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Introduction

Inference: uncertain inputs/probabilities.

2 motivating examples:
1 games:

regression on distributions.

2 sustainability:

regression on sampled distributions = labelled bags.
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Example-1: game

Online gaming service created by Microsoft:
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Example-1: game

Online gaming service created by Microsoft:

TrueSkill:

skill based ranking system for Xbox Live → game outcome.
Application: competitive matchmaking.
About 48M users.

Zoltán Szabó Learning from Features of Sets and Probabilities



Example-1: game

Online gaming service created by Microsoft:

TrueSkill:

skill based ranking system for Xbox Live → game outcome.
Application: competitive matchmaking.
About 48M users.

Related fields: social recommender systems, search advertising.
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Example-1: continued

Skill prediction:

input: probabilities = beliefs of the players’ skills,

output: parameter = new belief.
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One-page summary: games

Infer.NET:

small class of parametric models
(e.g, normal).

Contribution:
distribution regression phrasing:

flexibility: KJIT,

speed ⇐ random Fourier features.

exponentially tighter guarantee,
NIPS-2015 (spotlight - 3.65%).
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Example-2: sustainability

Goal: aerosol prediction = air pollution → climate.

Prediction using labelled bags:

bag := multi-spectral satellite measurements over an area,
label := local aerosol value.
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Example-2: existing alternatives

Multi-instance learning:

[Haussler, 1999, Gärtner et al., 2002] (set kernel):

sensible methods in regression: few,
1 restrictive technical conditions,
2 super-high resolution satellite image: would be needed.
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One-page summary: sustainability

Contributions:

1 Practical: state-of-the-art accuracy (aerosol).
2 Theoretical:

General bags: graphs, time series, texts, . . .
Consistency of set kernel in regression (17-year-old open problem).
How many samples/bag?
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One-page summary: sustainability

Contributions:

1 Practical: state-of-the-art accuracy (aerosol).
2 Theoretical:

General bags: graphs, time series, texts, . . .
Consistency of set kernel in regression (17-year-old open problem).
How many samples/bag?
AISTATS-2015 (oral – 6.11%) → JMLR in revision.
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Objects in the bags

Examples:

time-series modelling: user = set of time-series,
computer vision: image = collection of patch vectors,
NLP: corpus = bag of documents,
network analysis: group of people = bag of friendship graphs, . . .
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Objects in the bags

Examples:

time-series modelling: user = set of time-series,
computer vision: image = collection of patch vectors,
NLP: corpus = bag of documents,
network analysis: group of people = bag of friendship graphs, . . .

Wider context (statistics): point estimation tasks.
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Contents

1 Regression on distributions:

scaling up = Random Fourier features.

2 Regression on labelled bags.

3 Further applications.
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Ridge regression on distributions

Given: {( Pi
︸︷︷︸

non-standard

, yi )}ℓi=1, new P ; ŷ =?

Example:
ℓ: number of matches used for training.
Pi : distribution on skills.

Learning from features of distributions:

w∗ = argmin
w

1

ℓ

ℓ∑

i=1

[〈
w , ψ(Pi )
︸ ︷︷ ︸

feature of Pi

〉
− yi

]2
+ λ ‖w‖2 ,
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Ridge regression on distributions

Given: {(Pi , yi )}ℓi=1, new P ; ŷ =?
Learning from features of distributions:

w∗ = argmin
w

1

ℓ

ℓ∑

i=1

[〈
w , ψ(Pi )

〉
− yi

]2
+ λ ‖w‖2 ,

ŷ(P) = 〈w∗, ψ(P)〉 = gT (K+ λℓI)−1y.

Prediction: relies on g = [K (Pi ,P)],K = [K (Pi ,Pj)
︸ ︷︷ ︸

:=〈ψ(Pi ),ψ(Pj )〉
], y = [yi ].
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Ridge regression on distributions

Given: {(Pi , yi )}ℓi=1, new P ; ŷ =?
Learning from features of distributions:

w∗ = argmin
w

1

ℓ

ℓ∑

i=1

[〈
w , ψ(Pi )

〉
− yi

]2
+ λ ‖w‖2 ,

ŷ(P) = 〈w∗, ψ(P)〉 = gT (K+ λℓI)−1y.

Prediction: relies on g = [K (Pi ,P)],K = [K (Pi ,Pj)
︸ ︷︷ ︸

:=〈ψ(Pi ),ψ(Pj )〉
], y = [yi ].

Challenges

1 Inner product of distributions: K (Pi ,Pj ) = ?

2 Computation: O(ℓ3) – expensive.
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Similarity on bags and distributions

We define inner product on distributions [K (Pi ,Pj)]:

1 Set kernel: A = {ai}Ni=1, B = {bj}Nj=1.

K (A,B) =
1

N2

N∑

i ,j=1

k(ai , bj) =
〈 1

N

N∑

i=1

ϕ(ai )

︸ ︷︷ ︸

feature of bag A

,
1

N

N∑

j=1

ϕ(bj )
〉

.

Remember:
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Similarity on bags and distributions

We define inner product on distributions [K (Pi ,Pj)]:

1 Set kernel: A = {ai}Ni=1, B = {bj}Nj=1.

K (A,B) =
1

N2

N∑

i ,j=1

k(ai , bj) =
〈 1

N

N∑

i=1

ϕ(ai )

︸ ︷︷ ︸

feature of bag A

,
1

N

N∑

j=1

ϕ(bj )
〉

.

2 Taking ’limit’: a ∼ P , b ∼ Q

K (P ,Q) = Ea,bk(a, b) =
〈

Eaϕ(a)
︸ ︷︷ ︸

feature of distribution P =:ψ(P)

,Ebϕ(b)
〉

.

Example (Gaussian kernel): k(a,b) = e−‖a−b‖22/(2σ2).
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Random Fourier features reduce computational time

Prediction on a new P :

ŷ(P) = gT (K+ λℓI )−1y, K (P ,Q)= Ea,bk(a,b), a ∼ P ,b ∼ Q.

Scaling challenge! Computational time = O(ℓ3). ℓ can be huge!
Random Fourier features help: O(ℓm2),m ≪ ℓ.
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Random Fourier features reduce computational time

Prediction on a new P :

ŷ(P) = gT (K+ λℓI )−1y, K (P ,Q)= Ea,bk(a,b), a ∼ P ,b ∼ Q.

Scaling challenge! Computational time = O(ℓ3). ℓ can be huge!
Random Fourier features help: O(ℓm2),m ≪ ℓ.

For any k continuous and shift-invariant kernel

k(a,b) = Eω∼Λ cos
(

ω
T (a− b)

)

, Λ : given for many k-s!
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Random Fourier features reduce computational time

Prediction on a new P :

ŷ(P) = gT (K+ λℓI )−1y, K (P ,Q)= Ea,bk(a,b), a ∼ P ,b ∼ Q.

Scaling challenge! Computational time = O(ℓ3). ℓ can be huge!
Random Fourier features help: O(ℓm2),m ≪ ℓ.

For any k continuous and shift-invariant kernel

k(a,b) = Eω∼Λ cos
(

ω
T (a− b)

)

, Λ : given for many k-s!

k̂(a,b) =
1

m

m∑

j=1

cos
(

ω
T
j (a− b)

)

← [Rahimi and Recht, 2007].

Error propagates nicely from k̂ to K̂ .
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Our result: exponentially tighter bound

Goal: approximation error of k̂ on domain S with m random
Fourier features.
Crude existing bound [Rahimi and Recht, 2007]:

max
a,b∈S

|k(a,b)− k̂(a,b)| = O
(

|S|
︸︷︷︸

linear

√

logm

m

)

.

Our finite-sample guarantee implies O
(√

log |S|√
m

)

.

Our bound proves that regression with RFF is practical.
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Aerosol prediction = regression on labelled bags

Game example: exact Pi , approximate K .

Now: approximate Pi , exact K .
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Aerosol prediction result (100× RMSE )

We perform on par with the state-of-the-art, hand-engineered
method.

Zhuang Wang, Liang Lan, Slobodan Vucetic. IEEE Transactions on
Geoscience and Remote Sensing, 2012: 7.5 − 8.5 (±0.1− 0.6):

hand-crafted features.

Our prediction accuracy: 7.81 (±1.64).
no expert knowledge.

Code in ITE: #2 on mloss,

https://bitbucket.org/szzoli/ite/
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Regression on labelled bags: P̂i → Pi performance?

Given:

labelled bags: ẑ =
{(

P̂i , yi

)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .

Zoltán Szabó Learning from Features of Sets and Probabilities



Regression on labelled bags: P̂i → Pi performance?

Given:

labelled bags: ẑ =
{(

P̂i , yi

)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .

Estimator:

wλ
ẑ = arg min

w

1

ℓ

∑ℓ

i=1

[〈
w , ψ(P̂i )
︸ ︷︷ ︸

feature of P̂i

〉
− yi

]2
+ λ ‖w‖2 .
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Regression on labelled bags: P̂i → Pi performance?

Given:

labelled bags: ẑ =
{(

P̂i , yi

)}ℓ

i=1
, P̂i : bag from Pi , N := |P̂i |.

test bag: P̂ .

Estimator:

wλ
ẑ = argmin

w

1

ℓ

∑ℓ

i=1

[〈
w , ψ(P̂i )

〉
− yi

]2
+ λ ‖w‖2 .

Quality of estimator, baseline:

R(w) = E(ψ(Q),y)∼ρ[
〈
w , ψ(Q)

〉
− y ]2,

wρ = best regressor.

How many samples/bag to get the accuracy of wρ? Possible?
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Our result: how many samples/bag

Known: best/achieved rate

R(wλ
z )−R(wρ) = O

(

ℓ−
bc

bc+1

)

,

b – size of the input space, c – smoothness of wρ.
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Our result: how many samples/bag

Known: best/achieved rate

R(wλ
z )−R(wρ) = O

(

ℓ−
bc

bc+1

)

,

b – size of the input space, c – smoothness of wρ.
Let N = Õ(ℓa). N: size of the bags. ℓ: number of bags.

Our result

If 2 ≤ a, then wλ

ẑ attains the best achievable rate.
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Our result: how many samples/bag

Known: best/achieved rate

R(wλ
z )−R(wρ) = O

(

ℓ−
bc

bc+1

)

,

b – size of the input space, c – smoothness of wρ.
Let N = Õ(ℓa). N: size of the bags. ℓ: number of bags.

Our result

If 2 ≤ a, then wλ

ẑ attains the best achievable rate.

In fact, a = b(c+1)
bc+1 < 2 is enough.

Consequence: regression with set kernel is consistent.
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+Applications, with Gatsby students

Bayesian manifold learning [NIPS-2015]:

App.: climate data → weather station location.
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+Applications, with Gatsby students

Bayesian manifold learning [NIPS-2015]:

App.: climate data → weather station location.

Fast, adaptive sampling method based on RFF [NIPS-2015]:

App.: approximate Bayesian computation, hyperparameter
inference.
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+Applications, with Gatsby students

Bayesian manifold learning [NIPS-2015]:

App.: climate data → weather station location.

Fast, adaptive sampling method based on RFF [NIPS-2015]:

App.: approximate Bayesian computation, hyperparameter
inference.

Interpretable 2-sample testing [ICML-2016 submission]:
App.:

random → smart features,

discriminative for doc. categories, emotions.

empirical process theory (VC subgraphs).

Zoltán Szabó Learning from Features of Sets and Probabilities



Summary

Regression on

distributions:

random Fourier features.
exponentially tighter bounds.

bags:

minimax optimality,
set kernel is consistent.

Several applications (with open source code).
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