
Performance guarantees for kernel-based learning on

probability distributions∗
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Abstract

In this talk I will present a novel result concerning the theory of distribution regression
(DR). The DR problem addresses regression to vector-valued outputs from probability mea-
sures. Many important machine learning and statistical tasks fit into this framework, in-
cluding multi-instance learning, and point estimation problems without analytical solution.
Despite the large number of available heuristics, the inherent two-stage sampled nature of
the problem (in practice only samples from sampled distributions are observable) makes the
theoretical analysis quite challenging. To the best of our knowledge, the only existing tech-
nique with consistency guarantees for DR requires density estimation (which often performs
poorly in practice), and the domain of the distributions to be compact Euclidean. I am go-
ing to present a simple, analytically computable, kernel ridge regression-based alternative
to DR with an exact computational-statistical efficiency tradeoff analysis. The established
result shows that the studied estimator is not only consistent (which specifically answers a
17-year-old open question), but it is also able to match the one-stage sampled minimax op-
timal rate. Moreover, this distribution-regression algorithm performs as well in practice as
the state-of-the-art, task-specific solution in an aerosol prediction problem. [Joint work with
Bharath Sriperumbudur, Barnabás Póczos, Arthur Gretton.]
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