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Examples:

© non-negativity: -
@ monotonicity (,): -
© convexity: -

© n-monotonicity: -

@ (n — 1)-alternating monotonicity: for n > 2

(CF0) . =01, A and jesivex] v < [0. 1 2].

Example: generator of a d-variate Archimedean copula is
(d — 2)-alternating monotone.
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@ Monotonicity w.r.t. partial ordering (u < v = f(u) < f(v)):

O=09FR).  (v) € [d], W),
[EL ORI SO
u < v iff

o U<V (Vi; product ordering),
® D i < Xjerq v (Vii unordered weak majorization).

ORTE i £ el

ie. F(uVv)+ f(uAv) > f(u)+ f(v) for all u,v € RY.

@ Supermodularity:
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Shape constraints are omnipresent
[Johnson and Jiang, 2018, Guntuboyina and Sen, 2018,
Chetverikov et al., 2018]

@ Economics:
o utility functions are | 2 and [[concavel [Matzkin, 1991].
e demand functions of normal goods are downward sloping
[Lewbel, 2010, Blundell et al., 2012],
e production functions are [[éoncavel [Varian, 1984] or |S-shaped
[Yagi et al., 2020].
e panel multinomial choice problems [Shi et al., 2018]:
cyclic monotonicity ,
e single index model: most link functions are |monotone
[Li and Racine, 2007, Chen and Samworth, 2016, Balabdaoui et al., 2019].
e Biology ([monotone regression): identify genome interactions
[Luss et al., 2012], dose-response studies [Hu et al., 2005].
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Few applications

@ Statistics: quantile function . w.r.t. the quantile level, pdfs are

@ Finance:
o European and American call option prices: _ in
the underlying stock price and in volatility
[Ait-Sahalia and Duarte, 2003].
e RL and stochastic optimization: value functions are often [ConVex|
[Keshavarz et al., 2011, Shapiro et al., 2014].
@ Supply chain models, stochastic multi-period inventory problems,
pricing models and game theory:
[Topkis, 1998, Simchi-Levi et al., 2014].
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Typical setting: supervised learning

e Find f € H such that f(x,) = y,, 0 < Df(x) (WX € K .
@ Various exciting approaches with asymptotic guarantees, but

@ they are often 'soft’: restriction at finite many points,

@ use simplistic function classes: polynomials, polynomial splines,
© apply hard-wired parameterizations: exponential, quadratic, or
@ only work for (a few) fixed Ds.

Today: optimization framework
rich 3, hard (Vx € K) shape constraints, modularity in D.

Towards flexible H-s . ..
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o InRY: (x,x') = 2 icld] Xix; = ||x—x/||2 and <I(x,x/).
o Nonlinear features (d = 2):

()O(X) = (Xfa \/§X1X27X22) 5

x2 (X')z
{p(x), 9(x)) = <lx/§;21xQ] , {ﬁ(xli)(Xé)D

X3 (Xé)2
=57 (x1)% + V2vV2 x10(x1) (%6) + 53 (x5)°
2

= (X + xzxé)z
/ 2
=[] ] - = v
(x,%)% = (i2(x), 9(x)): (x) = d-order polynomial. =



Kernel motivation

o InRY: (x,x) = 2 icld] XixX; = Hx—x/H2 and <i(x,x/).

@ Nonlinear features (d = 2):
SO(X) = (Xlz? \/§X1X27X22> ’
x§ (x1)”
MR - (|2 |20
X3
= xi(x)* + \[\@Xlxz(xﬂ(xz) +3 (x)°

2

= (x| + X2X£)22
(L] ) - e

(x,x) = (p(x), (X)) @(x) = d-order polynomial. =
Explicit computation would be heavy!
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Kernel, RKHS: definition

@ Def-1 (feature space):

k(x,y) = (o(x); (¥ ))gc -

@ Def-2 (evaluation): d,(f) = f(x) is continuous for all x.
o Def-3 (Gram matrix): G = [k(x;, )]} ;_; = 0.
@ Def-4 (reproducing kernel):

k('aX) € %7 f(X): <f7 k('aX»ﬂ{'

Constructively, Hyx = {>7; aik(-,x;)) : n € N,x; € X}.

All these definitions are - k <1—§ Hy.

Included: Fourier analysis, polynomials, splines, ...




ko(x,y) = ({xy) + €)?



kP(X7 y) = (<X, y) + C)p, kG(X’ y) — e_'7||X—Y||§,
ke(x,y) = el ki(x,y) = eIyl
1

1+y[x -yl



Kernel examples on RY (y,0,v >0, ¢c >0, pc Z")

ko(x,y) = ({x,y) + ¢)P, ke(x,y) = e 1IxvI3,
ke(x,y) = eyl ki(x,y) = e 1Ix=lly
1
kC(X7 y) = &, ké“(x, y) — e’Y<X7Y>.
1+ [x—yli3

Or the flexible Matérn family:

ku(xy) — 'ﬁ() (ﬁ I —y||2> (ﬁ Ix— YHz)’

where

@ K,: modified Bessel function of the second kind of order v,

- [Ix=yll
e Specific cases: For v = 1 one gets k(x,y) = e~ o

Gaussian kernel: v — oo.



Kernels on other domains (X)

@ Strings [Watkins, 1999, Lodhi et al., 2002, Leslie et al., 2002,
Kuang et al., 2004, Leslie and Kuang, 2004, Saigo et al., 2004,
Cuturi and Vert, 2005],

@ time series [Riiping, 2001, Cuturi et al., 2007, Cuturi, 2011,
Kirdly and Oberhauser, 2019],

e trees [Collins and Duffy, 2001, Kashima and Koyanagi, 2002],

@ groups and specifically rankings
[Cuturi et al., 2005, Jiao and Vert, 2016],

@ sets [Haussler, 1999, Gartner et al., 2002],

@ various [Jaakkola and Haussler, 1999,
Tsuda et al., 2002, Seeger, 2002, Jebara et al., 2004],

e fuzzy domains [Guevara et al., 2017], or

e graphs [Kondor and Lafferty, 2002, Gartner et al., 2003,
Kashima et al., 2003, Borgwardt and Kriegel, 2005,
Shervashidze et al., 2009, Vishwanathan et al., 2010,

Kondor and Pan, 2016, Bai et al., 2020].
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Why kernel and RKHSs?

© Numerous data types.
@ RKHS can

e be dense in various function spaces
[Steinwart, 2001, Micchelli et al., 2006, Sriperumbudur et al., 2011,
Simon-Gabriel and Schélkopf, 2018],

e encode probability measures injectively
[Fukumizu et al., 2008, Sriperumbudur et al., 2010]

P /xgo(x)d]P’(x) € Hy

e characterize independence of random variables
[Bach and Jordan, 2002, Blanchard et al., 2011, Gretton, 2015,
Szabé and Sriperumbudur, 2018].
© Computationally tractable: k(x;,x;).
@ Hilbert structure = statistical analysis.
© Vector-valued RKHSs
[Pedrick, 1957, Micchelli and Pontil, 2005, Carmeli et al., 2006].
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Task-1: joint quantile regression (JQR)

Given: (74)qe(q] C (0,1) levels 7, {(xn, ¥n)}ne[n) samples.
Estimate jointly the 74-quantiles of P(Y|X = x)[Sangnier et al., 2016].
Objective:

Z >ty (v = [fa(xn) + bal) + AolIbl3 + Ar Y [Ifgll17,

qG[Q] ne[N] q€[@]
I:(e) = max(7e, (T — 1)e).

Constraint (non-crossing): K := smallest rectangle containing {x} e[,

fq(x) + bg < fgy1(x) + bgt1, Vg € [Q — 1], Vx € K.

Constraints

function values (f;) with interaction (fq11 — fy), bias terms (bgq)
with interaction (bg — bg1).




Task-2: convoy localization, one vehicle (Q = 1)
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Task-2: convoy localization, one vehicle (Q = 1)

@ Given: noisy time-location samples {(ts, xn)}nein) C [0, T] xR.
@ Goal: learn the (t,x) relation. T
e Constraint: lower bound on speed (Viin).
@ Objective:
1

= > b= (b £(t)) I+ AIFII3,

min
beR,f e H neN]

s.t.
Vnin < f/(t), VteT.



Task-2b: convoy localization, multiple vehicles (Q > 1)

e Data: {(tq,qum)ne[Nq]}qe[Q] CTxR.
e Constraints: speed (Vmin), inter-vehicular distance (dmin)-
@ Objective:

. 1 & |1 &
%7£;:%§§1§7 Q qzzzl |:(Nq ; [Xg,n = (bq + fq(tq,n)) 2) + )‘fqgck]
s.t.
dmin + bg+1 + far1(t) < bg + f4(t),Vg e [Q —1], t € T,
Vimin < fc;(t), Vge[Q],teT.



Task-2b: convoy localization, multiple vehicles (Q > 1)

e Data: {(tq7n7xq7n)n€[Nq]}q€[Q] CT xR
e Constraints: speed (Vmin), inter-vehicular distance (dmin)-
@ Objective:

Q Ng
1 1
in_ = (7D — (bg + foltg.n)) I* | + Allfqll3
ﬁ,...%lelf}ck, QL N, 2 Xg,n — (bg + fq(tq,n)) I | + Allfqll5,
by,..bgeR  9=1 n=1
s.t.

dmin + bgr1 + far1(t) < by + f4(t),Yq € [@ — 1], t € T,
Vin < £ (1), VYge[Ql. teT.

Constraints

function values (f;) and derivatives (f(;) with interaction
(fqg — fg+1), bias terms (bg) with interaction (bg11 — bg)-
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Task-3: safety-critical control

@ Trajectory of an underwater vehicle:

te T :=[0,1] — [x(t); z(t)] € R°.

Simplifying assumption: x(0) = 0,x(t) =1Vt € T = x(t) =
Requirement: stay between the floor and the ceiling of the cavern

z(t) € [ziow(t), zup(t)] VEET.
Initial condition: z(0) =0 and 2(0) = 0.

min /| t)2dt
uel?(T,R)

z(O) =0, 2(0)=0,

Z(t) = —z(t) + u(t),Vt e T,
Ziow(t)< z(t) < zyp(t), VEET.

Control task (LQ = linear dynamics & quadratic cost):

t.



e With full state f(t) := [z(t); 2(t)] € R?

F() = AF(t) + Bu(t), f(0)=0, A= [g _11] ER22, B— m € R?



Task-3: safety-critical control — continued

o With full state f(t) := [z(t); 2(t)] € R?

f(0) = af(e) + But), 10 =0, A= |0 | er>2 B[] cw?

@ The controlled trajectories f belong to a R2-valued RKHS with kernel
min(s,t) T
k(s,t) := / eC=MABBT(t=DA 47 s te T,
0

and the task is
min £112
F=[fiihEH, Il
s.t.
Ziow(t) < f(t) < zp(t), VE e T.
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o Task:
i, Il
s.t.
Ziow,m < fi(t) < Zup,m, Yt € T, Ym € [M].



@ Assume for simplicity: zq, and z,, are piece-wise constant.
o Task:
I
s.t.
Ziow,m < fi(t) < Zup,m, Yt € T, Ym € [M].

linear transformation of functions (f1), with matrix-valued kernel. I
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Our task

(?, B) = argmin L(f,b),
f=(fq)qera) € (1)<,

b=(bq)qe[q] € B,
(fb)eC

£04.5) = L (b, (s (i) ercr) ) * 2 (el
C = {(f, b) | (bo — Ub),' < D;(Wf — fo),'(x), Vx € K;,Vi S [I]},
(Wh); = Y Wigfy,

q€[Q]

Irl £
Di= Y 70", |rijl <s,7ij €R, 0F(x) = o

- a;l e a;d :
J€[nij] ! ?



Blanket assumptions

© Domain X C RY: open. Kernel k € C5(X x X).
@ K; C X: compact, Vi.

@ fo,; € Hy for Vi.

Q Bias domain B C R?: convex.

© Loss L restricted to B: strictly convex in b.

O Regularizer §: strictly increasing in each of its argument.



ﬂ_ SOC-constrained formulation

(fy,bp) = argmin  L(f,b) (Pn)
fE(J‘(k)Q,bEB
s.t.
(bo — Ub); + 1| (WFf — fo)illac, (€n)
< minmE[M,.] D,(Wf - fO)I' ()'Zi,m)a Vi e [l]7 K

where
° {ii,m}me[M,-]: a dj-net of Kjin |||,
® 1) = SUPme M ueBy . (0.1) | Dixk(Xim, ) = Dixk(%im + diu, )|,



® Minimal values: vgisc = value of (Py) with 'p =0', v = L (f,b),
vy = L (fp, by).
o Let f; = (fy,9)qciql-



® Minimal values: vgisc = value of (Py) with 'p =0', v = L (f,b),
vy = L (fy, by).

o Let fy = (fy.9)qelqr-
Then,

e (i) Tightening: any (f,b) satisfying (Cy,) also satisfies (C), hence

Vdise SV < V.



Theorem

e Minimal values: vgisc = value of () with ' p =0, v =L (f, b),
vy = L (fy, by).

o Let f”) = (fn,q)qE[Q]'
Then,

e (i) Tightening: any (f,b) satisfying (Cy,) also satisfies (C), hence
Vdise <V < vy,
o (ii) Representer theorem: For Vq € [Q], 33, 0., di,m,q> anq € R s.t.

fng = Z dioqfoi + Z 3i.m.qDixk (Xim, )
il me[M;]

+ ) angk(xn, ).

ne[N]



o (iii) Performance guarantee: if L is (jf,, up)-strongly convex
w.r.t. (fq,b) for any q € [Q], then

z 2(vi) — Vdisc) = 2( vy — Vdisc)
||f11,q - fq”g{k < L — s ||b'r] - b||2 < /LA .
B, b



Theorem — continued

o (iii) Performance guarantee: if £ is (i, fi)-strongly convex
w.r.t. (fg,b) for any g € [Q], then

2V_Visc i 2V_Visc
o —vied) -, gy < | A0 Vi)

1fn.q — fqllag, <
|fn.q — fqllsc, o o

If in addition U is surjective, B = R?, and L(f, ) is

Lp—Lipschitz continuous on By (b, c¢[|n]|oc) where
cr = \/aH (UTU)*l UTH maX;e[/] H(W? - fo),'Hg{k, then

7 2Lpct |l - 2Lpc||m||
g — Fallae, < () =2, by — b|l2 < | 2.
K Hb



Theorem — continued

o (iii) Performance guarantee: if £ is (i, fi)-strongly convex
w.r.t. (fg,b) for any g € [Q], then

2V_Visc i 2V_Visc
o —vied) -, gy < | A0 Vi)

1fn.q — fqllag, <
|fn.q — fqllsc, o o

If in addition U is surjective, B = }BQ, and L(f,-) is
L,—Lipschitz continuous on By (b, ¢r[|n]le) where

cr = \/aH(UTU)*l UTH maX;e[/] H(W?— fo),'Hg{k, then

7 2Lpct |l - 2Lpc||m||
g — Fallae, < () =2, by — b|l2 < | 2.
K Hb

1st bound: computable. 2nd: Larger M; = smaller §; = smaller 7;
= tighter bound. \




Let s =0, / = 1. Recall constraint (C):

{(f.b)| (bo — Ub) < (Wf —fo)(x), Vx€ K}
T T
—_——
<¢7k(xv')>j{k



Let s =0, / = 1. Recall constraint (C):

{(£.b)| (bo — Ub) < (WF — f)(x), VxeK},ie.
T T
———
<¢7k(x ))}Ck

- — [k(x, xeK}- {gEJ{k|ﬁS<¢,g>}ck}




Tightening idea

Let s =0, / = 1. Recall constraint (C):

{(f,b)| (bo — Ub) < (WFf — f)(x), ¥xe K}, ie.
5 ¢
(6k(x,)

B — (k(x- xeK}- {9618 < (9.8)x, )

@ (C,) means: covering of ®(K) by balls with n-radius centered
at the k (X, -) is in the halfspace H;,ﬁ; hence it is tightening.



Tightening idea

Let s =0, / = 1. Recall constraint (C):

{(f,b)| (bo — Ub) < (WFf — f)(x), ¥xe K}, ie.
5 ¢
(6k(x,)

B — (k(x- xeK}- {9618 < (9.8)x, )

@ (C,) means: covering of ®(K) by balls with n-radius centered
at the k (X, -) is in the halfspace H;ﬁ; hence it is tightening.

@ 1 is obtained as the minimal radius.



Setting: Q = 6, dmin = 5mM, Vmin = 0.

300

Noiseless trajectory
+  Noisy measurement
Constrained Reconstruction
— — — -Unconstrained Reconstruction

0 10 20 30 40 50
t(s)




Pairwise distances: t +— fy(t) — fq41(t)

a5f

40
R

t(s)




Pairwise distances: t — fo(t) — fq11(t) Speed: t — fi(t)

t(s)




Pairwise distances: t — fo(t) — fq11(t) Speed: t — fi(t)

t(s) t(s)

Shape constraints: especially relevant in - situations. J




Demo (task-2): joint quantile regression

‘Economics :

@ x: annual household income, y: food expenditure. d =1, N = 235.

o Engel's law = 7, concave.

@ Demo: 74 € {0.1,0.3,0.5,0.7,0.9}.

o Left: non-crossing, . Right: non-crossing, *, concave.

+ data points {(z,
+  virtual points {, 2

Income spent on food
Income spent on food

-1 -0.5 0 0.5 1 15 2 -1 -0.5 0 0.5 1 15 2
Total income Total income



Demo (task-2): joint quantile regression

, ENAC:
e y: radar-measured altitude of aircrafts flying between two cities (Paris
& Toulouse); x: time. d =1, N = 15657.
e Demo: 74 € {0.1,0.3,0.5,0.7,0.9}.
@ Constraint: non-crossing, ~ (takeoff).

120

=

o ® o

S t=] <]
T

Altitude (100 ft)

N
o

20

. . . . . . . . . \
0 20 40 60 80 100 120 140 160 180 200
Time (s)



Demo (task-3): [control of underwater vehicle

Vs discretization-based approach (which might crash):

-4

Optimal trajectory with SOC constraints (ball covering)
= = :Optimal trajectory with discretized constraints (n = 0)
Upper/Lower constraints zj,,,, and Zupm

Functions from Gaussian RKHS used to generate the bounds

!

! A\ H 74 ! ! ! ! ! !

0.1

0.2 0.3 04 05 06 0.7 0.8 0.9
t




Summary

@ Focus: hard affine shape constraints on derivatives & RKHS.
@ Proposed framework: SOC-based tightening.

@ Applications:

e convoy localization,
e joint quantile regression: economics, aircraft trajectories,
e safety-critical control.
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