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Shape constraints

Pattern

0 ≤ Df (x) ∀x.

Examples:
1 non-negativity: 0 ≤ f (x) ,

2 monotonicity (↗): 0 ≤ f ′(x) ,

3 convexity: 0 ≤ f ′′(x) ,

4 n-monotonicity: 0 ≤ f (n)(x) ,
5 (n − 1)-alternating monotonicity: for n ≥ 2

(−1)j f (j) : ≥ 0 , ↗ and convex ∀j ∈ [[0, n − 2]].

Example: generator of a d-variate Archimedean copula is
(d − 2)-alternating monotone.
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Examples continued

6 Monotonicity w.r.t. partial ordering (u ≼ v ⇒ f (u) ≤ f (v)):

0 ≤ ∂ej f (x) , (∀j ∈ [d ], ∀x),

0 ≤ ∂ed f (x) ≤ . . . ≤ ∂e1f (x) (∀x).

u ≼ v iff
ui ≤ vi (∀i ; product ordering),∑

j∈[i] uj ≤
∑

j∈[i] vj (∀i ; unordered weak majorization).

7 Supermodularity:

0 ≤ ∂2f (x)
∂xi ∂xj

(∀i ̸= j ∈ [d ], ∀x),

i.e. f (u ∨ v) + f (u ∧ v) ≥ f (u) + f (v) for all u, v ∈ Rd .
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Shape constraints are omnipresent
[Johnson and Jiang, 2018, Guntuboyina and Sen, 2018,
Chetverikov et al., 2018]

Economics:
utility functions are ↗ and concave [Matzkin, 1991].

demand functions of normal goods are downward sloping
[Lewbel, 2010, Blundell et al., 2012],
production functions are concave [Varian, 1984].

Statistics: quantile function ↗ w.r.t. the quantile level, pdfs are
non-negative and often log-concave .
Finance:

European and American call option prices: convex & monotone in the
underlying stock price and ↗ in volatility [Äıt-Sahalia and Duarte, 2003].

RL and stochastic optimization: value functions are often convex
[Keshavarz et al., 2011, Shapiro et al., 2014].
Supply chain models, game theory: supermodularity
[Topkis, 1998, Simchi-Levi et al., 2014].
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RL and stochastic optimization: value functions are often convex
[Keshavarz et al., 2011, Shapiro et al., 2014].
Supply chain models, game theory: supermodularity
[Topkis, 1998, Simchi-Levi et al., 2014].



Shape constraints are omnipresent
[Johnson and Jiang, 2018, Guntuboyina and Sen, 2018,
Chetverikov et al., 2018]

Economics:
utility functions are ↗ and concave [Matzkin, 1991].
demand functions of normal goods are downward sloping
[Lewbel, 2010, Blundell et al., 2012],
production functions are concave [Varian, 1984].

Statistics: quantile function ↗ w.r.t. the quantile level, pdfs are
non-negative and often log-concave .
Finance:

European and American call option prices: convex & monotone in the
underlying stock price and ↗ in volatility [Äıt-Sahalia and Duarte, 2003].
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Focus

Find f ∈ H such that f (xn) ≈ yn, 0 ≤ Df (x) ∀x ∈ K .

Various exciting approaches with asymptotic guarantees
[Han and Wellner, 2016, Chen and Samworth, 2016,
Freyberger and Reeves, 2018, Lim, 2020, Deng and Zhang, 2020,
Kur et al., 2020], but

1 they are often ’soft’: restriction at finite many points,

2 use simplistic function classes: polynomials, polynomial splines,
3 apply hard-wired parameterizations: exponential, quadratic, or
4 only work for (a few) fixed Ds.

Today: optimization framework
rich H, hard (∀x ∈ K ) shape constraints, modularity in D.

Towards flexible H-s . . .
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Kernel

, RKHS

Def-1 (feature space): k : X × X → R kernel if

k(x , y) = ⟨φ(x), φ(y)⟩H .

Def-2 (reproducing kernel):

k(·, x) :=
[
x ′ 7→ k(x ′, x)

]
∈ H, f (x)= ⟨f , k(·, x)⟩H.

Constructively, Hk = {
∑n

i=1 αik(·, xi) : αi ∈ R, xi ∈ X, n ∈ N∗}.

Equivalent definitions, k 1:1↔ Hk .
Included: Fourier analysis, polynomials, splines, . . .

Examples (γ > 0, c ≥ 0, p ∈ Z+):

kp(x, y) = (⟨x, y⟩ + c)p, kG(x, y) = e−γ∥x−y∥2
2 ,

kL(x, y) = e−γ∥x−y∥1 , ke(x, y) = eγ⟨x,y⟩.
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Kernels on other domains (X)
Strings [Watkins, 1999, Lodhi et al., 2002, Leslie et al., 2002,
Kuang et al., 2004, Leslie and Kuang, 2004, Saigo et al., 2004,
Cuturi and Vert, 2005],
time series [Rüping, 2001, Cuturi et al., 2007, Cuturi, 2011,
Király and Oberhauser, 2019],
trees [Collins and Duffy, 2001, Kashima and Koyanagi, 2002],
groups and specifically rankings
[Cuturi et al., 2005, Jiao and Vert, 2016],
sets [Haussler, 1999, Gärtner et al., 2002], probability distributions
[Berlinet and Thomas-Agnan, 2004, Hein and Bousquet, 2005,
Smola et al., 2007, Sriperumbudur et al., 2010],
various generative models [Jaakkola and Haussler, 1999,
Tsuda et al., 2002, Seeger, 2002, Jebara et al., 2004],
fuzzy domains [Guevara et al., 2017], or
graphs [Kondor and Lafferty, 2002, Gärtner et al., 2003,
Kashima et al., 2003, Borgwardt and Kriegel, 2005,
Shervashidze et al., 2009, Vishwanathan et al., 2010,
Kondor and Pan, 2016, Bai et al., 2020, Borgwardt et al., 2020].



Task-1: joint quantile regression (JQR)
Given: (τq)q∈[Q] ⊂ (0, 1) levels ↗, {(xn, yn)}n∈[N] samples.
Estimate jointly the τq-quantiles of P(Y |X = x).

[Sangnier et al., 2016].
Objective:

L (f, b) = 1
N

∑
q∈[Q]

∑
n∈[N]

lτq (yn − [fq(xn) + bq])

︸ ︷︷ ︸
quantile property

+ λb∥b∥2
2 + λf

∑
q∈[Q]

∥fq∥2
k︸ ︷︷ ︸

regularization

,

lτ (e) = max(τe, (τ − 1)e).

Constraint (non-crossing): K := smallest rectangle containing {xn}n∈[N],

fq(x) + bq ≤ fq+1(x) + bq+1, ∀q ∈ [Q − 1], ∀x ∈ K .

Constraints
function values (fq) with interaction (fq+1 − fq), bias terms (bq)
with interaction (bq − bq+1).
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Task-2: convoy localization, one vehicle (Q = 1)

Given: noisy time-location samples {(tn, xn)}n∈[N] ⊂ [0, T ]︸ ︷︷ ︸
=:T

×R.
Goal: learn the (t, x) relation.
Constraint: lower bound on speed (vmin).

Objective:

min
b ∈ R, f ∈ Hk

 1
N

∑
n∈[N]

|xn − [b + f (tn)]|2 + λ ∥f ∥2
Hk


s.t.

vmin ≤ f ′(t), ∀t ∈ T .
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Task-2b: convoy localization, multiple vehicles (Q ≥ 1)

Data:
{

(tq,n, xq,n)n∈[Nq]
}

q∈[Q]
⊆ T × R.

Constraints: speed (vmin), inter-vehicular distance (dmin).
Objective:

min
f1,...,fQ ∈Hk ,
b1,...,bQ ∈R

1
Q

Q∑
q=1

 1
Nq

Nq∑
n=1

|xq,n − (bq + fq(tq,n))|2
 + λ∥fq∥2

Hk


s.t.

dmin + bq+1 + fq+1(t) ≤ bq + fq(t), ∀q ∈ [Q − 1], t ∈ T ,

vmin ≤ f ′
q(t), ∀q ∈ [Q], t ∈ T .

Constraints
function values (fq) and derivatives (f ′

q) with interaction
(fq − fq+1), bias terms (bq) with interaction (bq+1 − bq).
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vmin ≤ f ′
q(t), ∀q ∈ [Q], t ∈ T .

Constraints
function values (fq) and derivatives (f ′

q) with interaction
(fq − fq+1), bias terms (bq) with interaction (bq+1 − bq).



Task-3: safety-critical control
Trajectory of an underwater vehicle:

t ∈ T := [0, 1] 7→ [x(t); z(t)] ∈ R2.

Simplifying assumption: x(0) = 0, ẋ(t) = 1 ∀t ∈ T ⇒ x(t) = t.
Requirement: stay between the floor and the ceiling of the cavern

z(t) ∈ [zlow(t), zup(t)] ∀t ∈ T .

Initial condition: z(0) = 0 and ż(0) = 0.
Control task (LQ = linear dynamics & quadratic cost):

min
u∈L2(T ,R)

∫
T

|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,

z̈(t) = −ż(t) + u(t), ∀t ∈ T ,

zlow(t)≤ z(t) ≤ zup(t), ∀ t ∈ T .
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Requirement: stay between the floor and the ceiling of the cavern

z(t) ∈ [zlow(t), zup(t)] ∀t ∈ T .

Initial condition: z(0) = 0 and ż(0) = 0.
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Task-3: safety-critical control – continued
With full state f(t) := [z(t); ż(t)] ∈ R2

ḟ(t) = Af(t) + Bu(t), f(0) = 0, A =
[
0 1
0 −1

]
∈ R2×2, B =

[
0
1

]
∈ R2

The controlled trajectories f belong to a R2-valued RKHS with kernel

k(s, t) :=
∫ min(s,t)

0
e(s−τ)ABB⊤e(t−τ)A⊤dτ, s, t ∈ T ,

and the task is

min
f=[f1;f2]∈Hk

∥f∥2
Hk

s.t.
zlow(t) ≤ f1(t) ≤ zup(t), ∀ t ∈ T .
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Task-3: safety-critical control – finished

Assume for simplicity: zlow and zup are piece-wise constant.
Task:

min
f=[f1;f2]∈Hk

∥f∥2
Hk

s.t.
zlow,m ≤ f1(t) ≤ zup,m, ∀ t ∈ Tm, ∀m ∈ [M].

Constraints
linear transformation of functions (f1), with matrix-valued kernel.
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Our task

(
f̄, b̄

)
= arg min

f=(fq)q∈[Q] ∈ (Hk)Q ,

b=(bq)q∈[Q] ∈B,

(f,b) ∈ C

L(f, b),

L(f, b) = L
(

b,
(
xn, yn, (fq(xn))q∈[Q]

)
n∈[N]

)
+ Ω

(
(∥fq∥Hk )q∈[Q]

)
,

C = {(f, b) | (b0 − Ub)i ≤ Di(Wf − f0)i(x), ∀x ∈ Ki , ∀i ∈ [I]} ,

(Wf)i =
∑

q∈[Q]
Wi ,qfq,

Di =
∑

j∈[ni,j ]
γi ,j∂

ri,j , |ri ,j | ≤ s, γi ,j ∈ R, ∂rf (x) = ∂|r|f (x)
∂r1x1 · · · ∂rdxd

.
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Blanket assumptions

1 Domain X ⊆ Rd : open. Kernel k ∈ Cs(X × X).
2 Ki ⊂ X: compact, ∀i .
3 f0,i ∈ Hk for ∀i .
4 Bias domain B ⊆ RQ: convex.
5 Loss L restricted to B: strictly convex in b.
6 Regularizer Ω: strictly increasing in each of its argument.



Our strenghtened SOC-constrained formulation

(fη, bη) = arg min
f ∈ (Hk)Q , b ∈B

L(f, b) (Pη)

s.t.
(b0 − Ub)i + ηi∥(Wf − f0)i∥Hk

≤ minm∈[Mi ] Di(Wf − f0)i (x̃i ,m) , ∀i ∈ [I], (Cη)

where
{x̃i ,m}m∈[Mi ]: a δi -net of Ki in ∥·∥X,
ηi = supm ∈ [Mi ],u ∈B∥·∥X (0,1) ∥Di ,xk(x̃i ,m, ·) − Di ,xk(x̃i ,m + δiu, ·)∥Hk ,
Di ,xk(x0, ·) := y 7→ Di(x 7→ k(x, y))(x0).



Tightening idea

Let s = 0, I = 1. Recall constraint (C):{
(f, b) | (b0 − Ub)︸ ︷︷ ︸

β

≤ (Wf − f0)︸ ︷︷ ︸
ϕ

(x)

︸ ︷︷ ︸
⟨ϕ,k(x,·)⟩Hk

, ∀x ∈ K
}

, i.e.

Φ(K ) := {k(x, ·) : x ∈ K} ⊆ H+
ϕ,β :=

{
g ∈ Hk | β ≤ ⟨ϕ, g⟩Hk

}

(Cη) means: covering of Φ(K ) by balls with η-radius centered
at the k (x̃m, ·) is in the halfspace H+

ϕ,β; hence it is tightening.
η is obtained as the minimal radius.
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Theorem

Minimal values: vdisc = value of (Pη) with ’η = 0’, v̄ = L
(
f̄, b̄

)
,

vη = L (fη, bη).
Let fη = (fη,q)q∈[Q].

Then,

(i) Tightening: any (f, b) satisfying (Cη) also satisfies (C), hence

vdisc ≤ v̄ ≤ vη.

(ii) Representer theorem: For ∀q ∈ [Q], ∃ãi ,0,q, ãi ,m,q, an,q ∈ R s.t.

fη,q =
∑
i∈[I]

ãi ,0,qf0,i +
∑

m∈[Mi ]
ãi ,m,qDi ,xk (x̃i ,m, ·)


+

∑
n∈[N]

an,qk(xn, ·).
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Theorem – continued
(iii) Performance guarantee: if L is (µfq , µb)-strongly convex
w.r.t. (fq, b) for any q ∈ [Q], then

∥fη,q − f̄q∥Hk ≤
√

2(vη − vdisc)
µfq

, ∥bη − b̄∥2 ≤
√

2(vη − vdisc)
µb

.

If in addition U is surjective, B = RQ, and L(f̄, ·) is
Lb−Lipschitz continuous on B∥·∥2

(
b̄, cf ∥η∥∞

)
where

cf =
√

d
∥∥∥∥(

UT U
)−1

UT
∥∥∥∥ maxi∈[I]

∥∥∥(Wf̄ − f0)i
∥∥∥
Hk

, then

∥fη,q − f̄q∥Hk ≤
√

2Lbcf ∥η∥∞
µfq

, ∥bη − b̄∥2 ≤
√

2Lbcf ∥η∥∞
µb

.

1st bound: computable. 2nd: Larger Mi ⇒ smaller δi ⇒ smaller ηi
⇒ tighter bound.
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Demo (task-1): convoy localization with traffic jam

Setting: Q = 6, dmin = 5m, vmin = 0.

0 10 20 30 40 50

t (s)

-50

0

50

100

150

200

250

300

350

x 
(m

)

Noiseless trajectory
Noisy measurement
Constrained Reconstruction
Unconstrained Reconstruction



Demo (task-1): continued

Pairwise distances: t 7→ fq(t) − fq+1(t)

Speed: t 7→ f ′
q(t)
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Shape constraints: especially relevant in noisy situations.
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Demo (task-1): continued
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Demo (task-2): joint quantile regression
Analysis of aircraft trajectories , ENAC [Nicol, 2013]

y : radar-measured altitude of aircrafts flying between two cities (Paris
& Toulouse); x : time. d = 1, N = 15657.
Demo: τq ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Constraint: non-crossing, ↗ (takeoff).
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Demo (task-3): control of underwater vehicle
Vs discretization-based approach (which might crash):
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Summary

Focus: hard affine shape constraints on derivatives & RKHS.
Proposed framework: SOC-based tightening.
Applications:

convoy localization,
joint quantile regression: aircraft trajectories,
safety-critical control.
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Demo (task-2): joint quantile regression

Economics :
x : annual household income, y : food expenditure. d = 1, N = 235.
Engel’s law ⇒ ↗, concave.
Demo: τq ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Left: non-crossing, ↗. Right: non-crossing, ↗, concave.
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