Learning from Features of Sets and Probabilities

Zoltán Szabó (Gatsby Unit, UCL)

Department of Computing Imperial College London

March 9, 2016

Zoltán Szabó Learning from Features of Sets and Probabilities

- Inference: uncertain inputs/probabilities.
- 2 motivating examples:
 - games:
 - regression on distributions.
 - sustainability:
 - regression on sampled distributions = labelled bags.

• Online gaming service created by Microsoft:

• Online gaming service created by Microsoft:

- TrueSkill:
 - $\bullet\,$ skill based ranking system for Xbox Live $\rightarrow\,$ game outcome.
 - Application: competitive matchmaking.
 - About 48M users.

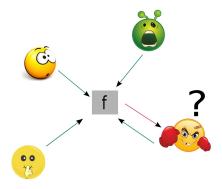
• Online gaming service created by Microsoft:

- TrueSkill:
 - $\bullet\,$ skill based ranking system for Xbox Live $\rightarrow\,$ game outcome.
 - Application: competitive matchmaking.
 - About 48M users.
- Related fields: social recommender systems, search advertising.

Example-1: continued

Skill prediction:

- input: probabilities = beliefs of the players' skills,
- output: parameter = new belief.



- Infer.NET:
 - small class of parametric models (e.g, normal).
- Contribution:
 - distribution regression phrasing:
 - flexibility: KJIT,
 - speed \leftarrow random Fourier features.
 - exponentially tighter guarantee,
 - NIPS-2015 (spotlight 3.65%).

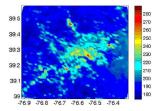
Research	
infer.net	Infer.NET Infer.NET is a framework for run programming as shown in this y You can use infer.NET to solve n recommendation or clustering th
 Home Download Job openings 	wide variety of domains includin Infer.NET 2.6 is now available See the release change histor

L			
L			
L			

Example-2: sustainability

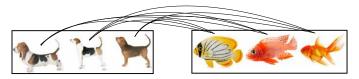
• **Goal**: aerosol prediction = air pollution \rightarrow climate.

- Prediction using labelled bags:
 - bag := multi-spectral satellite measurements over an area,
 - label := local aerosol value.



Multi-instance learning:

• [Haussler, 1999, Gärtner et al., 2002] (set kernel):



- sensible methods in regression: few,

 - restrictive technical conditions.
 - 2 super-high resolution satellite image: would be needed.

One-page summary: sustainability

Contributions:

- Practical: state-of-the-art accuracy (aerosol).
- 2 Theoretical:
 - General bags: graphs, time series, texts, ...
 - Consistency of set kernel in regression (17-year-old open problem).
 - How many samples/bag?

One-page summary: sustainability

Contributions:

- Practical: state-of-the-art accuracy (aerosol).
- 2 Theoretical:
 - General bags: graphs, time series, texts, ...
 - Consistency of set kernel in regression (17-year-old open problem).
 - How many samples/bag?
 - AISTATS-2015 (oral 6.11%) \rightarrow JMLR in revision.

• Examples:

- time-series modelling: user = set of time-series,
- computer vision: image = collection of patch vectors,
- NLP: corpus = bag of documents,
- network analysis: group of people = bag of friendship graphs, ...

• Examples:

- time-series modelling: user = set of time-series,
- computer vision: image = collection of patch vectors,
- NLP: corpus = bag of documents,
- network analysis: group of people = bag of friendship graphs, ...
- Wider context (statistics): point estimation tasks.

Regression on distributions:

- scaling up = Random Fourier features.
- Regression on labelled bags.
- Further applications.

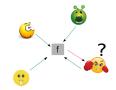
Ridge regression on distributions

• Given:
$$\{(\underbrace{P_i}, y_i)\}_{i=1}^{\ell}$$
, new P ; $\hat{y} = ?$
non-standard

Example:

- ℓ : number of matches used for training.
- *P_i*: distribution on skills.
- Learning from features of distributions:

$$w^* = \operatorname*{arg\,min}_{w} \frac{1}{\ell} \sum_{i=1}^{\ell} \left[\left\langle w, \underbrace{\psi(P_i)}_{\text{feature of } P_i} \right\rangle - y_i \right]^2 + \lambda \left\| w \right\|^2,$$



Ridge regression on distributions

• Given: $\{(P_i, y_i)\}_{i=1}^{\ell}$, new *P*; $\hat{y} = ?$

• Learning from features of distributions:

$$w^* = \arg\min_{w} \frac{1}{\ell} \sum_{i=1}^{\ell} \left[\left\langle w, \psi(P_i) \right\rangle - y_i \right]^2 + \lambda \|w\|^2,$$
$$\hat{y}(P) = \left\langle w^*, \psi(P) \right\rangle = \mathbf{g}^T (\mathbf{K} + \lambda \ell \mathbf{I})^{-1} \mathbf{y}.$$

• Prediction: relies on $\mathbf{g} = [K(P_i, P)], \mathbf{K} = [\underbrace{K(P_i, P_j)}_{:=\langle \psi(P_i), \psi(P_i) \rangle}, \mathbf{y} = [y_i].$

Ridge regression on distributions

• Given: $\{(P_i, y_i)\}_{i=1}^{\ell}$, new *P*; $\hat{y} = ?$

Learning from features of distributions:

$$egin{aligned} & w^* = rgmin_w rac{1}{\ell} \sum_{i=1}^\ell ig[ig\langle w, \psi(P_i)ig
angle - y_iig]^2 + \lambda \, \|w\|^2 \, du^2, \ & \hat{\psi}(P) = \langle w^*, \psi(P)
angle = \mathbf{g}^{\mathcal{T}} (\mathbf{K} + \lambda \ell \mathbf{I})^{-1} \mathbf{y}. \end{aligned}$$

• Prediction: relies on $\mathbf{g} = [K(P_i, P)], \mathbf{K} = [\underbrace{K(P_i, P_j)}_{:=\langle \psi(P_i), \psi(P_j) \rangle}], \mathbf{y} = [y_i].$

Challenges

- Inner product of distributions: $K(P_i, P_j) = ?$
- **2** Computation: $\mathcal{O}(\ell^3)$ expensive.

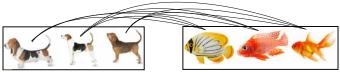
Similarity on bags and distributions

We define inner product on distributions $[K(P_i, P_j)]$:

3 Set kernel:
$$A = \{a_i\}_{i=1}^N$$
, $B = \{b_j\}_{j=1}^N$.

$$K(A,B) = \frac{1}{N^2} \sum_{i,j=1}^{N} k(a_i, b_j) = \Big\langle \underbrace{\frac{1}{N} \sum_{i=1}^{N} \varphi(a_i)}_{\text{feature of bag } A}, \frac{1}{N} \sum_{j=1}^{N} \varphi(b_j) \Big\rangle.$$

Remember:



Similarity on bags and distributions

We define inner product on distributions $[K(P_i, P_j)]$:

) Set kernel:
$$A = \{a_i\}_{i=1}^N$$
, $B = \{b_j\}_{j=1}^N$

$$\mathcal{K}(A,B) = \frac{1}{N^2} \sum_{i,j=1}^{N} k(a_i, b_j) = \Big\langle \underbrace{\frac{1}{N} \sum_{i=1}^{N} \varphi(a_i)}_{\text{feature of bag } A}, \frac{1}{N} \sum_{j=1}^{N} \varphi(b_j) \Big\rangle.$$

I Taking 'limit': $a \sim P, b \sim Q$

$$K(P, Q) = \mathbb{E}_{a,b}k(a, b) = \left\langle \underbrace{\mathbb{E}_a \varphi(a)}_{\text{feature of distribution } P =: \psi(P)}, \mathbb{E}_b \varphi(b) \right\rangle.$$

Example (Gaussian kernel): $k(\mathbf{a}, \mathbf{b}) = e^{-\|\mathbf{a}-\mathbf{b}\|_2^2/(2\sigma^2)}$.

Random Fourier features reduce computational time

• Prediction on a new P:

$$\hat{y}(P) = \mathbf{g}^T (\mathbf{K} + \lambda \ell I)^{-1} \mathbf{y}, \quad K(P, Q) = \mathbb{E}_{\mathbf{a}, \mathbf{b}} k(\mathbf{a}, \mathbf{b}), \quad \mathbf{a} \sim P, \mathbf{b} \sim Q.$$

Scaling challenge! Computational time = $O(\ell^3)$. ℓ can be huge! Random Fourier features help: $O(\ell m^2), m \ll \ell$.

Random Fourier features reduce computational time

• Prediction on a new P:

 $\hat{y}(P) = \mathbf{g}^{\mathsf{T}}(\mathbf{K} + \lambda \ell I)^{-1} \mathbf{y}, \quad K(P, Q) = \mathbb{E}_{\mathbf{a}, \mathbf{b}} k(\mathbf{a}, \mathbf{b}), \quad \mathbf{a} \sim P, \mathbf{b} \sim Q.$

Scaling challenge! Computational time = $O(\ell^3)$. ℓ can be huge! Random Fourier features help: $O(\ell m^2), m \ll \ell$.

• For any k continuous and shift-invariant kernel

$$k(\mathbf{a},\mathbf{b}) = \mathbb{E}_{oldsymbol{\omega}\sim\wedge} \cos\left(oldsymbol{\omega}^{\mathcal{T}}(\mathbf{a}-\mathbf{b})
ight), \ \wedge:$$
 given for many k -s!

Random Fourier features reduce computational time

• Prediction on a new P:

 $\hat{y}(P) = \mathbf{g}^{\mathsf{T}}(\mathbf{K} + \lambda \ell I)^{-1} \mathbf{y}, \quad K(P, Q) = \mathbb{E}_{\mathbf{a}, \mathbf{b}} k(\mathbf{a}, \mathbf{b}), \quad \mathbf{a} \sim P, \mathbf{b} \sim Q.$

Scaling challenge! Computational time = $O(\ell^3)$. ℓ can be huge! Random Fourier features help: $O(\ell m^2), m \ll \ell$.

• For any k continuous and shift-invariant kernel

$$k(\mathbf{a}, \mathbf{b}) = \mathbb{E}_{\boldsymbol{\omega} \sim \wedge} \cos\left(\boldsymbol{\omega}^{T}(\mathbf{a} - \mathbf{b})\right), \ \wedge : \text{given for many } k\text{-s!}$$

 $\hat{k}(\mathbf{a}, \mathbf{b}) = \frac{1}{m} \sum_{j=1}^{m} \cos\left(\boldsymbol{\omega}_{j}^{T}(\mathbf{a} - \mathbf{b})\right) \leftarrow [\text{Rahimi and Recht, 2007}].$

• Error propagates nicely from \hat{k} to \hat{K} .

Our result: exponentially tighter bound

- **Goal**: approximation error of \hat{k} on domain S with *m* random ٩ Fourier features.
- Crude existing bound [Rahimi and Recht, 2007]:

$$\max_{\mathbf{a},\mathbf{b}\in\mathbb{S}}|k(\mathbf{a},\mathbf{b})-\hat{k}(\mathbf{a},\mathbf{b})|=\mathcal{O}\left(\underbrace{|\mathfrak{S}|}_{\text{linear}}\sqrt{\frac{\log m}{m}}\right)$$

Our finite

e-sample guarantee implies
$$\mathcal{O}\left(rac{\sqrt{\log|\mathcal{S}|}}{\sqrt{m}}
ight)$$

Our bound proves that regression with RFF is practical.

Aerosol prediction = regression on labelled bags

- Game example: exact P_i , approximate K.
- Now: approximate P_i , exact K.

We perform on par with the state-of-the-art, hand-engineered method.

- Zhuang Wang, Liang Lan, Slobodan Vucetic. IEEE Transactions on Geoscience and Remote Sensing, 2012: $7.5 8.5 (\pm 0.1 0.6)$:
 - hand-crafted features.
- Our prediction accuracy: 7.81 (\pm 1.64).
 - no expert knowledge.
- Code in ITE: #2 on mloss,

https://bitbucket.org/szzoli/ite/

Regression on labelled bags: $\hat{P}_i \rightarrow P_i$ performance?

• Given:

• labelled bags:
$$\hat{\mathbf{z}} = \left\{ \left(\hat{P}_i, y_i \right) \right\}_{i=1}^{\ell}$$
, \hat{P}_i : bag from P_i , $N := |\hat{P}_i|$.

• test bag: \tilde{P} .

Regression on labelled bags: $\hat{P}_i \rightarrow P_i$ performance?

• Given:

• labelled bags:
$$\hat{\mathbf{z}} = \left\{ \left(\hat{P}_i, y_i \right) \right\}_{i=1}^{\ell}$$
, \hat{P}_i : bag from P_i , $N := |\hat{P}_i|$.
• test bag: \hat{P} .

• Estimator:

$$w_{\hat{\mathbf{z}}}^{\lambda} = \arg\min_{\mathbf{w}} \frac{1}{\ell} \sum_{i=1}^{\ell} \left[\left\langle w, \underbrace{\psi(\hat{P}_i)}_{\text{feature of } \hat{P}_i} \right\rangle - y_i \right]^2 + \lambda \|w\|^2.$$

Regression on labelled bags: $\hat{P}_i \rightarrow P_i$ performance?

• Given:

• labelled bags:
$$\hat{\mathbf{z}} = \left\{ \left(\hat{P}_i, y_i \right) \right\}_{i=1}^{\ell}$$
, \hat{P}_i : bag from P_i , $N := |\hat{P}_i|$.
• test bag: \hat{P} .

Estimator:

$$w_{\hat{\mathbf{z}}}^{\lambda} = \arg\min_{\mathbf{w}} \frac{1}{\ell} \sum_{i=1}^{\ell} \left[\left\langle w, \psi(\hat{P}_i) \right\rangle - y_i \right]^2 + \lambda \|w\|^2.$$

• Quality of estimator, baseline:

$$\mathcal{R}(w) = \mathbb{E}_{(\psi(Q),y)\sim\rho}[\langle w, \psi(Q) \rangle - y]^2,$$

 $w_{\rho} = \text{best regressor.}$

How many samples/bag to get the accuracy of w_{ρ} ? Possible?

Our result: how many samples/bag

• Known: best/achieved rate

$$\mathcal{R}(\mathbf{w}_{\mathbf{z}}^{\lambda}) - \mathcal{R}(\mathbf{w}_{\rho}) = \mathcal{O}\left(\ell^{-\frac{bc}{bc+1}}\right),$$

b – size of the input space, c – smoothness of w_{ρ} .

Our result: how many samples/bag

• Known: best/achieved rate

$$\mathcal{R}(\mathbf{w}_{\mathsf{z}}^{\lambda}) - \mathcal{R}(\mathbf{w}_{\rho}) = \mathcal{O}\left(\ell^{-\frac{bc}{bc+1}}\right),$$

b – size of the input space, c – smoothness of w_{ρ} . • Let $N = \tilde{\mathcal{O}}(\ell^a)$. N: size of the bags. ℓ : number of bags.

Our result

• If $2 \le a$, then $w_{\hat{z}}^{\lambda}$ attains the best achievable rate.

Our result: how many samples/bag

• Known: best/achieved rate

$$\mathcal{R}(\mathbf{w}_{\mathsf{z}}^{\lambda}) - \mathcal{R}(\mathbf{w}_{\rho}) = \mathcal{O}\left(\ell^{-\frac{bc}{bc+1}}\right),$$

b – size of the input space, c – smoothness of w_{ρ} . • Let $N = \tilde{\mathcal{O}}(\ell^a)$. N: size of the bags. ℓ : number of bags.

Our result

• If $2 \le a$, then $w_{\hat{z}}^{\lambda}$ attains the best achievable rate.

• In fact,
$$a = \frac{b(c+1)}{bc+1} < 2$$
 is enough.

• Consequence: regression with set kernel is consistent.

+Applications, with Gatsby students

• Bayesian manifold learning [NIPS-2015]:

• App.: climate data \rightarrow weather station location.

+Applications, with Gatsby students

- Bayesian manifold learning [NIPS-2015]:
 - App.: climate data \rightarrow weather station location.

- Fast, adaptive sampling method based on RFF [NIPS-2015]:
 - App.: approximate Bayesian computation, hyperparameter inference.

+ Applications, with Gatsby students

- Bayesian manifold learning [NIPS-2015]:
 - App.: climate data \rightarrow weather station location.
- Fast, adaptive sampling method based on RFF [NIPS-2015]:
 - App.: approximate Bayesian computation, hyperparameter inference.
- Interpretable 2-sample testing [ICML-2016 submission]:
 - App.:
 - $\bullet \ \ {\rm random} \to {\rm smart} \ {\rm features},$
 - discriminative for doc. categories, emotions.
 - empirical process theory (VC subgraphs).

Summary

Regression on

- distributions:
 - random Fourier features.
 - exponentially tighter bounds.
- bags:
 - minimax optimality,
 - set kernel is consistent.

Several applications (with open source code).

Acknowledgments: This work was supported by the Gatsby Charitable Foundation.

Gärtner, T., Flach, P. A., Kowalczyk, A., and Smola, A. (2002).

Multi-instance kernels.

In International Conference on Machine Learning (ICML), pages 179–186.

- Haussler, D. (1999).

Convolution kernels on discrete structures.

Technical report, Department of Computer Science, University of California at Santa Cruz.

(http://cbse.soe.ucsc.edu/sites/default/files/ convolutions.pdf).

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. In *Neural Information Processing Systems (NIPS)*, pages 1177–1184.