
A linear-time adaptive nonparametric two-sample
test
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Motivating examples
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Motivating example-1: NLP

Given: two categories of documents (Bayesian inference,
neuroscience).

Task:

test their distinguishability,
most discriminative words Ñ interpretability.
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Motivating example-2: computer vision

Given: two sets of faces (happy, angry).

Task:

check if they are different,
determine the most discriminative features/regions.
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One-page summary

We propose a nonparametric t-test.

It gives a reason why H0 is rejected.

It is

adaptive Ñ high test power.
fast (linear time).

Paper, code:

NIPS [Jitkrittum et al., 2016].

https://github.com/wittawatj/interpretable-test.
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Two-sample test, distribution features
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What is a two-sample test?

Given:

X “ txiuni“1
i.i.d.
„ P, Y “ tyjunj“1

i.i.d.
„ Q.

Example: xi = i th happy face, yj = j th sad face.

Problem: using X , Y test

H0 : P “ Q, vs

H1 : P ‰ Q.

Assume X ,Y Ă Rd .
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Zoltán Szabó A linear-time adaptive nonparametric two-sample test



Ingredients of two-sample test

Test statistic: λ̂n “ λ̂npX ,Y q, random.
Significance level: α “ 0.01.
Under H0: PH0p λ̂n ď Tα

looomooon

correctly accepting H0

q “ 1´ α.

Under H1: PH1pTα ă λ̂nq “ Ppcorrectly rejecting H0q =: power.
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Towards representations of distributions: EX

Given: 2 Gaussians with different means.

Solution: t-test.
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Towards representations of distributions: EX 2

Setup: 2 Gaussians; same means, different variances.

Idea: look at the 2nd-order features of RVs.

ϕx “ x2 ñ difference in EX 2.
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Towards representations of distributions: further moments

Setup: a Gaussian and a Laplacian distribution.

Challenge: their means and variances are the same.

Idea: look at higher-order features.
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Let us consider feature representations!
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Kernel: similarity between features

Given: x and x1 objects (images or texts).

Question: how similar they are?

Define features of the objects:

ϕx : features of x,

ϕx1 : features of x1.

Kernel: inner product of these features

kpx, x1q :“ 〈ϕx, ϕx1〉 .
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Kernel examples on Rd (γ ą 0, p P Z`)

Polynomial kernel:

kpx, yq “ p〈x, y〉` γqp.

Gaussian kernel:

kpx, yq “ e´γ}x´y}
2
2 .
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Towards distribution features
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Towards distribution features

{MMD2pP,Qq “ ĚKP,P `ĘKQ,Q ´ 2ĘKP,Q (without diagonals in ĚKP,P, ĘKQ,Q)

:
{MMD illustration credit: Arthur Gretton
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Kernel Ñ distribution feature

Kernel recall: kpx, x1q “ 〈ϕx, ϕx1〉.

Feature of P (mean embedding):

µP :“ Ex„Prϕxs.

Previous quantity: unbiased estimate of

MMD2pP,Qq “ }µP ´ µQ}2 .

Valid test [Gretton et al., 2012]. Challenges:

1 Threshold choice: ’ugly’ asymptotics of n {MMD2pP,Pq.
2 Test statistic: quadratic time complexity.
3 Witness P Hpkq: can be hard to interpret.
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Linear-time tests
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Linear-time 2-sample test

Recall:

MMDpP,Qq “ }µP ´ µQ}Hpkq .

Changing [Chwialkowski et al., 2015] this to

ρpP,Qq :“

g

f

f

e

1

J

J
ÿ

j“1

rµPpvjq ´ µQpvjqs2

with random tvju
J
j“1 test locations.

ρ is a metric (a.s.). How do we estimate it? Distribution under H0?
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What is a random metric?

In short

It is a metric almost surely.

In other words,

ρpP,Qq ě 0, ρpP,Qq “ 0 ô P “ Q almost surely.

ρpP,Qq “ ρpQ,Pq almost surely.

ρpP,Qq ď ρpP,Dq ` ρpD,Qq almost surely.

V “ tvjuJj“1 Ă Rd : reason of randomness.
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Result

Theorem

If k is

bounded: supx,x1 kpx, x
1q ď Bk ă 8,

analytic: x ÞÑ kpx, yq is analytic for any y P Rd .

characteristic: µ is injective,

then

ρpP,Qq :“

g

f

f

e

1

J

J
ÿ

j“1

rµPpvjq ´ µQpvjqs2

is a metric a.s. w.r.t. tvju
J
j“1.
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Why do analytic features work? – proof idea

µ is injective to analytic functions:

k : bounded, analytic ñ elements of Hk : analytic.
k : characteristic, bounded ñ µ “ µk : well-defined, injective.

µ: characteristic ñ for P ‰ Q, f :“ µP ´ µQ ‰ 0.

f : analytic, thus

ρpP,Qq “

g

f

f

e

J
ÿ

j“1

rµPpvjq ´ µQpvjqs
2

is a metric, a.s. w.r.t. (vj
i .i .d .
„ ) m ! λ. Reason: for an

analytic f ‰ 0, mtv : f pvq “ 0u “ 0.

Zoltán Szabó A linear-time adaptive nonparametric two-sample test



Why do analytic features work? – proof idea

µ is injective to analytic functions:

k : bounded, analytic ñ elements of Hk : analytic.
k : characteristic, bounded ñ µ “ µk : well-defined, injective.

µ: characteristic ñ for P ‰ Q, f :“ µP ´ µQ ‰ 0.

f : analytic, thus

ρpP,Qq “

g

f

f

e

J
ÿ

j“1

rµPpvjq ´ µQpvjqs
2

is a metric, a.s. w.r.t. (vj
i .i .d .
„ ) m ! λ. Reason: for an

analytic f ‰ 0, mtv : f pvq “ 0u “ 0.
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Estimation

Compute

pρ2pP,Qq “
1

J

J
ÿ

j“1

rµ̂Ppvjq ´ µ̂Qpvjqs
2,

where µ̂Ppvq “
1
n

řn
i“1 kpxi , vq. Example using kpx, vq “ e´

}x´v}2

2σ2 :
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Estimation – continued

pρ2pP,Qq “
1

J

J
ÿ

j“1

rµ̂Ppvjq ´ µ̂Qpvjqs
2

“
1

J

J
ÿ

j“1

«

1

n

n
ÿ

i“1

kpxi , vjq ´
1

n

n
ÿ

i“1

kpyi , vjq

ff2

“
1

J

J
ÿ

j“1

pz̄nq
2
j “

1

J
z̄Tn z̄n,

where z̄n “
1
n

řn
i“1 rkpxi , vjq ´ kpyi , vjqs

J
j“1

loooooooooooooomoooooooooooooon

“:zi

P RJ .

Good news: estimation is linear in n!

Bad news: intractable null distr. =
?
n pρ2pP,Pq w

ÝÑ sum of J
correlated χ2.
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Zoltán Szabó A linear-time adaptive nonparametric two-sample test



Estimation – continued

pρ2pP,Qq “
1

J

J
ÿ

j“1

rµ̂Ppvjq ´ µ̂Qpvjqs
2

“
1

J

J
ÿ

j“1

«

1

n

n
ÿ

i“1

kpxi , vjq ´
1

n

n
ÿ

i“1

kpyi , vjq

ff2

“
1

J

J
ÿ

j“1

pz̄nq
2
j “

1

J
z̄Tn z̄n,

where z̄n “
1
n

řn
i“1 rkpxi , vjq ´ kpyi , vjqs

J
j“1

loooooooooooooomoooooooooooooon

“:zi

P RJ .

Good news: estimation is linear in n!

Bad news: intractable null distr. =
?
n pρ2pP,Pq w

ÝÑ sum of J
correlated χ2.
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Normalized version gives tractable null

Modified test statistic:

λ̂n “ nz̄Tn Σ
´1
n z̄n,

where Σn “ cov ptziu
n
i“1q.

Under H0:

λ̂n
w
ÝÑ χ2pJq. ñ Easy to get the p1´ αq-quantile!
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Our idea
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Idea

Until this point: test locations (V) are fixed.

Instead: choose θ “ tV, σu to

maximize lower bound on the test power.

Theorem (Lower bound on power, for large n)

Test power ě Lpλnq; L: explicit function, increasing.

Here,

λn “ nµTΣ´1µ: population version of λ̂n.
µ “ Exyrz1s, Σ “ Exy

“

pz1 ´ µqpz1 ´ µq
T
‰

.
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Non-convexity, informative features

2D problem:

P :“ N p0, Iq, Q :“ N pe1, Iq.

V “ tv1, v2u. Fix v1 to s.

v2 ÞÑ λ̂nptv1, v2uq: contour
plot.

Nearby locations: do not
increase discrimininability.

Non-convexity: reveals multiple
ways to capture the difference.
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Zoltán Szabó A linear-time adaptive nonparametric two-sample test



Non-convexity, informative features

2D problem:

P :“ N p0, Iq, Q :“ N pe1, Iq.

V “ tv1, v2u. Fix v1 to s.

v2 ÞÑ λ̂nptv1, v2uq: contour
plot.

Nearby locations: do not
increase discrimininability.

Non-convexity: reveals multiple
ways to capture the difference.

v2 λ̂trn/2(v1, v2)

0

20

40

60

80

100

120

140

160

v2 λ̂trn/2(v1, v2)

128

136

144

152

160

168

176

184

192
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Convergence of the λn estimator

But λn is unknown. Split pX ,Y q into pXtr ,Ytr q and pXte ,Yteq.

1 Locations, kernel parameter: θ̂ “ arg maxθ λ̂
tr
n
2
pθq.

2 Test statistic: λ̂ten
2

`

θ̂
˘

.

Theorem (Guarantee on objective approximation, γn Ñ 0)

sup
V,K

ˇ

ˇz̄Tn pΣn ` γnq
´1z̄n ´ µTΣ´1µ

ˇ

ˇ “ O
`

n´
1
4

˘

.

Examples:

K “
"

kσpx, yq “ e´
}x´y}2

2σ2 : σ ą 0

*

,

K “
!

kApx, yq “ e´px´yq
TApx´yq : A ą 0

)

.
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1 Locations, kernel parameter: θ̂ “ arg maxθ λ̂
tr
n
2
pθq.

2 Test statistic: λ̂ten
2

`

θ̂
˘

.

Theorem (Guarantee on objective approximation, γn Ñ 0)

sup
V,K

ˇ

ˇz̄Tn pΣn ` γnq
´1z̄n ´ µTΣ´1µ

ˇ

ˇ “ O
`

n´
1
4

˘

.

Examples:

K “
"

kσpx, yq “ e´
}x´y}2

2σ2 : σ ą 0

*

,

K “
!
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Proof idea

Lower bound on the test power:

|λ̂n ´ λn| À }z̄n ´ µ}2 ` }Σn ´Σ}F .

Bound the r.h.s. by Hoeffding inequality ñ Pp|λ̂n ´ λn| ě tq.
By reparameterization: Ppλ̂n ě Tαq bound.

Uniformly λ̂n « λn:

Reduction to bounding sup
V,K

}z̄n ´ µ}2, sup
V,K

}Σn ´Σ}F .

Empirical processes, Dudley entropy bound.
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Numerical demos
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Parameter settings

Gaussian kernel (σ). α “ 0.01. J “ 1. Repeat 500 trials.
Report

PprejectH0q «
#times λ̂n ą Tα holds

#trials
.

Compare 4 methods

ME-full: Optimize V and Gaussian bandwidth σ.
ME-grid: Optimize σ. Random V [Chwialkowski et al., 2015].
MMD-quad: Test with quadratic-time MMD [Gretton et al., 2012].
MMD-lin: Test with linear-time MMD [Gretton et al., 2012].

Optimize kernels to power in MMD-lin, MMD-quad.
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NLP: discrimination of document categories

5903 NIPS papers (1988-2015).
Keyword-based category assignment into 4 groups:

Bayesian inference, Deep learning, Learning theory, Neuroscience

d “ 2000 nouns. TF-IDF representation.

Problem nte ME-full ME-grid MMD-quad MMD-lin
1. Bayes-Bayes 215 .012 .018 .022 .008

2. Bayes-Deep 216 .954 .034 .906 .262

3. Bayes-Learn 138 .990 .774 1.00 .238

4. Bayes-Neuro 394 1.00 .300 .952 .972

5. Learn-Deep 149 .956 .052 .876 .500

6. Learn-Neuro 146 .960 .572 1.00 .538

Performance of ME-full rOpnqs is comparable to MMD-quad rOpn2qs.
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NLP: most/least discriminative words

Aggregating over trials; example: ’Bayes-Neuro’.

Most discriminative words:

spike, markov, cortex, dropout, recurr, iii, gibb.

learned test locations: highly interpretable,
’markov’, ’gibb’ (ð Gibbs): Bayesian inference,
’spike’, ’cortex’: key terms in neuroscience.

Least dicriminative ones:

circumfer, bra, dominiqu, rhino, mitra, kid, impostor.
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Distinguish positive/negative emotions

Karolinska Directed Emotional Faces (KDEF) [Lundqvist et al., 1998].
70 actors = 35 females and 35 males.
d “ 48ˆ 34 “ 1632. Grayscale. Pixel features.

` :
happy neutral surprised

´ :
afraid angry disgusted

Problem nte ME-full ME-grid MMD-quad MMD-lin
˘ vs. ˘ 201 .010 .012 .018 .008

` vs. ´ 201 .998 .656 1.00 .578

Learned test location (averaged) =
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Summary

We proposed a nonparametric t-test:

linear time,
adaptive Ñ high-power (« ’MMD-quad’),

2 demos: discriminating

documents of different categories,
positive/negative emotions.

Extension (independence testing):

https://arxiv.org/abs/1610.04782

https://github.com/wittawatj/fsic-test
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Thank you for the attention!
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Characteristic functions, infinite J

Characteristic functions – poor choice:

ρ2pP,Qq :“

g

f

f

e

1

J

J
ÿ

j“1

rφPpvjq ´ φQpvjqs2.

[Moulines et al., 2007]:

ρ3pP,Qq :“
nxny
n

›

›

›
C´

1
2 pµQ ´ µPq

›

›

›

Hk

,

C “
nx

nx ` ny
Cxx `

ny
nx ` ny

Cyy : pooled covariance operator.

Computational cost: high (cubic).
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Zoltán Szabó A linear-time adaptive nonparametric two-sample test



Smoothed characteristic functions

ψPptq “

ż

Rd

φPpωq`pt ´ ωqdω, t P Rd ,

ρ4pP,Qq :“

g

f

f

e

1

J

J
ÿ

j“1

rψPpvjq ´ ψQpvjqs2.

It

works,

is more sensitive to differences in the frequency domain.
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Number of locations (J)

Small J:

often enough to detect the difference of P & Q.
few distinguishing regions to reject H0.
faster test.

Very large J:

test power need not increase monotonically in J (more
locations ñ statistic can gain in variance).
defeats the purpose of a linear-time test.
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MMD: IPM representation

MMD2pP,Qq “ }µP ´ µQ}2Hpkq

“

«

sup
}f }Hpkqď1

〈µP ´ µQ, f 〉Hpkq

ff2

p˚q
“

«

sup
}f }Hpkqď1

Ex„Pf pxq ´ Ey„Qf pyq

ff2

.

p˚q in details:

〈µP, f 〉Hpkq “
〈
ż

kp¨, xqdPpxq, f
〉

Hpkq

“

ż

〈kp¨, xq, f 〉Hpkq
looooooomooooooon

“f pxq

dPpxq

“ Ex„Pf pxq.
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Estimation of MMD2

Squared difference between feature means:

MMD2pP,Qq “ }µP ´ µQ}2H “ 〈µP ´ µQ, µP ´ µQ〉H
“ 〈µP, µP〉H ` 〈µQ, µQ〉H ´ 2 〈µP, µQ〉H
“ EP,Pkpx , x

1q ` EQ,Qkpy , y
1q ´ 2EP,Qkpx , yq.

Unbiased empirical estimate for txiu
n
i“1 „ P, tyju

n
j“1 „ Q:

{MMD2pP,Qq “ ĚKP,P `ĘKQ,Q ´ 2ĘKP,Q.
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Computational complexity

Optimization & testing: linear in n.

Testing: O
`

ndJ ` nJ2 ` J3
˘

.

Optimization: O
`

ndJ2 ` J3
˘

per gradient ascent.
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