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Motivation: 'Classical’ Information Theory

o Kullback-Leibler divergence:

KL(P,Q) = fRd p(x) log [ZEX] dx.

@ Mutual information:
I (P) = KL (]P’, ®,“,,”:11P’m> .
Properties:

Q /(P)>0.
Q@ /(P)=0<P=g" P,

Alternatives: Rényi, Tsallis, L2 divergence. .. Typically: X = R9. J
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Euclidean Space — Inner Product — Kernel

Extension of k(x,y) = x"y leads to kernels. ]
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Extension of k(x,y) = xTy leads to kernels. Why? J

@ Classification:
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Euclidean Space — Inner Product — Kernel

Extension of k(x,y) = xTy leads to kernels. Why? J

@ Classification:

Input Space Feature Space

© Representation of distributions:
P — Ex-pp(x).

©(x) = x: mean, p(x) = e'("¥): characteristic function.
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Diverse Set of Domains, Kernel Examples

WMtlme sériesM @ \‘ oy ;
-

o X =R9 ~>0:

kP(xvy) = (<X,y> + ’Y)p, kG(x,Y) = e—7||X—YI|§’

1
ke(x,y) = e VIx=Vl2, ke(xy) =1+ ———.
vlIx =yl
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Diverse Set of Domains, Kernel Examples

L, time series W‘W
WM

o X =R7 v >0:

kP(xvy) = (<X,y> + ’Y)p, kG(x,Y) = e_7||x_Y||§’

1
ke(x,y) = e VIx=Vl2, ke(x,y) =14+ ——.
7lx =yl

o X = strings, texts:
o r-spectrum kernel: # of common < r-substrings.
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Diverse Set of Domains, Kernel Examples

‘ -
L™, time series vt oo
o X =R9 ~>0:
kP(xvy) = (<X,y> + ’Y)p, kG(x,Y) = e_7||x_Y||§’
1
ke(x,y) = e 7P, ke(x,y) =14+ ——.
v Ix=yl3

o X = strings, texts:
o r-spectrum kernel: # of common < r-substrings.

o X = time-series: dynamic time-warping.
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Diverse Set of Domains, Kernel Examples

L, time series W‘W
WM

o X =R7 v >0:

kP(xvy) = (<X,y> + ’Y)p, kG(x,Y) = e_7||x_Y||§’

1
ke(x,y) = e VIx=Vl2, ke(x,y) =14+ ——.
7lx =yl

o X = strings, texts:
o r-spectrum kernel: # of common < r-substrings.
o X = time-series: dynamic time-warping.

@ X = trees, graphs, dynamical systems, sets, permutations, ...
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Objects of Interest

'KL divergence & mutual information’ on kernel-endowed domains.J

@ Mean embedding:
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Objects of Interest

'KL divergence & mutual information’ on kernel-endowed domains.J

@ Mean embedding:

pk(P) := JX o(x) dP(x) € Hy.
k(%)

@ Maximum mean discrepancy:

MMD (P, Q) := [ pk(P) — 1k (Q)]lae, -
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Objects of Interest

'KL divergence & mutual information’ on kernel-endowed domains.)

@ Mean embedding:

pk(P) := J o(x) dP(x) € Hy.
X S~——
k(-,x)
@ Maximum mean discrepancy:
MMD(P, Q) := [k (P) — 1k (Q) ¢, -

@ Hilbert-Schmidt independence criterion, k = ®lekm:

HSIC (P) := MMDy (P,@lelf"m) .
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Objects of Interest

@ Mean embedding:
pk(P) := J o(x) dP(x) € Hy.
X ~——
k(-,x)
@ Maximum mean discrepancy:
MMD (P, Q) := | sk (P) — 1 (Q) 3¢, -

@ Hilbert-Schmidt independence criterion, k = ®lekm:

HSIC (P) := MMDy (P,@lelf"m) .

When is HSIC an independence measure? Conditions on k;,-s? )
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Ingredients
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Ingredients: Domain of the Distributions (X))

o HSIC = X = xM_ X, product space.
o X, different modalities — images, texts, audio, ...
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Ingredients: Domain of the Distributions (X))

o HSIC = X = xM_ X, product space.
o X, different modalltles — images, texts, audio, ...

X kernel-enriched domains. \
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Ingredients: Kernel, RKHS (X := X, k := kp,)

Given: X set. H(ilbert space).
o Kernel:

K(a,b) = (ip(a), @ (b)Ysc.

Zoltan Szabd Characterizing Independence with Tensor Product Kernels
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Ingredients: Kernel, RKHS (X := X, k := kp,)

Given: X set. H(ilbert space).
o Kernel:

k(av b) = <L,Q(3), Sp(b»ﬂf
o Reproducing kernel of a 7{ = R¥:

k(-,b) € H, f(b) = {f,k(-, b)) .
—— N y >

l reproducing property

P, k(a, b) = (k(-, a), k(-, b)ds.
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Ingredients: Kernel, RKHS (X := X, k := kp,)

Given: X set. H(ilbert space).

o Kernel:

k(av b) = <L,Q(3), Sp(b»ﬂf
o Reproducing kernel of a 7{ = R¥:

k(-,b) € H, f(b) = {f,k(-, b)) .
—— N y >

l reproducing property

=5 k(a,b) = (k(+,2), k(- D)o Hoe = {Eg ik )}

Equivalent definitions. We represent distributions in an RKHS. .. J
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Mean Embedding

e Dirac measure: dy — k(-, x).
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Mean Embedding

@ Dirac measure: dy — k(-, x). Generally:

JXk,X P(x) € Hy.

Bochner |ntegra|
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Mean Embedding

@ Dirac measure: dy — k(-, x). Generally:

Jk,X Ej'fk
X

Bochner |ntegra|

o 3up & k(- x)]g, dP(x) <
H—/

k(x,x)
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Mean Embedding

@ Dirac measure: 0y — k(-, x). Generally:

Jk Gj‘fk
X

Bochner |ntegra|

o up & [[k(-, )3, dP(x) £ . Assume: bounded k.
%,_/

k(x,x)
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Mean Embedding, MMD: Applications & Review

@ Applications:

o two-sample testing [Gretton et al., 2012], domain adaptation
[Zhang et al., 2013], -generalization [Blanchard et al., 2017],

e interpretable machine learning [Kim et al., 2016],

o kernel belief propagation [Song et al., 2011], kernel Bayes' rule
[Fukumizu et al., 2013], model criticism [Lloyd et al., 2014],

e approximate Bayesian computation [Park et al., 2016],
probabilistic programming [Schélkopf et al., 2015],

o distribution classification [Muandet et al., 2011], distribution
regression [Szabd et al., 2016], topological data analysis
[Kusano et al., 2016].

@ Review [Muandet et al., 2017].

Let us switch to HSIC. J
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MMD 55 HSIC

MMD with k = @Y ky:
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MMD 55 HSIC

MMD with k = @Y ky:

M
H km Xm7 m ,
HSIC, (P) := MMD, (]P, ®m=1IP’m) :

Applications:
@ blind source separation [Gretton et al., 2005],

o feature selection [Song et al., 2012], post selection inference
[Yamada et al., 2016],

@ independence testing [Gretton et al., 2008], causal inference
[Mooij et al., 2016, Pfister et al., 2017, Strobl et al., 2017].
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Central in Applications: Characteristic Property

@ MMD: k is called characteristic [Fukumizu et al., 2008] if

MMD(P,Q)=0 < P = Q.
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e MMD: k is called characteristic [Fukumizu et al., 2008] if
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e HSIC: k = ®M:1km will be called Z-characteristic if

HSIC,(P)=0 < P =@N_,P,.
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Central in Applications: Characteristic Property

@ MMD: k is called characteristic [Fukumizu et al., 2008] if
MMD,(P,Q)=0< P = Q.
e HSIC: k = ®M:1km will be called Z-characteristic if

HSIC,(P)=0 < P =@N_,P,.

° ®n’\f:1km: characteristic = Z-characteristic.

o @Y kp, is T-characteristic: conditions in terms of kpy-s?

o @M kp, is characteristic: relation?
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Characteristic Property: Description on R¢

For continuous bounded shift-invariant kernels on R¢:

k(x,x') = ko(x — x') ® J e @ N (W)
Rd

(#): Bochner's theorem.
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Characteristic Property: Description on R¢

For continuous bounded shift-invariant kernels on R¢:
k(x,x') = ko(x — x') ® J e @ N (W) =
]Rd
litp — ngllsg, = e — callizgn -

(+): Bochner's theorem, cp: characteristic function of P.
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Characteristic Property: Description on R¢

For continuous bounded shift-invariant kernels on R¢:
k(x,x') = ko(x — x') ® J e @ N (W) =
]Rd
litp — ngllsg, = e — callizgn -

(+): Bochner's theorem, cp: characteristic function of P.

Theorem ([Sriperumbudur et al., 2010])

k is characteristic iff. supp(\) = RY.
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Examples on R; Similarly RY

kernel name kg ko(w) supp (ko)
. _ X2 o2w?

Gaussian e 252 ce” 2 R
H —olx| 2_o

Laplacian e \/:UZJMQ R

Bz 1-spline *.2”+2X[—%,%](X) Vo R
Sinc sin(ex) VEX o) () [~0,0]
.y in2 (nt1)x n j .
Fejér R L A (1 - nlﬁl) 5(w—j) {0, 41,42, ... +n}
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Universality [Steinwart, 2001, Sriperumbudur et al., 2010]

k is called characteristic (recall!)/universal if

. + .
pk s M (X)) > Hy, pk s Mp(X) > FHy
— —
probability measures on X bounded signed measures on X’
is injective.
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Universality [Steinwart, 2001, Sriperumbudur et al., 2010]

k is called characteristic (recall!)/universal if

. + .
pk s M (X)) > Hy, pk s Mp(X) > FHy
— —
probability measures on X bounded signed measures on X’
is injective.

o Example: Mp(X) 3P —@M_ P,

@ Universal = characteristic = 7Z-characteristic.
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Universality [Steinwart, 2001, Sriperumbudur et al., 2010]

k is called characteristic (recall!)/universal if

. + .
pk s M (X)) > Hy, pk s Mp(X) > FHy
— —
probability measures on X bounded signed measures on X’
is injective.

o Example: Mp(X) 3P —@M_ P,
@ Universal = characteristic = Z-characteristic.

Challenge

Characteristic/Z-characteristic/universality of ®Y_; ky, in terms of
km-s!
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Existing Results, M = 2

e [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
k1&ky: universal = ki ® ky: universal (= Z-characteristic).
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Existing Results, M = 2

e [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
k1&ky: universal = ki ® ky: universal (= Z-characteristic).
@ Distance covariance [Lyons, 2013, Sejdinovic et al., 2013]:
k1&ky: characteristic & ki ® ky: Z-characteristic.

Zoltan Szabd Characterizing Independence with Tensor Product Kernels



Existing Results, M = 2

e [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
k1&ky: universal = ki ® ky: universal (= Z-characteristic).
@ Distance covariance [Lyons, 2013, Sejdinovic et al., 2013]:
k1&ky: characteristic & ki ® ky: Z-characteristic.

Extension to M > 2.
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Existing Results, M = 2

e [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
k1&ky: universal = ki ® ky: universal (= Z-characteristic).
@ Distance covariance [Lyons, 2013, Sejdinovic et al., 2013]:
k1&ky: characteristic & ki ® ky: Z-characteristic.

Extension to M > 2.

Main Challenge
'®km: I-characteristic < kp,: characteristic (Vm)' does NOT hold.
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Idea: Characteristic Property as Ispd

@ Characteristic property:

F=P; —P;#0= up #0.
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Idea: Characteristic Property as Ispd

@ Characteristic property:
FZ]P)l—PQ-‘,éO@MF;éO.

Here: F e Mp(X), F(X) = Py(X) — Po(X) = 0.
Y T
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Idea: Characteristic Property as Ispd

@ Characteristic property:
FZ]P)l—PQ-‘,éO@MF;éO.

Here: F e Mp(X), F(X) = Py(X) — Po(X) = 0.
Y 1T

@ Observation [Sriperumbudur et al., 2010]: k is characteristic iff.

luel3g, > 0, VF € Myp(X)\{0} F(X) =0.

F1
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Idea: Characteristic Property as

o Characteristic property:
F=P;—-P,#0=pur #0.

Here: F € My(X), F(X) = P1(X) —Po(X) = 0.
—— ——

1 1
@ Observation [Sriperumbudur et al., 2010]: k is characteristic iff.

Hmﬂlﬁ{k > 0, VIF € Mp(X)\{0} F(X) = 9
~—— ~
S §a K(,X) dF (x) dF(x') 5
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Idea: Characteristic Property as Ispd

@ Characteristic property:
FZ]P)l—PQ;éO@MF;éO.

Here: F e Mp(X), F(X) = Py(X) — Po(X) = 0.
Y 1T

@ Observation [Sriperumbudur et al., 2010]: k is characteristic iff.

luel3g, > 0, VF € Myp(X)\{0} F(X) =0.

F1

@ We saw: k is universal iff.

el > 0, VE € Mp(X)\{0] .
—_—

F2

Zoltan Szabd Characterizing Independence with Tensor Product Kernels



F-ispd Tensor Product Kernels

From now on: X = xM_ X, Let F < My(X), 0e 5.

Definition
k =®Y_ kp, is called F-ispd if

|k (F)l3e, >0, VF e F\{0}
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F-ispd Tensor Product Kernels

From now on: X = xM_ X, Let F < My(X), 0e 5.

Definition
k =®Y_ kp, is called F-ispd if

|k (F)|3, >0, VF e F\{0}, equivalently
() =0=>F=0 (FeJ).
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TF | F-ispd k
Mp(X) universal
[M(X)]° characteristic
S = [ Mp(X)]°c My (X)
ul
= < characteristic<= universal.

!
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TF | F-ispd k
Mp(X) universal
[M(X)]° characteristic

I:= {}P’ — ®M:1Pm} Z-characteristic

< Mp (X)) My ().

C C
ul
A

= < characteristic<= universal.

Z-characteristic
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TF | F-ispd k
Mp(X) universal
[M(X)]° characteristic

I:= {}P’ — ®M:1Pm} Z-characteristic
[@{‘n/’:le(Xm)]o ®-characteristic

< [OM_ Mp(Xm)]’e  [My(X)]° = My ().
Ul
T

< ® -characteristic<= characteristic<= universal.

!

Z-characteristic
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TF | F-ispd k
Mp(X) universal
[M(X)]° characteristic

I:= {}P’ — ®M:1Pm} Z-characteristic
[@{‘n/’:le(Xm)]o ®-characteristic
®M=1M?J(Xm) ®o-characteristic

O MY(Xm) = [®M_ Mp(Xm)]’=s My (X)]° = M, ().
Ul

7z

®o -characteristic = ® -characteristic< characteristic<= universal.

!

Z-characteristic
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®o-char «—— ®-char «——= char «—— universal

-~
~

=/

Z-char

[Sriperumbudur et al., 2011]
(km) =1 char ‘ (km)M_, -universal
[Sriperumbudur et al., 2011]
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Results
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Various Characteristic Properties of @¥_, k,,,

Proposition

(i) ®n’\f:1km: characteristic = ®-characteristic.
(ii) ®n’\f:1km: ®-characteristic = ®q-characteristic.

(i) ®M_, km: ®o-characteristic < (kyn)™_, are characteristic.
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Various Characteristic Properties of @¥_, k,,,

Proposition

(i) ®n’\f:1km: characteristic = ®-characteristic.
(ii) ®n’\f:1km: ®-characteristic = ®q-characteristic.

(i) ®M_, km: ®o-characteristic < (kyn)™_, are characteristic.

(iii) remains. ldea: with k = ®Y_ k,, F = @Y_ T,

M

k@2 =TT ko Fan)lZ, .

m=1 ‘“~——
>0 S—— >0
v
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&®p-characteristic = even ®-characteristic

Reverse of (ii) does not hold.

o X, ={1,2}, 7x, = P({1,2}), km(x,x') = 2050 —1, M = 2.

@ ki = ko: characteristic, but k1 ® ko is not @-characteristic.

@ ki ® ko is T-characteristic.
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Proof Idea: k1 ® k>: not ®-characteristic

Finite signed measures on X, = {1,2}:

IE‘l(a) = a101 + axdo, Fz(b) = b161 + byds.
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Proof Idea: k1 ® k>: not ®-characteristic

Finite signed measures on X, = {1,2}:
IE‘l(a) = a101 + axdo, Fz(b) = b161 + byds.
Goal: construct a witness 0 #F =F; ® F» € ®?n:1Mb(Xm) s.t.

0 = F(X1 x A2) = F1(A7)Fa(A2),

0= J f ki(x1, 1) k2 (x2, x3) dF (x1, x2) dFF (x7, x3)-
X1><X2 X1><X2
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Proof Idea: k1 ® k>: not ®-characteristic

Finite signed measures on X, = {1,2}:
IE‘l(a) = a101 + axdo, Fz(b) = b161 + byds.
Goal: construct a witness 0 #F =F; ® F» € ®?n:1Mb(Xm) s.t.

0 = F(X1 x A2) = F1(A7)Fa(A2),

0= J f ki(x1, 1) k2 (x2, x3) dF (x1, x2) dFF (x7, x3)-
X1><X2 X1><X2

This gives
0= (31 + 32)(131 + b2), 0= (al — 32)2(b1 — bz)z.
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Proof Idea: k1 ® k>: not ®-characteristic

Finite signed measures on X, = {1,2}:
Fi(a) = a161 + a0, Fo(b) = b161 + b2ds.
Goal: construct a witness 0 #F =F; ® F» € ®?n:1Mb(Xm) s.t.
0 =F(AX1 x Xp) = F1(X1)Fa(X),

0= J f ki(x1, 1) k2 (x2, x3) dF (x1, x2) dFF (x7, x3)-
X1><X2 X1><X2

This gives
0= (31 + 82)(131 + b2), 0= (al — 32)2(b1 — b2)2.
= Two symmetric solutions (a # 0, b # 0):

ai+a =0, b1 = by.
a = ap, b1 + b, = 0.
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Towards Z-characteristicity

In the previous example:

ki, ko: characteristic = ki &® k»: Z-characteristic.

In fact:
@ this holds for any bounded kernel,

@ +converse for any M > 2! Formally, ...
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Z-characteristic Property

Proposition

(i) ki, ko: characteristic = ki ® kp: Z-characteristic.

(i) ®M_, km: I-characteristic = (ky)™_, are characteristic.
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Z-characteristic Property

Proposition

(i) ki, ko: characteristic = ki ® kp: Z-characteristic.

(i) ®M_, km: I-characteristic = (ky)™_, are characteristic.

Proof idea:
(i) Induction: see later universality (F =P — P; @ P»).
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Z-characteristic Property

Proposition

(i) ki, ko: characteristic = ki ® kp: Z-characteristic.

(i) ®M_, km: I-characteristic = (ky)™_, are characteristic.

Proof idea:
(i) Induction: see later universality (F =P — P; @ P»).

(ii) If a kp, is not characteristic, witness can be constructed.

Zoltan Szabd Characterizing Independence with Tensor Product Kernels



ki, ko, k3: characteristic = ®3 _,k,: Z-characteristic

o Xn={1,2}, Tx, = P({1,2}), km(x,x") = 205 —1, M =3.
@ Then

o (km)3 _,: characteristic.
o ®2,_1km: is not T-characteristic. Witness:

. 1 . 1 . 1 . 1
Pl,l,l - 57 P1,1,2 - 107 P1,2,1 - 107 p1,2,2 - 107

. 1 . 1 . 1 . 1
P2,1,1 = 5’ P2,12 = 10’ P221 = 10’ P222 = 10
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-7-characteristicity: Analytical Solution

Parameter: z = (2, z1, ..., 25) € [0,1]°.
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-7-characteristicity: Analytical Solution

Parameter: z = (29, z1, . .., z5) € [0,1]°. Example: p111 =

2+ 21+ 24+ 25 — 32021 — b2z — bz124 — 2023 — 22029 — 22123 — 32025

— 22473 — 2120 — 32125 — 22429 — Az425 — 2320 — 2325 — 2925 + 222212 + 222221
+ 4zzzf + 222224 + 42123 + 22%24 + 222220 + 221223 + 222252 + 222225 + 22223
+ 221252 + 22225 + 22220 + 224252 +4z7225 — 28 — 722 — 322 + 223 — 252
4+ 0202124 + 2202123 + 2202423 + 2202120 + 4202125 + 4202420 + b2y 2423
4+ 6202425 + 2212420 + 6212425 + 2202320 + 2222325 + 2212320 + 2222025

4 2212325 + 2247320 + 2242325 + 2212025 + 2242025

B 22071 — 21 — 224 — 73 — 20 — 225 — 2o + 22024 + 22124 + 22020 + 22123 + 22075

4 22423 + 22125 + 22420 + bz425 + 22329 + 22325 + 22925 + 222 + 2252
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-7-characteristicity: Analytical Solution

Parameter: z = (29, z1, . .., z5) € [0,1]°. Example: p111 =

2+ 21+ 24+ 25 — 32021 — b2z — bz124 — 2023 — 22029 — 22123 — 32025

— 22473 — 2120 — 32125 — 22429 — Az425 — 2320 — 2325 — 2925 + 222212 + 222221
+ 4zzzf + 222224 + 42123 + 22%24 + 222220 + 221223 + 222252 + 222225 + 22223
+ 221252 + 22225 + 22220 + 224252 +4z7225 — 28 — 722 — 322 + 223 — 252
4+ 0202124 + 2202123 + 2202423 + 2202120 + 4202125 + 4202420 + b2y 2423
4+ 6202425 + 2212420 + 6212425 + 2202320 + 2222325 + 2212320 + 2222025

4 2212325 + 2247320 + 2242325 + 2212025 + 2242025

B 22071 — 21 — 224 — 73 — 20 — 225 — 2o + 22024 + 22124 + 22020 + 22123 + 22075

4 22423 + 22125 + 22420 + bz425 + 22329 + 22325 + 22925 + 222 + 2252

(1 1 1 1 1 1
We chose: z = (1ov 10° 107 10’ 107 10)-
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R & Translation-invariance: All Notions Coincide

Proposition

Assume k,, : R9m x R9m — R are continuous, translation-invariant
kernels. Then the followings are equivalent:

(i) (km)M_,-s are characteristic.
(i) ®M_, km: ®o-characteristic.
(i) ®M_, km: ®-characteristic.
(iv) ®M_, km: I-characteristic.
)

(v) ®M_,km: characteristic.
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R & Translation-invariance: All Notions Coincide

Proposition

Assume k,, : R9m x R9m — R are continuous, translation-invariant
kernels. Then the followings are equivalent:
(i) (km)M_,-s are characteristic.
(i) ®M_, km: ®o-characteristic.
(i) ®M_, km: ®-characteristic.
(iv) ®M_, km: I-characteristic.
)

(v) ®M_,km: characteristic.

Proof idea: We already know
(v) = (iii) = (i) < (i), (v) = (iv) = (i).

Remains: (i) = (v).
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(km)M_,: characteristic = ®"_, k,,,: characteristic

@ Since k., is characteristic

km Bochner thm /\m, SUPP(/\m) _ Rdm.
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(km)M_,: characteristic = ®"_, k,,,: characteristic

@ Since k., is characteristic

km Bochner thm /\m, SUPP(/\m) _ Rdm.

@ Tensor kernel:

Bochner thm
_—

M km A=M_An.
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(km)M_,: characteristic = ®"_, k,,,: characteristic

@ Since k., is characteristic

km Bochner thm /\m, SUPP(/\m) _ Rdm.

@ Tensor kernel:

Bochner thm
_—

M km A=M_An.

@ supp(A) = ><,’\T/,’:1 supp (Am) = RY.
—_——

Rdm
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Universality of @¥_, k,,

We saw: for M > 3

(km)M_, are characteristic % ®Y_, k,: Z-characteristic.

Proposition

M

m_1 are universal.

@M _ km: universal < (km)
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The Tricky Direction: If (k,)M_, are Universal ...

m=1

Goal: injectivity of pu = pugm , on Mp(X), i.e.
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The Tricky Direction: If (k,)M_, are Universal ...

m=1
Goal: injectivity of pu = pugm , on Mp(X), i.e.

W) =0=F = 0.

Enough:
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Proof ldea

0 = u(F) = L OM_ i (-, Xon) A (),

0=F (xM.18,) = L WM p () dF(x), VB,
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Proof ldea

0= u(F) = f N _ 1 k(- Xim)dF (x),
X
J
0= f)( H XBm(Xm) ®rAr/1,:J+1 km(',Xm) dF(X), VB,
m=1

0=F (xM.18,) = L WM p () dF(x), VB,
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Proof ldea

0= u(F) = f N _ 1 k(- Xim)dF (x),
X
J
0= f)( H XBm(Xm) ®rAr/1,:J+1 km(',Xm) dF(X), VB,
m=1

0=F (xM.18,) = L WM p () dF(x), VB,

We proceed by induction (J =0,..., M).
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®o-char «—— ®-char «——= char «—— universal

Example

Prop.
‘douy

Z-char

[Sriperumbudur et al., 2011]

char (km)M_, -universal
[Sriperumbudur et al., 2011]
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We studied the validness of HSIC. J

@ HSIC = product structure:
o Space: X = xM_ x,.
o Kernel: k = @Y_, kp,.

@ JF-ispd property = complete answer in terms of k,-s.
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We studied the validness of HSIC. J

@ HSIC = product structure:
o Space: X = xM_ x,.
o Kernel: k = @Y_, kp,.

@ JF-ispd property = complete answer in terms of k,-s.
e ITE toolkit, preprint (maths — JMLR):

https://bitbucket.org/szzoli/ite/
http://arxiv.org/abs/1708.08157
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Thank you for the attention!

Acks: A part of the work was carried out while BKS was visiting ZSz at
CMAP, Ecole Polytechnique. BKS is supported by NSF-DMS-1713011.
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