, led by the French École Polytechnique and its Foundation and sponsored by BNP Paribas.

INSTITUT
Louis Bachelier

目 Aït－Sahalia，Y．and Duarte，J．（2003）．
Nonparametric option pricing under shape restrictions．
Journal of Econometrics，116（1－2）：9－47．
囯 Aubin－Frankowski，P．－C．（2020）．
Linearly－constrained linear quadratic regulator from the viewpoint of kernel methods．
Technical report．
（https：／／arxiv．org／abs／2011．02196）．
國 Aubin－Frankowski，P．－C．，Petit，N．，and Szabó，Z．（2020）． Kernel regression for vehicle trajectory reconstruction under speed and inter－vehicular distance constraints．
In IFAC World Congress（IFAC WC），Berlin，Germany．
囯 Aubin－Frankowski，P．－C．and Szabó，Z．（2020）． Hard shape－constrained kernel machines．
In Advances in Neural Information Processing Systems （NeurIPS）．

目 Aubin－Frankowski，P．－C．and Szabó，Z．（2021）．
Handling hard affine SDP shape constraints in RKHSs．
Technical report．
（http：／／arxiv．org／abs／2101．01519）．
围 Bach，F．and Jordan，M．（2002）．
Kernel independent component analysis．
Journal of Machine Learning Research，3：1－48．
圊 Bai，L．，Cui，L．，Rossi，L．，Xu，L．，Bai，X．，and Hancock，E． （2020）．
Local－global nested graph kernels using nested complexity traces．
Pattern Recognition Letters，134：87－95．
國 Balabdaoui，F．，Durot，C．，and Jankowski，H．（2019）．
Least squares estimation in the monotone single index model． Bernoulli，25（4B）：3276－3310．

䍰 Blanchard，G．，Lee，G．，and Scott，C．（2011）．

Generalizing from several related classification tasks to a new unlabeled sample.
In Advances in Neural Information Processing Systems (NIPS), pages 2178-2186.

R Blundell, R., Horowitz, J. L., and Parey, M. (2012). Measuring the price responsiveness of gasoline demand: economic shape restrictions and nonparametric demand estimation.
Quantitative Economics, 3:29-51.
(Rorgwardt, K., Ghisu, E., Llinares-López, F., O'Bray, L., and Riec, B. (2020).
Graph kernels: State-of-the-art and future challenges.
Foundations and Trends in Machine Learning, 13(5-6):531-712.

目 Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-path kernels on graphs.

In International Conference on Data Mining (ICDM), pages 74-81.
目 Carmeli, C., Vito, E. D., and Toigo, A. (2006).
Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem.
Analysis and Applications, 4:377-408.
E Chen, Y. and Samworth, R. J. (2016).
Generalized additive and index models with shape constraints.
Journal of the Royal Statistical Society - Statistical Methodology, Series B, 78(4):729-754.

國 Chetverikov, D., Santos, A., and Shaikh, A. M. (2018). The econometrics of shape restrictions.
Annual Review of Economics, 10(1):31-63.
Collins, M. and Duffy, N. (2001).
Convolution kernels for natural language.
In Advances in Neural Information Processing Systems (NIPS),
pages 625-632.

围 Cuturi，M．（2011）．
Fast global alignment kernels．
In International Conference on Machine Learning（ICML）， pages 929－936．

Ruturi，M．，Fukumizu，K．，and Vert，J．－P．（2005）．
Semigroup kernels on measures．
Journal of Machine Learning Research，6：1169－1198．
围 Cuturi，M．and Vert，J．－P．（2005）．
The context－tree kernel for strings．
Neural Networks，18（8）：1111－1123．
雷 Cuturi，M．，Vert，J．－P．，Birkenes，O．，and Matsui，T．（2007）．
A kernel for time series based on global alignments．
In International Conference on Acoustics，Speech，and Signal
Processing（ICASSP），pages 413－416．
目 Deng，H．and Zhang，C．－H．（2020）．
Isotonic regression in multi－dimensional spaces and graphs．

Annals of Statistics，48（6）：3672－3698．
直 Freyberger，J．and Reeves，B．（2018）． Inference under shape restrictions．
Technical report，University of Wisconsin－Madison． （https：／／www．ssc．wisc．edu／～jfreyberger／Shape＿ Inference＿Freyberger＿Reeves．pdf）．

囯 Fukumizu，K．，Gretton，A．，Sun，X．，and Schölkopf，B．（2008）． Kernel measures of conditional dependence． In Advances in Neural Information Processing Systems（NIPS）， pages 498－496．
（iärtner，T．，Flach，P．，Kowalczyk，A．，and Smola，A．（2002）． Multi－instance kernels．
In International Conference on Machine Learning（ICML）， pages 179－186．

囦 Gärtner，T．，Flach，P．，and Wrobel，S．（2003）．
On graph kernels：Hardness results and efficient alternatives．
Learning Theory and Kernel Machines，pages 129－143．

囯 Gretton，A．（2015）．
A simpler condition for consistency of a kernel independence test．
Technical report，University College London．
（http：／／arxiv．org／abs／1501．06103）．
围 Guevara，J．，Hirata，R．，and Canu，S．（2017）．
Cross product kernels for fuzzy set similarity．
In International Conference on Fuzzy Systems（FUZZ－IEEE），
pages 1－6．
R Guntuboyina，A．and Sen，B．（2018）．
Nonparametric shape－restricted regression．
Statistical Science，33（4）：568－594．
嗇 Han，Q．and Wellner，J．A．（2016）．
Multivariate convex regression：global risk bounds and adaptation．
Technical report．
（https：／／arxiv．org／abs／1601．06844）．

圊 Haussler，D．（1999）．
Convolution kernels on discrete structures．
Technical report，University of California at Santa Cruz． （http：／／cbse．soe．ucsc．edu／sites／default／files／ convolutions．pdf）．
（Ru，J．，Kapoor，M．，Zhang，W．，Hamilton，S．R．，and Coombes，K．R．（2005）．
Analysis of dose－response effects on gene expression data with comparison of two microarray platforms．
Bioinformatics，21（17）：3524－3529．
围 Jaakkola，T．S．and Haussler，D．（1999）．
Exploiting generative models in discriminative classifiers．
In Advances in Neural Information Processing Systems（NIPS）， pages 487－493．
围 Jebara，T．，Kondor，R．，and Howard，A．（2004）．
Probability product kernels．
Journal of Machine Learning Research，5：819－844．

围 Jiao，Y．and Vert，J．－P．（2016）．
The Kendall and Mallows kernels for permutations． In International Conference on Machine Learning（ICML）， volume 37，pages 2982－2990．
围 Johnson，A．L．and Jiang，D．R．（2018）．
Shape constraints in economics and operations research．
Statistical Science，33（4）：527－546．
囯 Kashima，H．and Koyanagi，T．（2002）．
Kernels for semi－structured data．
In International Conference on Machine Learning（ICML）， pages 291－298．
囯 Kashima，H．，Tsuda，K．，and Inokuchi，A．（2003）． Marginalized kernels between labeled graphs．
In International Conference on Machine Learning（ICML）， pages 321－328．

围 Keshavarz，A．，Wang，Y．，and Boyd，S．（2011）．

Imputing a convex objective function．
In IEEE Multi－Conference on Systems and Control，pages
613－619．
圊 Király，F．J．and Oberhauser，H．（2019）．
Kernels for sequentially ordered data．
Journal of Machine Learning Research，20：1－45．
囯 Kondor，R．and Pan，H．（2016）．
The multiscale Laplacian graph kernel．
In Advances in Neural Information Processing Systems（NIPS）， pages 2982－2990．

囯 Kondor，R．I．and Lafferty，J．（2002）．
Diffusion kernels on graphs and other discrete input．
In International Conference on Machine Learning（ICML），
pages 315－322．
䍰 Kuang，R．，le，E．，Wang，K．，Wang，K．，Siddiqi，M．，Freund， Y．，and Leslie，C．（2004）．

Profile-based string kernels for remote homology detection and motif extraction.
Journal of Bioinformatics and Computational Biology, 13(4):527-550.

围 Kur, G., Dagan, Y., and Rakhlin, A. (2020).
Optimality of maximum likelihood for log-concave density estimation and bounded convex regression.
Technical report.
(https://arxiv.org/abs/1903.05315).
(in Leslie, C., Eskin, E., and Noble, W. S. (2002).
The spectrum kernel: A string kernel for SVM protein classification.
Biocomputing, pages 564-575.
Reslie, C. and Kuang, R. (2004).
Fast string kernels using inexact matching for protein sequences.
Journal of Machine Learning Research, 5:1435-1455.

䡒 Lewbel，A．（2010）．
Shape－invariant demand functions．
The Review of Economics and Statistics，92（3）：549－556．
囯 Li，Q．and Racine，J．S．（2007）．
Nonparametric Econometrics．
Princeton University Press．
圊 Lim，E．（2020）．
The limiting behavior of isotonic and convex regression estimators when the model is misspecified． Electronic Journal of Statistics，14：2053－2097．
R Lodhi，H．，Saunders，C．，Shawe－Taylor，J．，Cristianini，N．，and Watkins，C．（2002）．
Text classification using string kernels．
Journal of Machine Learning Research，2：419－444．
䍰 Luss，R．，Rossett，S．，and Shahar，M．（2012）．

Efficient regularized isotonic regression with application to gene－gene interaction search．
Annals of Applied Statistics，6（1）：253－283．
固 Matzkin，R．L．（1991）．
Semiparametric estimation of monotone and concave utility functions for polychotomous choice models．
Econometrica，59（5）：1315－1327．
－Micchelli，C．and Pontil，M．（2005）．
On learning vector－valued functions．
Neural Computation，17：177－204．
囯 Micchelli，C．，Xu，Y．，and Zhang，H．（2006）．
Universal kernels．
Journal of Machine Learning Research，7：2651－2667．
围 Pedrick，G．（1957）．
Theory of reproducing kernels for Hilbert spaces of vector valued functions．
Technical report．

围 Rüping, S. (2001).
SVM kernels for time series analysis.
Technical report, University of Dortmund.
(http://www.stefan-rueping.de/publications/
rueping-2001-a.pdf).
Eaigo, H., Vert, J.-P., Ueda, N., and Akutsu, T. (2004). Protein homology detection using string alignment kernels. Bioinformatics, 20(11):1682-1689.

R Sangnier, M., Fercoq, O., and d'Alché Buc, F. (2016). Joint quantile regression in vector-valued RKHSs. Advances in Neural Information Processing Systems (NIPS), pages 3693-3701.

围 Seeger, M. (2002).
Covariance kernels from Bayesian generative models.
In Advances in Neural Information Processing Systems (NIPS),
pages 905-912.

Rhapiro，A．，Dentcheva，D．，and Ruszczynski，A．（2014）． Lectures on Stochastic Programming：Modeling and Theory． SIAM－Society for Industrial and Applied Mathematics．

围 Shervashidze，N．，Vishwanathan，S．V．N．，Petri，T．，Mehlhorn， K．，and Borgwardt，K．M．（2009）．
Efficient graphlet kernels for large graph comparison．
In International Conference on Artificial Intelligence and Statistics（AISTATS），pages 488－495．

围 Shi，X．，Shum，M．，and Song，W．（2018）．
Estimating semi－parametric panel multinomial choice models using cyclic monotonicity．
Econometrica，86（2）：737－761．
囯 Simchi－Levi，D．，Chen，X．，and Bramel，J．（2014）．
The Logic of Logistics：Theory，Algorithms，and Applications for Logistics Management．
Springer．

囯 Simon－Gabriel，C．－J．and Schölkopf，B．（2018）． Kernel distribution embeddings：Universal kernels， characteristic kernels and kernel metrics on distributions． Journal of Machine Learning Research，19（44）：1－29．

國 Sriperumbudur，B．，Fukumizu，K．，and Lanckriet，G．（2011）． Universality，characteristic kernels and RKHS embedding of measures． Journal of Machine Learning Research，12：2389－2410．

R Sriperumbudur，B．，Gretton，A．，Fukumizu，K．，Schölkopf，B．， and Lanckriet，G．（2010）． Hilbert space embeddings and metrics on probability measures．

Journal of Machine Learning Research，11：1517－1561．
圊 Steinwart，I．（2001）．
On the influence of the kernel on the consistency of support vector machines．
Journal of Machine Learning Research，6（3）：67－93．

R Szabó, Z. and Sriperumbudur, B. K. (2018).
Characteristic and universal tensor product kernels. Journal of Machine Learning Research, 18(233):1-29.
(Topkis, D. M. (1998).
Supermodularity and complementarity.
Princeton University Press.
圊 Tsuda, K., Kin, T., and Asai, K. (2002).
Marginalized kernels for biological sequences.
Bioinformatics, 18:268-275.
Varian, H. R. (1984).
The nonparametric approach to production analysis.
Econometrica, 52(3):579-597.
Rishwanathan, S. N., Schraudolph, N., Kondor, R., and Borgwardt, K. (2010).
Graph kernels.
Journal of Machine Learning Research, 11:1201-1242.

囯 Watkins, C. (1999).
Dynamic alignment kernels.
In Advances in Neural Information Processing Systems (NIPS), pages 39-50.
囲 Yagi, D., Chen, Y., Johnson, A. L., and Kuosmanen, T. (2020).

Shape-constrained kernel-weighted least squares: Estimating production functions for Chilean manufacturing industries. Journal of Business \& Economic Statistics, 38(1):43-54.

