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Motivating examples
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Motivating example-1: NLP

Given: two categories of documents (Bayesian inference,
neuroscience).

Task:

test their distinguishability,
most discriminative words Ñ interpretability.
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Motivating example-2: computer vision

Given: two sets of faces (happy, angry).

Task:

check if they are different,
determine the most discriminative features/regions.
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One-page summary

Contribution:

We propose a nonparametric t-test.

It gives a reason why H0 is rejected.

It has high test power.

It runs in linear time.
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One-page summary

Contribution:

We propose a nonparametric t-test.

It gives a reason why H0 is rejected.

It has high test power.

It runs in linear time.

Dissemination, code:

NIPS-2016 [Jitkrittum et al., 2016]: full oral = top 1.84%.

https://github.com/wittawatj/interpretable-test.
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Two-sample test, distribution features
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What is a two-sample test?

Given:

X “ txiuni“1

i .i .d.„ P, Y “ tyjunj“1

i .i .d.„ Q.

Example: xi = i th happy face, yj = j th sad face.
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What is a two-sample test?

Given:

X “ txiuni“1

i .i .d.„ P, Y “ tyjunj“1

i .i .d.„ Q.

Example: xi = i th happy face, yj = j th sad face.

Problem: using X , Y test

H0 : P “ Q, vs

H1 : P ‰ Q.

Zoltán Szabó Distinguishing Distributions with Maximum Testing Power



What is a two-sample test?

Given:

X “ txiuni“1

i .i .d.„ P, Y “ tyjunj“1

i .i .d.„ Q.

Example: xi = i th happy face, yj = j th sad face.

Problem: using X , Y test

H0 : P “ Q, vs

H1 : P ‰ Q.

Assume X ,Y Ă Rd .
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Ingredients of two-sample test

Test statistic: λ̂n “ λ̂npX ,Y q, random.
Significance level: α “ 0.01.
Under H0: PH0

p λ̂n ď Tαlooomooon
correctly accepting H0

q “ 1 ´ α.
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Ingredients of two-sample test

Test statistic: λ̂n “ λ̂npX ,Y q, random.
Significance level: α “ 0.01.
Under H0: PH0

p λ̂n ď Tαlooomooon
correctly accepting H0

q “ 1 ´ α.

Under H1: PH1
pTα ă λ̂nq “ Ppcorrectly rejecting H0q =: power.
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Towards representations of distributions: EX

Given: 2 Gaussians with different means.

Solution: t-test.
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Towards representations of distributions: EX 2

Setup: 2 Gaussians; same means, different variances.

Idea: look at 2nd-order features of RVs.
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Towards representations of distributions: EX 2

Setup: 2 Gaussians; same means, different variances.

Idea: look at 2nd-order features of RVs.

ϕx “ x2 ñ difference in EX 2.
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Towards representations of distributions: further moments

Setup: a Gaussian and a Laplacian distribution.

Challenge: their means and variances are the same.

Idea: look at higher-order features.

Let us consider feature/distribution representations!
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Kernel: similarity between features

Given: x and x1 objects (images or texts).
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Kernel: similarity between features

Given: x and x1 objects (images or texts).

Question: how similar they are?
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Kernel: similarity between features

Given: x and x1 objects (images or texts).

Question: how similar they are?

Define features of the objects:

ϕx : features of x,

ϕx1 : features of x1.

Kernel: inner product of these features

kpx, x1q :“ 〈ϕx, ϕx1〉 .
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Kernel examples on Rd (γ ą 0, p P Z`)

Polynomial kernel:

kpx, yq “ p〈x, y〉 ` γqp .

Gaussian kernel:

kpx, yq “ e´γ}x´y}22 .
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Towards distribution features
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Towards distribution features
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Towards distribution features
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Towards distribution features

{MMD2pP,Qq “ ĚKP,P ` ĘKQ,Q ´ 2ĘKP,Q (without diagonals in ĚKP,P, ĘKQ,Q)
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Kernel Ñ distribution feature

Kernel recall: kpx, x1q “ 〈ϕx, ϕx1〉.
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Kernel Ñ distribution feature

Kernel recall: kpx, x1q “ 〈ϕx, ϕx1〉.

Feature of P (mean embedding):

µP :“ Ex„Prϕxs.
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Kernel Ñ distribution feature

Kernel recall: kpx, x1q “ 〈ϕx, ϕx1〉.

Feature of P (mean embedding):

µP :“ Ex„Prϕxs.

Previous quantity: unbiased estimate of

MMD2pP,Qq “ }µP ´ µQ}2 .
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Kernel Ñ distribution feature

Kernel recall: kpx, x1q “ 〈ϕx, ϕx1〉.

Feature of P (mean embedding):

µP :“ Ex„Prϕxs.

Previous quantity: unbiased estimate of

MMD2pP,Qq “ }µP ´ µQ}2 .

Valid test [Gretton et al., 2012]. Challenges:

1 Threshold choice: ’ugly’ asymptotics of n {MMD2pP,Pq.
2 Test statistic: quadratic time complexity.
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Linear-time tests
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Linear-time 2-sample test

Recall:

MMD2pP,Qq “ }µP ´ µQ}2
Hpkq .

Changing [Chwialkowski et al., 2015] this to

ρ2pP,Qq :“ 1

J

Jÿ

j“1

rµPpvj q ´ µQpvj qs2.

with random tvjuJj“1 test locations

ρ is a metric (a.s.). How do we estimate it? Distribution under H0?
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Estimation

Estimate

{ρ2pP,Qq “ 1

J

Jÿ

j“1

rµ̂Ppvj q ´ µ̂Qpvj qs2,

where µ̂Ppvq “ 1
n

řn
i“1 kpxi , vq. Using kpx, vq “ e´ }x´v}2

2σ2 ,
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Estimation – continued

{ρ2pP,Qq “ 1

J

Jÿ

j“1

rµ̂Ppvj q ´ µ̂Qpvj qs2

“ 1

J

Jÿ

j“1

«
1

n

nÿ

i“1

kpxi , vj q ´ 1

n

nÿ

i“1

kpyi , vj q
ff2

“ 1

J

Jÿ

j“1

pz̄nq2j “ 1

J
z̄Tn z̄n,

where z̄n “ 1
n

řn
i“1 rkpxi , vjq ´ kpyi , vj qsJj“1loooooooooooooomoooooooooooooon

“:zi

P RJ .

Good news: estimation is linear in n!

Bad news: intractable null distr. =
?
n {ρ2pP,Pq wÝÑ sum of J

correlated χ2.
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Normalized version gives tractable null

Modified test statistic:

λ̂n “ nz̄Tn Σ
´1
n z̄n,

where Σn “ covptzi ui q.
Under H0:

λ̂n
wÝÑ χ2pJq. ñ Easy to get the p1 ´ αq-quantile!
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Our idea
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Idea

Until this point: test locations (V) are fixed.

Instead: choose θ “ tV, σu to

maximize lower bound on the test power.
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Idea

Until this point: test locations (V) are fixed.

Instead: choose θ “ tV, σu to

maximize lower bound on the test power.

Theorem (Lower bound on power)

For large n, test power ě Lpλnq; L: explicit function, increasing.

Here,

λn “ nµT
Σ

´1
µ: population version of λ̂n.

µ “ Exyrz1s, Σ “ Exy

“
pz1 ´ µqpz1 ´ µqT

‰
.
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Convergence of the λn estimator

Training objective λ̂npXtr ,Ytr q converges to λn.

But λn is unknown.
Split pX ,Y q into pXtr ,Ytr q and pXte ,Yteq. Use λ̂npXtr ,Ytr q « λn.

Theorem (Guarantee on objective approximation)
ˇ̌
supV ,K z̄Tn pΣn ` γnq´1z̄n ´ supV ,Kµ

T
Σ

´1
µ

ˇ̌
“ O

´
n´ 1

4

¯
.
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Convergence of the λn estimator

Training objective λ̂npXtr ,Ytr q converges to λn.

But λn is unknown.
Split pX ,Y q into pXtr ,Ytr q and pXte ,Yteq. Use λ̂npXtr ,Ytr q « λn.

Theorem (Guarantee on objective approximation)
ˇ̌
supV ,K z̄Tn pΣn ` γnq´1z̄n ´ supV ,Kµ

T
Σ

´1
µ

ˇ̌
“ O

´
n´ 1

4

¯
.

Examples:

K “ tkσpx, yq “ e´}x´y}2 : σ ą 0u,
K “ tkApx, yq “ e´px´yqTApx´yq : A ą 0u.
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Numerical demos
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Parameter settings

Gaussian kernel (σ). α “ 0.01. J “ 1. Repeat 500 trials.
Report

PprejectH0q « #times λ̂n ą Tα holds

#trials
.

Compare 4 methods

ME-full: Optimize V and Gaussian bandwidth σ.
ME-grid: Optimize σ. Fix V [Chwialkowski et al., 2015].
MMD-quad: Test with quadratic-time MMD [Gretton et al., 2012].
MMD-lin: Test with linear-time MMD [Gretton et al., 2012].

Optimize kernels to power in MMD-lin, MMD-quad.
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NLP: discrimination of document categories

5903 NIPS papers (1988-2015).
Keyword-based category assignment into 4 groups:

Bayesian inference, Deep learning, Learning theory, Neuroscience

d “ 2000 nouns. TF-IDF representation.

Problem nte ME-full ME-grid MMD-quad MMD-lin

1. Bayes-Bayes 215 .012 .018 .022 .008

2. Bayes-Deep 216 .954 .034 .906 .262

3. Bayes-Learn 138 .990 .774 1.00 .238

4. Bayes-Neuro 394 1.00 .300 .952 .972

5. Learn-Deep 149 .956 .052 .876 .500

6. Learn-Neuro 146 .960 .572 1.00 .538

Performance of ME-full rOpnqs is comparable to MMD-quad rOpn2qs.
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NLP: most/least discriminative words

Aggregating over trials; example: ’Bayes-Neuro’.

Most discriminative words:

spike, markov, cortex, dropout, recurr, iii, gibb.

learned test locations: highly interpretable,
’markov’, ’gibb’ (ð Gibbs): Bayesian inference,
’spike’, ’cortex’: key terms in neuroscience.
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NLP: most/least discriminative words

Aggregating over trials; example: ’Bayes-Neuro’.

Least dicriminative ones:

circumfer, bra, dominiqu, rhino, mitra, kid, impostor.
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Distinguish positive/negative emotions

Karolinska Directed Emotional Faces (KDEF) [Lundqvist et al., 1998].
70 actors = 35 females and 35 males.
d “ 48 ˆ 34 “ 1632. Grayscale. Pixel features.

` :
happy neutral surprised

´ :
afraid angry disgusted

Problem nte ME-full ME-grid MMD-quad MMD-lin
˘ vs. ˘ 201 .010 .012 .018 .008

` vs. ´ 201 .998 .656 1.00 .578

Learned test location (averaged) =
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Summary

We proposed a nonparametric t-test:

linear time,
high-power (« ’MMD-quad’),

2 demos: discriminating

documents of different categories,
positive/negative emotions.
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Thank you for the attention!

Acknowledgements: This work was supported by the Gatsby
Charitable Foundation.
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Non-convexity, informative features

2D problem:

P :“ N pr0; 0s, Iq,
Q :“ N pr1; 0s, Iq.

V “ tv1, v2u.
Fix v1 to ▲.

Contour plot of
v2 ÞÑ λ̂nptv1, v2uq.
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Number of locations (J)

Small J:

often enough to detect the difference of P & Q.
few distinguishing regions to reject H0.
faster test.

Very large J:

test power need not increase monotonically in J (more
locations ñ statistic can gain in variance).
defeats the purpose of a linear-time test.
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Computational complexity

Optimization & testing: linear in n.

Testing: O
`
ndJ ` nJ2 ` J3

˘
.

Optimization: O
`
ndJ2 ` J3

˘
per gradient ascent.
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Estimation of MMD2

Squared difference between feature means:

MMD2pP,Qq “ }µP ´ µQ}2
H

“ 〈µP ´ µQ, µP ´ µQ〉H
“ 〈µP, µP〉H ` 〈µQ, µQ〉H ´ 2 〈µP, µQ〉H
“ EP,Pkpx, x1q ` EQ,Qkpy, y1q ´ 2EP,Qkpx, yq.
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Estimation of MMD2

Squared difference between feature means:

MMD2pP,Qq “ }µP ´ µQ}2
H

“ 〈µP ´ µQ, µP ´ µQ〉H
“ 〈µP, µP〉H ` 〈µQ, µQ〉H ´ 2 〈µP, µQ〉H
“ EP,Pkpx, x1q ` EQ,Qkpy, y1q ´ 2EP,Qkpx, yq.

Unbiased empirical estimate for txi uni“1 „ P, tyjunj“1 „ Q:

{MMD2pP,Qq “ ĚKP,P ` ĘKQ,Q ´ 2ĘKP,Q.
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The Karolinska directed emotional faces-KDEF.
Technical report, ISBN 91-630-7164-9.
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