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Example: sustainability

Goal: aerosol prediction = air pollution → climate.

Prediction using labelled bags:

bag := multi-spectral satellite measurements over an area,
label := local aerosol value.
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Example: existing methods

Multi-instance learning:

[Haussler, 1999, Gärtner et al., 2002] (set kernel):

sensible methods in regression: few,
1 restrictive technical conditions,
2 super-high resolution satellite image: would be needed.
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One-page summary

Contributions:

1 Practical: state-of-the-art accuracy (aerosol).
2 Theoretical:

General bags: graphs, time series, texts, . . .
Consistency of set kernel in regression (17-year-old open problem).
How many samples/bag?

Zoltán Szabó Performance guarantees for kernel-based learning on distributions



One-page summary

Contributions:

1 Practical: state-of-the-art accuracy (aerosol).
2 Theoretical:

General bags: graphs, time series, texts, . . .
Consistency of set kernel in regression (17-year-old open problem).
How many samples/bag?
AISTATS-2015 (oral – 6.11%) → JMLR in revision.
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Objects in the bags

Examples:

time-series modelling: user = set of time-series,
computer vision: image = collection of patch vectors,
NLP: corpus = bag of documents,
network analysis: group of people = bag of friendship graphs, . . .
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Objects in the bags

Examples:

time-series modelling: user = set of time-series,
computer vision: image = collection of patch vectors,
NLP: corpus = bag of documents,
network analysis: group of people = bag of friendship graphs, . . .

Wider context (statistics): point estimation tasks.
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Regression on labelled bags

Given:

labelled bags: ẑ =
{(

P̂i , yi
)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .
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Regression on labelled bags

Given:

labelled bags: ẑ =
{(

P̂i , yi
)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .

Estimator:

wλ
ẑ = arg min

w

1

ℓ

∑ℓ

i=1

[〈
w , ψ(P̂i )

︸ ︷︷ ︸

feature of P̂i

〉
− yi

]2
+ λ ‖w‖2 .
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Regression on labelled bags

Given:

labelled bags: ẑ =
{(

P̂i , yi
)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .

Estimator:

wλ
ẑ = argmin

w

1

ℓ

∑ℓ

i=1

[〈
w , ψ(P̂i )

〉
− yi

]2
+ λ ‖w‖2 .

Prediction:

ŷ(P̂) = gT (K+ ℓλI)−1y,

g = [K (P̂i , P̂)],K = [K (P̂i , P̂j)
︸ ︷︷ ︸

:=〈ψ(P̂i ),ψ(P̂j )〉

], y = [yi ].
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Regression on labelled bags: similarity

Let us define an inner product on distributions [K (P ,Q)]:

1 Set kernel: A = {ai}
N
i=1, B = {bj}

N
j=1.

K (A,B) =
1

N2

N∑

i ,j=1

k(ai , bj) =
〈 1

N

N∑

i=1

ϕ(ai )

︸ ︷︷ ︸

feature of bag A

,
1

N

N∑

j=1

ϕ(bj )
〉

.

Remember:
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Regression on labelled bags: similarity

Let us define an inner product on distributions [K (P ,Q)]:

1 Set kernel: A = {ai}
N
i=1, B = {bj}

N
j=1.

K (A,B) =
1

N2

N∑

i ,j=1

k(ai , bj) =
〈 1

N

N∑

i=1

ϕ(ai )

︸ ︷︷ ︸

feature of bag A

,
1

N

N∑

j=1

ϕ(bj )
〉

.

2 Taking ’limit’ [Berlinet and Thomas-Agnan, 2004,
Altun and Smola, 2006, Smola et al., 2007]: a ∼ P , b ∼ Q

K (P ,Q) = Ea,bk(a, b) =
〈

Eaϕ(a)
︸ ︷︷ ︸

feature of distribution P =:ψ(P)

,Ebϕ(b)
〉

.

Example (Gaussian kernel): k(a,b) = e−‖a−b‖22/(2σ
2).
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Regression on labelled bags: baseline

Quality of estimator, baseline:

R(w) = E(ψ(Q),y)∼ρ[
〈
w , ψ(Q)

〉
− y ]2,

wρ = best regressor.

How many samples/bag to get the accuracy of wρ? Possible?
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Our result: how many samples/bag

Known [Caponnetto and De Vito, 2007]: best/achieved rate

R(wλ
z )−R(wρ) = O

(

ℓ−
bc

bc+1

)

,

b – size of the input space, c – smoothness of wρ.
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Our result: how many samples/bag

Known [Caponnetto and De Vito, 2007]: best/achieved rate

R(wλ
z )−R(wρ) = O

(

ℓ−
bc

bc+1

)

,

b – size of the input space, c – smoothness of wρ.

Let N = Õ(ℓa). N: size of the bags. ℓ: number of bags.

Our result

If 2 ≤ a, then wλ

ẑ attains the best achievable rate.
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Our result: how many samples/bag

Known [Caponnetto and De Vito, 2007]: best/achieved rate

R(wλ
z )−R(wρ) = O

(

ℓ−
bc

bc+1

)

,

b – size of the input space, c – smoothness of wρ.

Let N = Õ(ℓa). N: size of the bags. ℓ: number of bags.

Our result

If 2 ≤ a, then wλ

ẑ attains the best achievable rate.

In fact, a = b(c+1)
bc+1 < 2 is enough.

Consequence: regression with set kernel is consistent.

The same result holds for Hölder K -s: Gaussian
[Christmann and Steinwart, 2010], . . .
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Aerosol prediction result (100× RMSE )

We perform on par with the state-of-the-art, hand-engineered
method.

Zhuang Wang, Liang Lan, Slobodan Vucetic. IEEE Transactions on
Geoscience and Remote Sensing, 2012: 7.5 − 8.5 (±0.1− 0.6):

hand-crafted features.

Our prediction accuracy: 7.81 (±1.64).

no expert knowledge.

Code in ITE: #2 on mloss,

https://bitbucket.org/szzoli/ite/
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Related results
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Distribution regression with random Fourier features

Kernel EP [UAI-2015]:

distribution regression phrasing,
learn the message-passing operator for ’tricky’ factors.
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Distribution regression with random Fourier features

Kernel EP [UAI-2015]:

distribution regression phrasing,
learn the message-passing operator for ’tricky’ factors.
extends Infer.NET; speed ⇐ RFF.

Zoltán Szabó Performance guarantees for kernel-based learning on distributions



Distribution regression with random Fourier features

Kernel EP [UAI-2015]:

distribution regression phrasing,
learn the message-passing operator for ’tricky’ factors.
extends Infer.NET; speed ⇐ RFF.

Random Fourier features [NIPS-2015 (spotlight - 3.65%)]:

exponentially tighter guarantee.
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+Applications, with Gatsby students

Bayesian manifold learning [NIPS-2015]:

App.: climate data → weather station location.

Fast, adaptive sampling method based on RFF [NIPS-2015]:

App.: approximate Bayesian computation, hyperparameter
inference.
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+Applications, with Gatsby students

Bayesian manifold learning [NIPS-2015]:

App.: climate data → weather station location.

Fast, adaptive sampling method based on RFF [NIPS-2015]:

App.: approximate Bayesian computation, hyperparameter
inference.

Interpretable 2-sample testing [ICML-2016 submission]:
App.:

random → smart features,

discriminative for doc. categories, emotions.

empirical process theory (VC subgraphs).
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Summary

Regression on

bags/distributions:

minimax optimality,
set kernel is consistent.

random Fourier features: exponentially tighter bounds.

Several applications (with open source code).

Acknowledgments: This work was supported by the Gatsby Charitable

Foundation.
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Zoltán Szabó Performance guarantees for kernel-based learning on distributions



Multi-instance kernels.
In International Conference on Machine Learning (ICML),
pages 179–186.

Haussler, D. (1999).
Convolution kernels on discrete structures.
Technical report, Department of Computer Science, University
of California at Santa Cruz.
(http://cbse.soe.ucsc.edu/sites/default/files/
convolutions.pdf).

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007).
A Hilbert space embedding for distributions.
In Algorithmic Learning Theory (ALT), pages 13–31.
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