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Motivating examples

Zoltdn Szabé A linear-time adaptive nonparametric two-sample test



Motivating example-1: NLP

e Given: two categories of documents (Bayesian inference,
neuroscience).
e Task:

o test their distinguishability,
e most discriminative words — interpretability.
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Motivating example-2: computer vision

e Given: two sets of faces (happy, angry).
o Task:

e check if they are different,
o determine the most discriminative features/regions.
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One-page summary

@ We propose a nonparametric t-test.
@ It gives a reason why Hy is rejected.
o ltis

e adaptive — high test power.
o fast (linear time).
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One-page summary

@ We propose a nonparametric t-test.
@ It gives a reason why Hy is rejected.
o ltis

e adaptive — high test power.
o fast (linear time).

Paper, code:
o NIPS [Jitkrittum et al., 2016].
@ https://github.com/wittawatj/interpretable-test.
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Two-sample test, distribution features
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What is a two-sample test?

o Given: .
o X = {1y NUR Y =yl N0
o Example: x; = jth happy face, yj :J'th sad face.
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What is a two-sample test?

o Given: .
o X = {1y NUR Y =yl N0
o Example: x; = jth happy face, yj :J'th sad face.

@ Problem: using X, Y test

Hy:P=Q, vs
Hli]P)?é@.
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What is a two-sample test?

o Given: .
o X = {1y NUR Y =yl N0
o Example: x; = jth happy face, yj :J'th sad face.

@ Problem: using X, Y test

Hy:P=Q, vs
Hli]P)?é@.

e Assume X,Y c RY.
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Ingredients of two-sample test

o Test statistic: A\, = X,,(X, Y), random.
@ Significance level: o = 0.01.

~

e Under Hyp: Pry( An < T, ) =1—qu
——

correctly accepting Hp
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Ingredients of two-sample test

o Test statistic: A\, = Ap(X,Y), random.

@ Significance level: o = 0.01.

e Under Hyp: Pry( An < T, ) =1—qu
——

correctly accepting Hp

o Under Hy: Py, (To < A,) = P(correctly rejecting Ho) =: power.

0.06 ‘ _
_PH[, (/A\n)
I — Py, (Al
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Towards representations of distributions:

@ Given: 2 Gaussians with different means.

@ Solution: t-test.

Two Gaussian variables: different means
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Towards representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.
@ ldea: look at the 2nd-order features of RVs.

Two Gaussian variables: different variances
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Towards representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.
@ ldea: look at the 2nd-order features of RVs.

o o, = x> = difference in EX2.

2
Two Gaussian variables: different variances Pdf-s of X
0.4 T - . . 1.4 - .
—p —P
—q| 12 —aQ

0.3 ] 1t

pdf
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Towards representations of distributions:

@ Setup: a Gaussian and a Laplacian distribution.
@ Challenge: their means and variances are the same.
@ Idea: look at higher-order features.

Gaussian & Laplacian variables
0.7

0.5p

0.4}

pdf

0.3}
0.2r

0.1f

Let us consider feature representations! |

Zoltdn Szabé A linear-time adaptive nonparametric two-sample test



Kernel: similarity between features

e Given: x and x’ objects (images or texts).
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Kernel: similarity between features

e Given: x and x’ objects (images or texts).

@ Question: how similar they are?
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Kernel: similarity between features

Given: x and x’ objects (images or texts).

Question: how similar they are?

Define features of the objects:

px : features of x,

oy : features of x'.

Kernel: inner product of these features

k(x, Xl) = (x, x') -
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Kernel examples on RY (v > 0,p e Z")

@ Polynomial kernel:

k(x,y) = ({x,y) + 7).
@ Gaussian kernel:

k(x,y) = e XYz,

Zoltdn Szabé A linear-time adaptive nonparametric two-sample test



Towards distribution features

Zoltdn Szabé A linear-time adaptive nonparametric two-sample test



Towards distribution features

?“‘, "..; H
’D,d .7

k(dogm dog;) k(dog;, fish;) ‘
=

k(fish;, dog;)

12, Mg ¢
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Towards distribution features
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Towards distribution features
?‘ﬂ' .‘_-J H

?,.4 .7

D

g

k(dog;, dogJ,) k(dog;, fish;) ‘
=

k(fish;,dog;)

12D, g et

I\ﬂ/le(}P’7 Q) = Kpp + Koo — 2Kpg (without diagonals in Kpp, Ko o)

T MMD illustration credit: Arthur Gretton
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Kernel — distribution feature

@ Kernel recall: k(x,x’) = (px, Px')-
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Kernel — distribution feature

@ Kernel recall: k(x,x’) = (px, Px')-

e Feature of P (mean embedding):

pp = Ex-p [SOX] .
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Kernel — distribution feature

@ Kernel recall: k(x,x’) = (px, Px')-

e Feature of P (mean embedding):

pp = Ex-p [SOX] .

@ Previous quantity: unbiased estimate of

MMD?(P, Q) = |lup — po|® -
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Kernel — distribution feature

@ Kernel recall: k(x,x’) = (px, Px')-

e Feature of P (mean embedding):

pp = Ex-p [SOX] .

@ Previous quantity: unbiased estimate of

MMD?(P, Q) = |lup — po|® -

o Valid test [Gretton et al., 2012]. Challenges:

@ Threshold choice: 'ugly' asymptotics of nMM\DQ(P, P).
@ Test statistic: quadratic time complexity.
© Witness € H(k): can be hard to interpret.
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Linear-time tests
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Linear-time 2-sample test

@ Recall:

MMD(P,Q) = [up — plse )

e Changing [Chwialkowski et al., 2015] this to

k\l—‘

J
p(P,Q) := Z pp(vj) — po(v))]?

with random {vj}jJ:1 test locations.

p is a metric (a.s.). How do we estimate it? Distribution under HO?J
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What is a random metric?

It is a metric almost surely.
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What is a random metric?

It is a metric almost surely.

In other words,
e p(P,Q) >0, p(P,Q) =0« P =Q almost surely.
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What is a random metric?

It is a metric almost surely.

In other words,
e p(P,Q) >0, p(P,Q) =0« P =Q almost surely.
e p(P,Q) = p(Q,P) almost surely.
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What is a random metric?

It is a metric almost surely. \

In other words,
e p(P,Q) >0, p(P,Q) =0« P =Q almost surely.
e p(P,Q) = p(Q,P) almost surely.
e p(P,Q) < p(P,D) + p(D,Q) almost surely.
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What is a random metric?

It is a metric almost surely.

In other words,
e p(P,Q) >0, p(P,Q) =0« P =Q almost surely.
e p(P,Q) = p(Q,P) almost surely.
e p(P,Q) < p(P,D) + p(D,Q) almost surely.

V = {v;}7_; © R? reason of randomness.
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Result

If k is
® bounded: supy , k(x,x") < By < 0,
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Result

If k is
® bounded: supy , k(x,x") < By < 0,

o analytic: x — k(x,y) is analytic for any 'y € RY.

Zoltdn Szabé A linear-time adaptive nonparametric two-sample test



Result

If k is

® bounded: supy , k(x,x") < By < 0,

o analytic: x — k(x,y) is analytic for any 'y € RY.
@ characteristic:  is injective,

Zoltan Szabd

A linear-time adaptive nonparametric two-sample test



Result

If k is
® bounded: supy , k(x,x") < By < 0,

o analytic: x — k(x,y) is analytic for any 'y € RY.
@ characteristic:  is injective,
then

J
p(BQ) = | 5 Due(w) — pa ()]

j=1

. . W
is a metric a.s. w.r.t. {vj}jzl,
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Why do analytic features work? — proof idea

@ i is injective to analytic functions:

e k: bounded, analytic = elements of H: analytic.
e k: characteristic, bounded = p = uy: well-defined, injective.
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Why do analytic features work? — proof idea

@ i is injective to analytic functions:

e k: bounded, analytic = elements of H: analytic.
e k: characteristic, bounded = p = uy: well-defined, injective.

@ u: characteristic = for P # Q, f := pup — pg # 0.

Zoltdn Szabé A linear-time adaptive nonparametric two-sample test



Why do analytic features work? — proof idea

@ i is injective to analytic functions:

e k: bounded, analytic = elements of H: analytic.
e k: characteristic, bounded = p = uy: well-defined, injective.

@ u: characteristic = for P # Q, f := pup — pg # 0.

e f: analytic, thus

[ (v)) — pg(v))]?

M~

p(P, Q) =

1

-,
I

. . iid.
is a metric, a.s. w.r.t. (v; <) m « \. Reason: for an

analytic f # 0, m{v: f(v) =0} = 0.
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Compute
J
(IP Q) = 7. Z fip(vj) — H@(VJ)]Z,
j=1

Ix=v|?

where fip(v) = %Z,’-’:l k(x;,v). Example using k(x,v) = e 252 :

—  fip(v)
— Jig(v)

—  (Ap(v) = fig(v))®
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Estimation — continued

~ 12
P?(P,Q) = 7 Z fip(vj) — M@(W)]z
J
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Estimation — continued

)

J
P*(P,Q) = Z fip(vj) — M@(W)]z

J 1 1 n 2
Z[nka,,vj L 2 ki "J]
=1 =1

i=1

k\l—‘

k\l—‘
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Estimation — continued

j=1
J n 2 J
1 1 1 1 B 1_ _
-2 [ NICRIEESS k<y,-7v,>] S - i,
Jj=1 i=1 i=1 j=1
where z,, = %27:1 [k(X,’,Vj) — k(yi7vj)]J—,j:1 c R/
ne
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Estimation — continued

where Z, = 1 37 | [k(x;,vj) — k(yi,vj)]i; € R7.

@ Good news: estimation is linear in n!

o Bad news: intractable null distr. = /np2(P,P) %% sum of J
correlated 2.
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Normalized version gives tractable null

@ Modified test statistic:

3\,, = nirz—E;lzm
where X, = cov ({Zi}7:1)-
@ Under Hpy:
o A% X2(J). = Easy to get the (1 — a)-quantile!
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Our idea

Zoltdn Szabé A line me adaptive metric two-sample test



@ Until this point: test locations (V) are fixed.
o Instead: choose § = {V, 0} to

maximize lower bound on the test power.
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@ Until this point: test locations (V) are fixed.
o Instead: choose § = {V, 0} to

maximize lower bound on the test power.

Theorem (Lower bound on power, for large n)

Test power > L(\,,); L: explicit function, increasing.

@ Here,

o A\, = nuT X" population version of \,.
o p=Ey[z1], B =Ey [(Zl —p)(z - “)T]-
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Non-convexity, informative features

VZH)‘?EITQ(VMVQ) 160

1140
1120
1100
180
160
140
120
=0

@ 2D problem:
P:=N(0,1), Q:=N(ey,l).

e V = {vi,vp}. Fix vy to A.

o vo — Ay({v1,v2}): contour
plot.

—192
1184
1176
1168
1160
1152
1144
1136
—128
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Non-convexity, informative features

vy o AT (v, v9)

— 160
1140
1120
1100
180
160
140
120
=0

—192
1184
1176
1168
1160
1152
1144
1136
—128

@ Nearby locations: do not
increase discrimininability.
@ Non-convexity: reveals multiple C
ways to capture the difference.
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Convergence of the )\, estimator

But A\, is unknown. Split (X, Y) into (X¢, Yir) and (Xie, Yie).
O Locations, kernel parameter: 0 = arg max, A% (0).
2
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Convergence of the )\, estimator

But A\, is unknown. Split (X, Y) into (X¢, Yir) and (Xie, Yie).
O Locations, kernel parameter: 0 = arg max, A% (0).
2

@ Test statistic: /A\tf(é)
2
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Convergence of the )\, estimator

Theorem (Guarantee on objective approximation, v, — 0)

sup }inT(zn + 7n)_12n — [,LTE_lp,‘ = (’)(n_%)'
V,K
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Convergence of the )\, estimator

Theorem (Guarantee on objective approximation, v, — 0)

?}u}g ‘zrz—(zn + 7n)_12n — [,LTE_lp,‘ = (’)(n_%)'

Examples:

_ x—y)?

= {kg(x,y) =e 27 :0>0},

= {kA(x, y) = e (-YTA-Y) . A o 0} .

Zoltdn Szabé A linear-time adaptive nonparametric two-sample test



@ Lower bound on the test power:
o [An—Anl X (20 — pfy + |20 — 2. R
o Bound the r.h.s. by Hoeffding inequality = P(|A, — An| > t).
o By reparameterization: P(A, > T,) bound.
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@ Lower bound on the test power:
o [An— Al S (20 — pll, + |20 — X . R
o Bound the r.h.s. by Hoeffding inequality = P(|A, — An| > t).
o By reparameterization: P(A, > T,) bound.
@ Uniformly 3\,7 ~ A\p
e Reduction to bounding sup ||z, — |
K

21 sup HE,, - EHF
s V,K

e Empirical processes, Dudley entropy bound.
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Numerical demos
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Parameter settings

Gaussian kernel (0). a = 0.01. J = 1. Repeat 500 trials.
Report

F#£times 5\,, > T, holds

P(reject Hy) ~ Zrials

Compare 4 methods

ME-full: Optimize V and Gaussian bandwidth o.

ME-grid: Optimize 0. Random V [Chwialkowski et al., 2015].
MMD-quad: Test with quadratic-time MMD [Gretton et al., 2012].
o MMD-lin: Test with linear-time MMD [Gretton et al., 2012].

Optimize kernels to power in MMD-lin, MMD-quad.
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NLP: discrimination of document categories

@ 5903 NIPS papers (1988-2015).
@ Keyword-based category assignment into 4 groups:

e Bayesian inference, Deep learning, Learning theory, Neuroscience

@ d = 2000 nouns. TF-IDF representation.

Problem nte ME-full  ME-grid MMD-quad MMD-lin
1. Bayes-Bayes 215 .012 .018 .022 .008
2. Bayes-Deep 216 .954 .034 .906 .262
3. Bayes-Learn 138 .990 174 1.00 .238
4. Bayes-Neuro 394 1.00 .300 .952 .972
5. Learn-Deep 149 .956 .052 .876 .500
6. Learn-Neuro 146 .960 572 1.00 .538

o Performance of ME-full [O(n)] is comparable to MMD-quad [O(n?)].
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NLP: most/least discriminative words

o Aggregating over trials; example: 'Bayes-Neuro'.
@ Most discriminative words:
spike, markov, cortex, dropout, recurr, iii, gibb.
o learned test locations: highly interpretable,

e 'markov’, 'gibb’ (<= Gibbs): Bayesian inference,
e 'spike’, 'cortex’: key terms in neuroscience.
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NLP: most/least discriminative words

o Aggregating over trials; example: 'Bayes-Neuro'.

@ Least dicriminative ones:

circumfer, bra, dominiqu, rhino, mitra, kid, impostor.
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Distinguish positive/negative emotions

e Karolinska Directed Emotional Faces (KDEF) [Lundqvist et al., 1998].

@ 70 actors = 35 females and 35 males.
@ d =48 x 34 = 1632. Grayscale. Pixel features.

-I—:...—:...

happy  neutral surprised afraid angry disgusted

Problem nt® \ ME-full ME-grid MMD-quad MMD-lin
+vs. £ 201 .010 .012 .018 .008
+vs. — 201 .998 .656 1.00 578

@ Learned test location (averaged) =
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@ We proposed a nonparametric t-test:

e linear time,

o adaptive — high-power (= 'MMD-quad’),
@ 2 demos: discriminating

e documents of different categories,
e positive/negative emotions.
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https://arxiv.org/abs/1610.04782
https://github.com/wittawatj/fsic-test

@ Extension (independence testing):

https://arxiv.org/abs/1610.04782
https://github.com/wittawatj/fsic-test
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Thank you for the attention!

~
~

=/
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Characteristic functions, infinite J.
Number of locations (J).

MMD: IPM representation.
Estimation of MMD?.

Computational complexity: (J, n, d)-dependence.
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Characteristic functions, infinite J

@ Characteristic functions — poor choice:

J
p2(P, Q) := %Z [dr(vj) — da(v))]?.

Jj=1
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Characteristic functions, infinite J

@ Characteristic functions — poor choice:

J
n2.Q)i= |5 3lor(w) ~ dalu)

@ [Moulines et al., 2007]:

nen
p3(P,Q) := =Z HC (1o — MP’)H :
k
nX .
C= Cx + C,, : pooled covariance operator.
ny + ny, 7 ny + ny, vy P P
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Characteristic functions, infinite J

@ Characteristic functions — poor choice:

J
n2.Q)i= |5 3lor(w) ~ dalu)

@ [Moulines et al., 2007]:

nen
p3(P,Q) := =Z HC (1o — MP’)H :
k
nX .
C= Cx + C,, : pooled covariance operator.
ny + ny, 7 ny + ny, vy P P

Computational cost: high (cubic).
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Smoothed characteristic functions

vel0) = | onlw)t(e—w)dw, teRY

p4(]P>, Q) = J
=1

J
D e(vy) — g(v))]2.

Il
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Smoothed characteristic functions

vel0) = | onlw)t(e—w)dw, teRY

J
pa(P, Q) := D e(vy) — g(v))]2.

Jj=1

Il

It
@ works,

@ is more sensitive to differences in the frequency domain.
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Number of locations (J)

@ Small J:
e often enough to detect the difference of P & Q.
o few distinguishing regions to reject Hp.
o faster test.
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Number of locations (J)

o Very large J:
o test power need not increase monotonically in J (more
locations = statistic can gain in variance).
o defeats the purpose of a linear-time test.
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MMD: IPM representation

MMD?(P, Q) = |z — 11534
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MMD: IPM representation

2
MMD?(P, Q) = || — :U’QHCZ}{(k) = [ sup  (up — pq; f>g{(k)]

(LAERTES
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MMD:

2
MMD?(P, Q) = || — :U’QHCZ}{(k) = [ sup  (up — pq; f>g{(k)]

(LAERTES

—
=

2
:[ sup EXNPf(x)Ep@f(y)] :

Fllgc ey <1
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MMD:

2
MMD?(P, Q) = || — :U’QHCZ}{(k) = [ sup  (up — pq; f>g{(k)]

(LAERTES

—
=

2
:[ sup EXNPf(x)Ep@f(y)] :

Fllgc ey <1

(%) in details:

(115, Fgcro = <Jk(.,x)dﬁ>(x), f>%(k)
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MMD:

2
MMD?(P, Q) = || — :U’QHCZ}{(k) = [ sup  (up — pq; f>g{(k)]

(LAERTES

—
=

2
:[ sup EXNPf(x)Ep@f(y)] :

Il <1

(%) in details:

(e Py = { [ K20, f>m> = [ K0 Py aP00)

Zoltdn Szabé A linear-time adaptive nonparametric two-sample test



MMD:

2
MMD?(P, Q) = || — :U’QHCZ}{(k) = [ sup  (up — pq; f>g{(k)]

(LAERTES

—
=

2
:[ sup EXNPf(x)Ep@f(y)] :

Il <1

(%) in details:

(e Py = { [ K20, f>m> = [ K0 Py aP00)
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Estimation of MMD?

Squared difference between feature means:

= (up, 1p)ge + (LQs HQ)ge — 2 (1P, HQ) g
= Eppk(x,x') + Eqok(y,y') — 2Epgk(x,y).
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Estimation of MMD?

Squared difference between feature means:

= (up, 1p)ge + (LQs HQ)ge — 2 (1P, HQ) g
= Eppk(x,x') + Eqok(y,y') — 2Epgk(x,y).

Unbiased empirical estimate for {x;}[_; ~ P, {y;}]_; ~ Q:

MMD2(P,Q) = Kpp + Koo — 2Kz 0.
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Computational complexity

@ Optimization & testing: linear in n.
@ Testing: O (ndJ +nJ? + J3).
@ Optimization: O (ndJ2 + J3) per gradient ascent.
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