Hypothesis Testing with Kernels

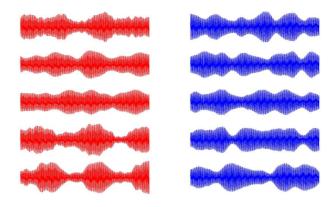
Zoltán Szabó (Gatsby Unit, UCL)

PRNI, Trento June 22, 2016

Zoltán Szabó Hypothesis Testing with Kernels

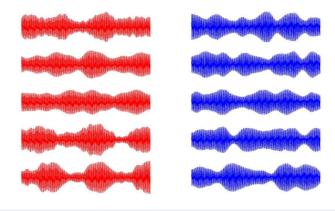
Motivation: detecting differences in AM signals

- Amplitude modulation:
 - simple technique to transmit voice over radio.
 - in the example: 2 songs.
- Fragments from $\operatorname{song}_1 \sim \mathbb{P}_x$, $\operatorname{song}_2 \sim \mathbb{P}_y$.



Motivation: detecting differences in AM signals

- Amplitude modulation:
 - simple technique to transmit voice over radio.
 - in the example: 2 songs.
- Fragments from $\operatorname{song}_1 \sim \mathbb{P}_x$, $\operatorname{song}_2 \sim \mathbb{P}_y$.



Question: $\mathbb{P}_{\mathbf{x}} = \mathbb{P}_{\mathbf{y}}$?

Motivation: discrete domain - 2-sample testing

- How do we compare distributions?
- Given: 2 sets of text fragments (fisheries, agriculture).

 x_1 : Now disturbing reports out of Newfoundland show that the fragile snow crab industry is in serious decline. First the west coast salmon, the east coast salmon and the cod, and now the snow crabs off Newfoundland.

 x_2 : To my pleasant surprise he responded that he had personally visited those wharves and that he had already announced money to fix them. What wharves did the minister visit in my riding and how much additional funding is he going to provide for Delaps Cove, Hampton, Port Lorne, ... y_1 : Honourable senators, I have a question for the Leader of the Government in the Senate with regard to the support funding to farmers that has been announced. Most farmers have not received any money yet.

 y_2 : On the grain transportation system we have had the Estey report and the Kroeger report. We could go on and on. Recently programs have been announced over and over by the government such as money for the disaster in agriculture on the prairies and across Canada.

Motivation: discrete domain - 2-sample testing

- How do we compare distributions?
- Given: 2 sets of text fragments (fisheries, agriculture).

 x_1 : Now disturbing reports out of Newfoundland show that the fragile snow crab industry is in serious decline. First the west coast salmon, the east coast salmon and the cod, and now the snow crabs off Newfoundland.

 x_2 : To my pleasant surprise he responded that he had personally visited those wharves and that he had already announced money to fix them. What wharves did the minister visit in my riding and how much additional funding is he going to provide for Delaps Cove, Hampton, Port Lorne, ... y_1 : Honourable senators, I have a question for the Leader of the Government in the Senate with regard to the support funding to farmers that has been announced. Most farmers have not received any money yet.

 y_2 : On the grain transportation system we have had the Estey report and the Kroeger report. We could go on and on. Recently programs have been announced over and over by the government such as money for the disaster in agriculture on the prairies and across Canada.

Do $\{x_i\}$ and $\{y_j\}$ come from the same distribution, i.e. $\mathbb{P}_x = \mathbb{P}_y$?

• How do we detect dependency? (paired samples)

 x_1 : Honourable senators, I have a question for the Leader of the Government in the Senate with regard to the support funding to farmers that has been announced. Most farmers have not received any money yet.

 x_2 : No doubt there is great pressure on provincial and municipal governments in relation to the issue of child care, but the reality is that there have been no cuts to child care funding from the federal government to the provinces. In fact, we have increased federal investments for early childhood development. y_1 : Honorables sénateurs, ma question s'adresse au leader du gouvernement au Sénat et concerne l'aide financiére qu'on a annoncée pour les agriculteurs. La plupart des agriculteurs n'ont encore rien reu de cet argent.

 y_2 : Il est évident que les ordres de gouvernements provinciaux et municipaux subissent de fortes pressions en ce qui concerne les services de garde, mais le gouvernement n'a pas réduit le financement qu'il verse aux provinces pour les services de garde. Au contraire, nous avons augmenté le financement fédéral pour le développement des jeunes enfants.

• How do we detect dependency? (paired samples)

 x_1 : Honourable senators, I have a question for the Leader of the Government in the Senate with regard to the support funding to farmers that has been announced. Most farmers have not received any money yet.

 x_2 : No doubt there is great pressure on provincial and municipal governments in relation to the issue of child care, but the reality is that there have been no cuts to child care funding from the federal government to the provinces. In fact, we have increased federal investments for early childhood development. y_1 : Honorables sénateurs, ma question s'adresse au leader du gouvernement au Sénat et concerne l'aide financiére qu'on a annoncée pour les agriculteurs. La plupart des agriculteurs n'ont encore rien reu de cet argent.

y₂: Il est évident que les ordres de gouvernements provinciaux et municipaux subissent de fortes pressions en ce qui concerne les services de garde, mais le gouvernement n'a pas réduit le financement qu'il verse aux provinces pour les services de garde. Au contraire, nous avons augmenté le financement fédéral pour le développement des jeunes enfants.

Are the French paragraphs translations of the English ones, or have nothing to do with it, i.e. $\mathbb{P}_{XY} = \mathbb{P}_{X}\mathbb{P}_{Y}$?

- RKHS based metric on probability distributions.
- 2-sample testing:
 - Nonparametric.
 - Distance between distribution representations.

- RKHS based metric on probability distributions.
- 2-sample testing:
 - Nonparametric.
 - Distance between distribution representations.
- Independence testing:
 - Dependency detection.
 - Distance between joint (\mathbb{P}_{XY}) and product of marginals $(\mathbb{P}_X \mathbb{P}_Y)$.

Kernels

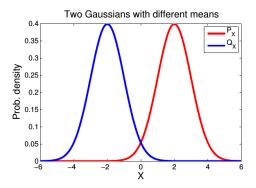
Kernels exist on essentially any data type:

• images, texts, graphs, time series, dynamical systems, ...

 \Rightarrow distribution representation, hypothesis testing: on all these domains.

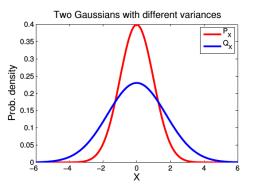
Towards representations of distributions: $\mathbb{E}X$

- Given: 2 Gaussians with different means.
- Solution: *t*-test.



Towards representations of distributions: $\mathbb{E}X^2$

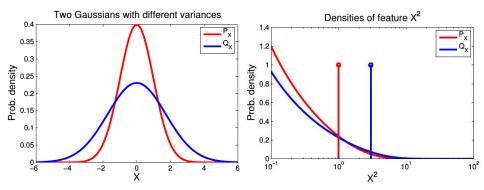
- Setup: 2 Gaussians; same means, different variances.
- Idea: look at the 2nd-order features of RVs.



Towards representations of distributions: $\mathbb{E}X^2$

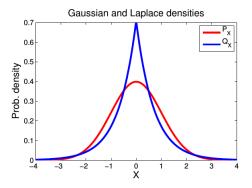
- Setup: 2 Gaussians; same means, different variances.
- Idea: look at the 2nd-order features of RVs.

•
$$\varphi_x = x^2 \Rightarrow \text{difference in } \mathbb{E}X^2$$



Towards representations of distributions: further moments

- Setup: a Gaussian and a Laplacian distribution.
- Challenge: their means and variances are the same.
- Idea: look at higher-order features.



Let us consider feature representations!

Kernel: similarity between features

• Given: x and $x' \in \mathcal{X}$ objects (images, texts, ...).

Kernel: similarity between features

- Given: x and $x' \in \mathcal{X}$ objects (images, texts, ...).
- Question: how similar they are?

Kernel: similarity between features

- Given: x and $x' \in \mathcal{X}$ objects (images, texts, ...).
- Question: how similar they are?
- Define features of the objects:

 φ_x : features of x, $\varphi_{x'}$: features of x'.

• Kernel: inner product of these features

$$\mathbf{k}(\mathbf{x},\mathbf{x}'):=\langle \varphi_{\mathbf{x}},\varphi_{\mathbf{x}'}\rangle_{\mathcal{H}}\,.$$

Kernel examples

•
$$\mathfrak{X} = \mathbb{R}^d$$
:
 $k_p(x, y) = (\langle x, y \rangle + \gamma)^p, \quad k_G(x, y) = e^{-\gamma ||x - y||_2^2},$
 $k_e(x, y) = e^{-\gamma ||x - y||_2}, \quad k_C(x, y) = 1 + \frac{1}{\gamma ||x - y||_2^2}.$

Kernel examples

•
$$\mathcal{X} = \mathbb{R}^d$$
:
 $k_p(x, y) = (\langle x, y \rangle + \gamma)^p, \quad k_G(x, y) = e^{-\gamma ||x - y||_2^2},$
 $k_e(x, y) = e^{-\gamma ||x - y||_2}, \quad k_C(x, y) = 1 + \frac{1}{\gamma ||x - y||_2^2}.$

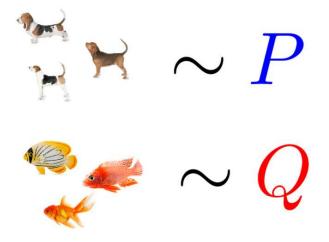
- $\mathfrak{X} = \text{texts}$, strings:
 - bag-of-word kernel,
 - *r*-spectrum kernel: # of common \leq *r*-substrings.

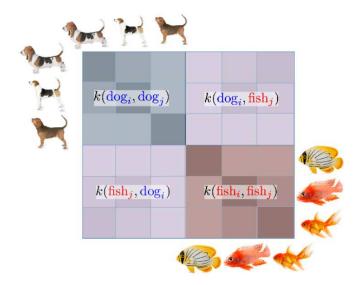
Kernel examples

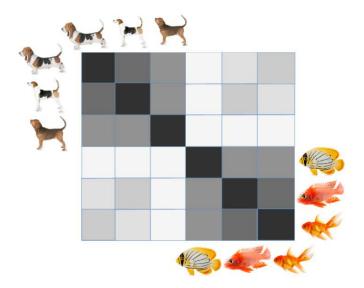
•
$$\mathcal{X} = \mathbb{R}^d$$
:
 $k_p(x, y) = (\langle x, y \rangle + \gamma)^p, \quad k_G(x, y) = e^{-\gamma ||x - y||_2^2},$
 $k_e(x, y) = e^{-\gamma ||x - y||_2}, \quad k_C(x, y) = 1 + \frac{1}{\gamma ||x - y||_2^2}.$

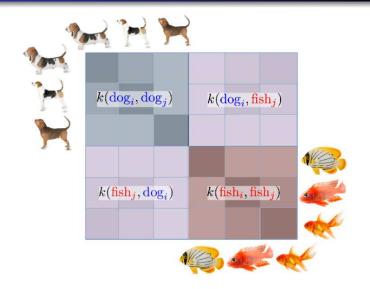
- $\mathfrak{X} = \text{texts}$, strings:
 - bag-of-word kernel,
 - *r*-spectrum kernel: *#* of common ≤ *r*-substrings.
- $\mathfrak{X} =$ time-series: dynamic time-warping.

Two-sample testing









 $\widehat{MMD}^2(\mathbb{P},\mathbb{Q}) = \overline{K_{\mathbb{P},\mathbb{P}}} + \overline{K_{\mathbb{Q},\mathbb{Q}}} - 2\overline{K_{\mathbb{P},\mathbb{Q}}} \quad \text{(without diagonals in } \overline{K_{\mathbb{P},\mathbb{P}}}, \ \overline{K_{\mathbb{Q},\mathbb{Q}}})$

• Recall:

- $\varphi_x \in \mathcal{H}$: feature of $x \in \mathcal{X}$.
- Kernel: $k(x, x') = \langle \varphi_x, \varphi_{x'} \rangle_{\mathcal{H}}.$

Recall:

- $\varphi_x \in \mathcal{H}$: feature of $x \in \mathcal{X}$.
- Kernel: $k(x, x') = \langle \varphi_x, \varphi_{x'} \rangle_{\mathcal{H}}.$
- Mean embedding:
 - Feature of \mathbb{P} : $\mu_{\mathbb{P}} := \mathbb{E}_{x \sim \mathbb{P}}[\varphi_x] \in \mathcal{H}(k)$.
 - Inner product: $\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} = \mathbb{E}_{x \sim \mathbb{P}, x' \sim \mathbb{Q}} k(x, x').$

Recall:

- $\varphi_x \in \mathcal{H}$: feature of $x \in \mathcal{X}$.
- Kernel: $k(x, x') = \langle \varphi_x, \varphi_{x'} \rangle_{\mathcal{H}}.$
- Mean embedding:
 - Feature of \mathbb{P} : $\mu_{\mathbb{P}} := \mathbb{E}_{x \sim \mathbb{P}}[\varphi_x] \in \mathcal{H}(k)$.
 - Inner product: $\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} = \mathbb{E}_{x \sim \mathbb{P}, x' \sim \mathbb{Q}} k(x, x').$
- $\mu_{\mathbb{P}}$: well-defined for all distributions (bounded k).

Squared difference between feature means:

$$\begin{split} \mathcal{M}\mathcal{M}\mathcal{D}^{2}(\mathbb{P},\mathbb{Q}) &= \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}^{2} = \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} \\ &= \langle \mu_{\mathbb{P}}, \mu_{\mathbb{P}} \rangle_{\mathcal{H}} + \langle \mu_{\mathbb{Q}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} - 2 \langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} \\ &= \mathbb{E}_{\mathbb{P},\mathbb{P}}k(x, x') + \mathbb{E}_{\mathbb{Q},\mathbb{Q}}k(y, y') - 2\mathbb{E}_{\mathbb{P},\mathbb{Q}}k(x, y). \end{split}$$

Squared difference between feature means:

$$\begin{split} \mathsf{MMD}^2(\mathbb{P},\mathbb{Q}) &= \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}^2 = \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} \\ &= \langle \mu_{\mathbb{P}}, \mu_{\mathbb{P}} \rangle_{\mathcal{H}} + \langle \mu_{\mathbb{Q}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} - 2 \langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} \\ &= \mathbb{E}_{\mathbb{P},\mathbb{P}} k(x, x') + \mathbb{E}_{\mathbb{Q},\mathbb{Q}} k(y, y') - 2\mathbb{E}_{\mathbb{P},\mathbb{Q}} k(x, y). \end{split}$$

Unbiased empirical estimate for $\{x_i\}_{i=1}^n \sim \mathbb{P}$, $\{y_j\}_{j=1}^n \sim \mathbb{Q}$:

$$\widehat{MMD^2}(\mathbb{P},\mathbb{Q}) = \overline{K_{\mathbb{P},\mathbb{P}}} + \overline{K_{\mathbb{Q},\mathbb{Q}}} - 2\overline{K_{\mathbb{P},\mathbb{Q}}}.$$

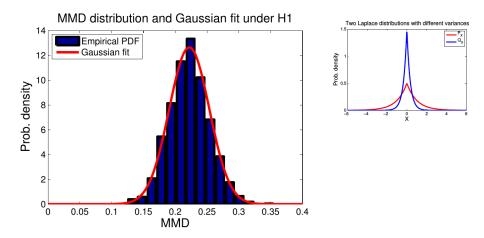
- Two hypotheses:
 - H_0 (null hypothesis): $\mathbb{P} = \mathbb{Q}$.
 - H_1 (alternative hypothesis): $\mathbb{P} \neq \mathbb{Q}$.

- Two hypotheses:
 - H_0 (null hypothesis): $\mathbb{P} = \mathbb{Q}$.
 - H_1 (alternative hypothesis): $\mathbb{P} \neq \mathbb{Q}$.
- Observation: $\{x_i\}_{i=1}^n \sim \mathbb{P}, \{y_j\}_{j=1}^n \sim \mathbb{Q}.$
- Decision: if $\widetilde{MMD^2}(\mathbb{P},\mathbb{Q})$ is 'far from 0' \Rightarrow reject H_0 .

- Two hypotheses:
 - H_0 (null hypothesis): $\mathbb{P} = \mathbb{Q}$.
 - H_1 (alternative hypothesis): $\mathbb{P} \neq \mathbb{Q}$.
- Observation: $\{x_i\}_{i=1}^n \sim \mathbb{P}, \{y_j\}_{j=1}^n \sim \mathbb{Q}.$
- Decision: if $\widetilde{MMD^2}(\mathbb{P},\mathbb{Q})$ is 'far from 0' \Rightarrow reject H_0 .
- Threshold = ? $\xrightarrow{\text{one answer}}$ asymptotic distribution of $\widehat{MMD^2}$.

Two-sample test using MMD: H_1

Under H_1 ($\mathbb{P} \neq \mathbb{Q}$): asymptotic distribution of MMD^2 is Gaussian.

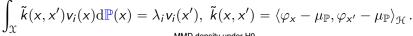


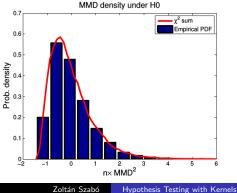
Two-sample test using MMD: H_0

Under H_0 ($\mathbb{P} = \mathbb{Q}$): asymptotic distribution is

$$n\widehat{MMD^2}(\mathbb{P},\mathbb{P})\sim \sum_{i=1}^{\infty}\lambda_i(z_i^2-2),$$

where $z_i \sim N(0,2)$ i.i.d.,

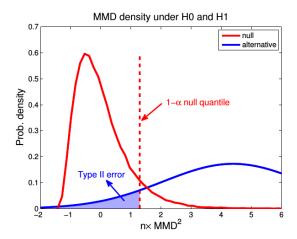




Two-sample test using MMD: threshold

To the decision:

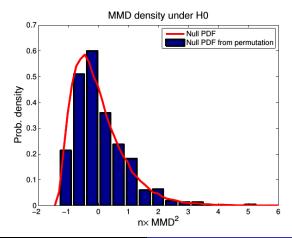
- given that $\mathbb{P} = \mathbb{Q}$,
- we want threshold T such that $\mathbb{P}(n\widehat{MMD}^2 > T) \leq 0.05 =: \alpha$.



Two-sample test using MMD: threshold

Task:
$$\mathbb{P}\left(n\widehat{MMD}^2 > T\right) \leq \alpha$$
. Solutions:

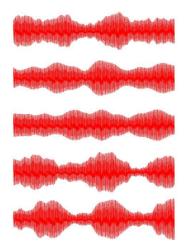
- permutation test: below,
- kernel eigenspectrum estimate: $\hat{\lambda}_i$.
- moment matching: Gamma approximation.

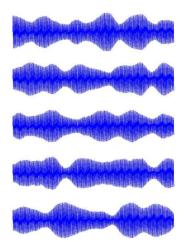


Zoltán Szabó Hypothesis Testing with Kernels

Demo: amplitude modulated signals

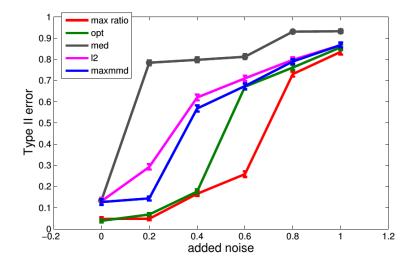
Question: $\mathbb{P}_{x} = \mathbb{P}_{y}$?





Results: AM signals (120kHz)

n = 10,000. Average over 4124 trials. Gaussian noise: added.



Independence testing

Independence testing

• Given:

- 2 kernel-endowed domain: (\mathfrak{X}, k) , (\mathfrak{Y}, ℓ) ,
- paired samples: $\{(x_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$.
- Hypotheses: $H_0: \mathbb{P}_{XY} = \mathbb{P}_X \mathbb{P}_Y, H_1: \mathbb{P}_{XY} \neq \mathbb{P}_X \mathbb{P}_Y.$

Independence testing

• Given:

- 2 kernel-endowed domain: (\mathfrak{X}, k) , (\mathfrak{Y}, ℓ) ,
- paired samples: $\{(x_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$.
- Hypotheses: $H_0: \mathbb{P}_{XY} = \mathbb{P}_X \mathbb{P}_Y, H_1: \mathbb{P}_{XY} \neq \mathbb{P}_X \mathbb{P}_Y.$

Statistics:

 $\begin{aligned} HSIC &= MMD^{2}(\mathbb{P}_{XY}, \mathbb{P}_{X}\mathbb{P}_{Y}) = \left\|\mu_{\mathbb{P}_{XY}} - \mu_{\mathbb{P}_{X}\mathbb{P}_{Y}}\right\|_{\mathcal{H}(\check{k})}^{2},\\ \check{k}((x, y), (x', y')) &= k(x, x')\ell(y, y'). \end{aligned}$

$$\begin{aligned} HSIC(\mathbb{P}_{XY}, \mathbb{P}_{X}\mathbb{P}_{Y}) &= \mathbb{E}_{xy}\mathbb{E}_{x'y'}[k(x, x')\ell(y, y')] \\ &+ \mathbb{E}_{x}\mathbb{E}_{x'}[k(x, x')]\mathbb{E}_{y}\mathbb{E}_{y'}[\ell(y, y')] \\ &- 2\mathbb{E}_{x'y'}\left[\mathbb{E}_{x}k(x, x')\mathbb{E}_{y}\ell(y, y')\right] \end{aligned}$$

Let us consider an example!

HSIC: intuition. \mathfrak{X} : images, \mathfrak{Y} : descriptions.

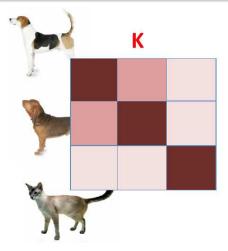
Their noses guide them through life, and they're never happier than when following an interesting scent. They need plenty of exercise, about an hour a day if possible.

A large animal who slings slobber, exudes a distinctive houndy odor, and wants nothing more than to follow his nose. They need a significant amount of exercise and mental stimulation.

Known for their curiosity, intelligence, and excellent communication skills, the Javanese breed is perfect if you want a responsive, interactive pet, one that will blow in your ear and follow you everywhere.

Text from dogtime.com and petfinder.com

HSIC intuition: Gram matrices

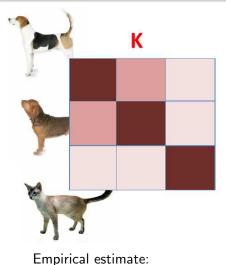


Their noses guide them through life, and they're never happier than when following an interesting scent. They need plenty of exercise, about an hour a day if possible.

A large animal who slings slot distinctive houndy odor, and than to follow his nose. They amount of exercise and ment

Known for their curiosity, intelligence, and excellent communication skills, the Javanese breed is perfect if you want a responsive, interactive pet, one that will blow in your ear and follow you everywhere.

HSIC intuition: Gram matrices



Their noses guide them through life, and they're never happier than when following an interesting scent. They need plenty of exercise, about an hour a day if possible.

A large animal who slings slot distinctive houndy odor, and than to follow his nose. They amount of exercise and ment

Known for their curiosity, intelligence, and excellent communication skills, the Javanese breed is perfect if you want a responsive, interactive pet, one that will blow in your ear and follow you everywhere.

$$\widehat{HSIC}(\mathbb{P}_{XY},\mathbb{P}_{X}\mathbb{P}_{Y})=\frac{1}{n^{2}}(HKH\circ HLH)_{++}, \quad H=I_{n}-n^{-1}11^{T}.$$

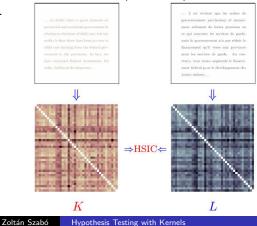
- Under $H_0: n\widehat{HSIC} \to \infty$ -sum of weighted $\chi^2 \dots$
- Permutation test:
 - Ocompute HSIC for $\{x_i, y_{\pi(i)}\}_{i=1}^n$ with many π -s.
 - 2 Estimate the (1α) -quantile from the empirical CDF.

Demo: translation example

- 5-line extracts.
- kernel: bag-of-words, r-spectrum (r = 5)
- sample size: n = 10. repetitions: 300.

Results:

- *r*-spectrum: average Type-II error = 0 (α = 0.05),
- bag-of-words: 0.18.



Summary

- Kernels on images, texts, graphs, time series, ...
- RKHS based metric on probability distributions.
- Applications:
 - 2-sample testing: MMD.
 - independence testing: HSIC.
- No density estimation.

- AM signals.
- Kernel examples.
- Universal kernel: definition, examples.
- MMD: IPM representation.
- HSIC: Where 'HS' is coming from?

- s_i : i^{th} song.
- observation $(s \mapsto y)$:

$$y(t) = \cos(\omega_c t)(As(t) + o_c) + n(t),$$

where n(t): Gaussian noise.

• The AM signals were sampled at 120kHz.

Kernel examples

$$\begin{split} k_{G}(a,b) &= e^{-\frac{\|a-b\|_{2}^{2}}{2\theta^{2}}}, \qquad k_{e}(a,b) = e^{-\frac{\|a-b\|_{2}}{2\theta^{2}}}, \\ k_{C}(a,b) &= \frac{1}{1 + \frac{\|a-b\|_{2}^{2}}{\theta^{2}}}, \qquad k_{t}(a,b) = \frac{1}{1 + \|a-b\|_{2}^{\theta}}, \\ k_{p}(a,b) &= (\langle a,b \rangle + \theta)^{p}, \ k_{r}(a,b) = 1 - \frac{\|a-b\|_{2}^{2}}{\|a-b\|_{2}^{2} + \theta}, \\ k_{i}(a,b) &= \frac{1}{\sqrt{\|a-b\|_{2}^{2} + \theta^{2}}}, \\ k_{M,\frac{3}{2}}(a,b) &= \left(1 + \frac{\sqrt{3} \|a-b\|_{2}}{\theta}\right) e^{-\frac{\sqrt{3}\|a-b\|_{2}}{\theta}}, \\ k_{M,\frac{5}{2}}(a,b) &= \left(1 + \frac{\sqrt{5} \|a-b\|_{2}}{\theta} + \frac{5 \|a-b\|_{2}^{2}}{3\theta^{2}}\right) e^{-\frac{\sqrt{5}\|a-b\|_{2}}{\theta}}. \end{split}$$

Assume

- \mathfrak{X} : compact, metric,
- $k: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ kernel is continuous.

Then

• Def-1: k is universal if $\mathcal{H}(k)$ is dense in $(C(\mathfrak{X}), \|\cdot\|_{\infty})$.

Assume

- \mathfrak{X} : compact, metric,
- $k: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ kernel is continuous.

Then

- Def-1: k is universal if $\mathcal{H}(k)$ is dense in $(C(\mathfrak{X}), \|\cdot\|_{\infty})$.
- Def-2: k is
 - characteristic, if $\mu: M_1^+(\mathfrak{X}) \to \mathfrak{H}(k)$ is injective.

Assume

- \mathfrak{X} : compact, metric,
- $k: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ kernel is continuous.

Then

- Def-1: k is universal if $\mathcal{H}(k)$ is dense in $(C(\mathcal{X}), \|\cdot\|_{\infty})$.
- Def-2: k is
 - characteristic, if $\mu: M_1^+(\mathfrak{X}) \to \mathfrak{H}(k)$ is injective.
 - $\bullet\,$ universal, if μ is injective on the finite signed measures of $\mathfrak{X}.$

On compact subsets of \mathbb{R}^d ($\beta > 0$):

$$\begin{aligned} k(a,b) &= e^{-\beta \|a - b\|_2^2}, \\ k(a,b) &= e^{-\beta \|a - b\|_1}, \\ k(a,b) &= e^{\beta \langle a,b \rangle}, (\beta > 0), \text{ or more generally} \\ k(a,b) &= f(\langle a,b \rangle), \quad f(x) = \sum_{n=0}^{\infty} a_n x^n \quad (\forall a_n > 0). \end{aligned}$$

Universal \Rightarrow characteristic.

Let $\mathcal{F} := \{ f \in \mathcal{H}(k) : \|f\|_{\mathcal{H}} \leq 1 \}$ be the unit ball in \mathcal{H} . Then $MMD(\mathbb{P}, \mathbb{Q}; \mathcal{F}) := \sup_{f \in \mathcal{F}} [\mathbb{E}_{x \sim \mathbb{P}} f(x) - \mathbb{E}_{y \sim \mathbb{Q}} f(y)],$ $= \sup_{f \in \mathcal{F}} [\langle f, \mu_{\mathbb{P}} \rangle_{\mathcal{H}} - \langle f, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} = \sup_{f \in \mathcal{F}} [\langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}$ $= \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}.$ $\mathsf{Players:} \ (\mathfrak{X},k), \ (\mathfrak{Y},\ell), \ \mathbb{P}_{XY}, \ \mathbb{P}_{X}, \ \mathbb{P}_{Y}; \ \mathcal{C}_{XY}: \mathfrak{H}(\ell) \to \mathfrak{H}(k).$

$$C_{XY} = \mathbb{E}_{XY}[(\varphi_x - \mu_{\mathbb{P}_X}) \otimes (\varphi_y - \mu_{\mathbb{P}_Y})],$$

$$\langle f, C_{XY}g \rangle_{\mathcal{H}(k)} = \mathbb{E}_{XY}[f(x) - \mathbb{E}_X f(x)][g(y) - \mathbb{E}_Y g(y)], \forall f, g,$$

$$HSIC = \|C_{XY}\|_{HS}^2.$$