Optimal Rates for the Random Fourier Feature Technique

Zoltán Szabó

Joint work with Bharath K. Sriperumbudur (PSU)

École Polytechnique March 14, 2016

Zoltán Szabó Optimal Rates for the RFF Technique

- Kernels.
- Random Fourier features (RFFs).
- Guarantees on RFF approximation: uniform, L^{p} .

Kernel, RKHS

k: X × X → ℝ kernel on X, if ∃φ: X → H(ilbert space) feature map,

• $k(a,b) = \langle \varphi(a), \varphi(b) \rangle_H \ (\forall a, b \in \mathfrak{X}).$

Kernel, RKHS

•
$$k: \mathfrak{X} imes \mathfrak{X} o \mathbb{R}$$
 kernel on \mathfrak{X} , if

- $\exists \varphi: \mathfrak{X} \to H(\mathsf{ilbert space})$ feature map,
- $k(a,b) = \langle \varphi(a), \varphi(b) \rangle_H \ (\forall a, b \in \mathcal{X}).$
- Kernel examples: $\mathfrak{X} = \mathbb{R}^d$ (p > 0, $\theta > 0$)
 - $k(a,b) = (\langle a,b \rangle + \theta)^{p}$: polynomial,
 - $k(a, b) = e^{-||a-b||_2^2/(2\theta^2)}$: Gaussian,
 - $k(a, b) = e^{-\theta ||a-b||_2}$: Laplacian.

Kernel, RKHS

k: X × X → ℝ kernel on X, if
∃φ: X → H(ilbert space) feature map,
k(a, b) = ⟨φ(a), φ(b)⟩_H (∀a, b ∈ X).
Kernel examples: X = ℝ^d (p > 0, θ > 0)
k(a, b) = (⟨a, b⟩ + θ)^p: polynomial,
k(a, b) = e^{-||a-b||²/(2θ²)}: Gaussian,
k(a, b) = e^{-θ||a-b||²}: Laplacian.

• In the H = H(k) RKHS (\exists !): $\varphi(u) = k(\cdot, u)$.

RKHS: evaluation point of view

- Let $H \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- Consider for fixed $x \in \mathcal{X}$ the $\delta_x : f \in H \mapsto f(x) \in \mathbb{R}$ map.
- The evaluation functional is linear:

$$\delta_x(\alpha f + \beta g) = \alpha \delta_x(f) + \beta \delta_x(g).$$

RKHS: evaluation point of view

- Let $H \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- Consider for fixed $x \in \mathcal{X}$ the $\delta_x : f \in H \mapsto f(x) \in \mathbb{R}$ map.
- The evaluation functional is linear:

$$\delta_{\mathsf{x}}(\alpha f + \beta g) = \alpha \delta_{\mathsf{x}}(f) + \beta \delta_{\mathsf{x}}(g).$$

• Def.: *H* is called *RKHS* if δ_x is continuous for $\forall x \in \mathfrak{X}$.

RKHS: reproducing point of view

- Let $H \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- $k : \mathfrak{X} \times \mathfrak{X} \rightarrow$ is called a *reproducing kernel of H* if for $\forall x \in \mathfrak{X}, f \in H$

RKHS: reproducing point of view

- Let $H \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- $k : \mathfrak{X} \times \mathfrak{X} \rightarrow$ is called a *reproducing kernel of H* if for $\forall x \in \mathfrak{X}, f \in H$

$$k(\cdot, x) \in H,$$

(i) $\langle f, k(\cdot, x) \rangle_{H} = f(x)$ (reproducing property).

Specifically, $\forall x, y \in \mathfrak{X}$

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{H}.$$

RKHS: positive-definite point of view

- Let us given a $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ symmetric function.
- k is called *positive definite* if $\forall n \ge 1$, $\forall (a_1, \ldots, a_n) \in \mathbb{R}^n$, $(x_1, \ldots, x_n) \in \mathfrak{X}^n$

$$\sum_{i,j=1}^n a_i a_j k(x_i, x_j) = \mathbf{a}^T \mathbf{G} \mathbf{a} \ge 0,$$

where **G** = $[k(x_i, x_j)]_{i,j=1}^n$.

Kernel: example domains (\mathfrak{X})

- Euclidean space: $\mathcal{X} = \mathbb{R}^d$.
- Graphs, texts, time series, dynamical systems, distributions.

Kernel: application example - ridge regression

• Given:
$$\{(x_i, y_i)\}_{i=1}^{\ell}$$
, $H = H(k)$.

• Task: find $f \in H$ s.t. $f(x_i) \approx y_i$,

$$J(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) - y_i]^2 + \lambda \|f\|_{H}^2 \to \min_{f \in H} \quad (\lambda > 0).$$

Kernel: application example - ridge regression

• Given:
$$\{(x_i, y_i)\}_{i=1}^{\ell}, H = H(k).$$

• Task: find $f \in H$ s.t. $f(x_i) \approx y_i$,

$$J(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) - y_i]^2 + \lambda \|f\|_{H}^2 \to \min_{f \in H} \quad (\lambda > 0).$$

• Analytical solution, $O(\ell^3) - \text{expensive}$:

$$f(x) = [k(x_1, x), \dots, k(x_{\ell}, x)](\mathbf{G} + \lambda \ell \mathbf{I})^{-1}[y_1; \dots; y_{\ell}],$$

$$\mathbf{G} = [k(x_i, x_j)]_{i,j=1}^{\ell}.$$

Kernel: application example - ridge regression

• Given:
$$\{(x_i, y_i)\}_{i=1}^{\ell}$$
, $H = H(k)$.

• Task: find $f \in H$ s.t. $f(x_i) \approx y_i$,

$$J(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) - y_i]^2 + \lambda \|f\|_{H}^2 \to \min_{f \in H} \quad (\lambda > 0).$$

• Analytical solution, $O(\ell^3)$ – expensive:

$$f(x) = [k(x_1, x), \dots, k(x_{\ell}, x)](\mathbf{G} + \lambda \ell \mathbf{I})^{-1}[y_1; \dots; y_{\ell}],$$
$$\mathbf{G} = [k(x_i, x_j)]_{i,j=1}^{\ell}.$$

• Idea: $\hat{\mathbf{G}}$, matrix-inversion lemma, fast primal solvers \rightarrow RFF.

- $\mathfrak{X} = \mathbb{R}^d$. k: continuous, shift-invariant $[k(\mathbf{x}, \mathbf{y}) = \tilde{k}(\mathbf{x} \mathbf{y})]$.
- By Bochner's theorem:

$$k(\mathbf{x},\mathbf{y}) = \int_{\mathbb{R}^d} e^{i\omega^{T}(\mathbf{x}-\mathbf{y})} \mathrm{d}\Lambda(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \cos\left(\boldsymbol{\omega}^{T}(\mathbf{x}-\mathbf{y})\right) \mathrm{d}\Lambda(\boldsymbol{\omega}).$$

- $\mathfrak{X} = \mathbb{R}^d$. k: continuous, shift-invariant $[k(\mathbf{x}, \mathbf{y}) = \tilde{k}(\mathbf{x} \mathbf{y})]$.
- By Bochner's theorem:

$$k(\mathbf{x},\mathbf{y}) = \int_{\mathbb{R}^d} e^{i\boldsymbol{\omega}^T(\mathbf{x}-\mathbf{y})} \mathrm{d}\Lambda(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \cos\left(\boldsymbol{\omega}^T(\mathbf{x}-\mathbf{y})\right) \mathrm{d}\Lambda(\boldsymbol{\omega}).$$

• RFF trick [Rahimi and Recht, 2007] (MC): $\omega_{1:m} := (\omega_j)_{j=1}^m \stackrel{i.i.d.}{\sim} \Lambda$,

$$\hat{k}(\mathbf{x},\mathbf{y}) = \frac{1}{m} \sum_{j=1}^{m} \cos\left(\omega_{j}^{T}(\mathbf{x}-\mathbf{y})\right) = \int_{\mathbb{R}^{d}} \cos\left(\omega^{T}(\mathbf{x}-\mathbf{y})\right) \mathrm{d}\Lambda_{m}(\boldsymbol{\omega}).$$

RFF – existing guarantee, basically

• Hoeffding inequality + union bound:

$$\|k - \hat{k}\|_{L^{\infty}(\mathbb{S})} = \mathcal{O}_{p}\left(\underbrace{|S|}_{\text{linear}}\sqrt{\frac{\log m}{m}}\right).$$

RFF – existing guarantee, basically

• Hoeffding inequality + union bound:

$$\|k - \hat{k}\|_{L^{\infty}(\mathbb{S})} = \mathcal{O}_{p}\left(\underbrace{|S|}_{\text{linear}}\sqrt{\frac{\log m}{m}}\right).$$

- Characteristic function point of view [Csörgő and Totik, 1983] (asymptotic!):
 - $|S_m| = e^{o(m)}$ is the optimal rate for a.s. convergence,
 - **②** For faster growing $|S_m|$: even convergence in probability fails.

Today: one-page summary

• Finite-sample
$$L^{\infty}$$
-guarantee $\xrightarrow{\text{specifically}}$

$$\left\|k - \hat{k}\right\|_{L^{\infty}(S)} = \mathcal{O}_{a.s.}\left(\frac{\sqrt{\log|S|}}{\sqrt{m}}\right)$$

 \Rightarrow S can grow exponentially $[|S_m| = e^{o(m)}]$ – optimal!

Today: one-page summary

• Finite-sample L^{∞} -guarantee $\xrightarrow{\text{specifically}}$

$$\left\|k - \hat{k}\right\|_{L^{\infty}(S)} = \mathcal{O}_{a.s.}\left(\frac{\sqrt{\log|S|}}{\sqrt{m}}\right)$$

⇒ S can grow exponentially $[|S_m| = e^{o(m)}]$ – optimal! Sinite sample L^p guarantees, $p \in [1, \infty)$.

• Uniform (
$$p=\infty$$
), L^p $(1\leq p<\infty)$ norm:

$$\begin{split} \|k - \hat{k}\|_{L^{\infty}(\mathbb{S})} &:= \sup_{\mathbf{x}, \mathbf{y} \in \mathbb{S}} \left| k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y}) \right|, \\ \|k - \hat{k}\|_{L^{p}(\mathbb{S})} &:= \left(\int_{\mathbb{S}} \int_{\mathbb{S}} |k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})|^{p} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} \right)^{\frac{1}{p}}. \end{split}$$

Uniform bound: proof idea

Q Empirical process form $[\mathbb{P}g := \int g d\mathbb{P}]$:

$$\sup_{\mathbf{x},\mathbf{y}\in\mathbb{S}}\left|k(\mathbf{x},\mathbf{y})-\hat{k}(\mathbf{x},\mathbf{y})\right|=\sup_{g\in\mathcal{G}}\left|\Lambda g-\Lambda_{m}g\right|=\|\Lambda-\Lambda_{m}\|_{\mathcal{G}}.$$

Uniform bound: proof idea

Q Empirical process form $[\mathbb{P}g := \int g d\mathbb{P}]$:

$$\sup_{\mathbf{x},\mathbf{y}\in\mathbb{S}}\left|k(\mathbf{x},\mathbf{y})-\hat{k}(\mathbf{x},\mathbf{y})\right|=\sup_{g\in\mathcal{G}}\left|\Lambda g-\Lambda_{m}g\right|=\|\Lambda-\Lambda_{m}\|_{\mathcal{G}}.$$

• $f(\omega_{1:m}) = \|\Lambda - \Lambda_m\|_{\mathcal{G}}$ concentrates (bounded difference):

$$\|\Lambda - \Lambda_m\|_{\mathcal{G}} \preceq \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \|\Lambda - \Lambda_m\|_{\mathcal{G}} + \frac{1}{\sqrt{m}}.$$

Uniform bound: proof idea

Q Empirical process form $[\mathbb{P}g := \int g d\mathbb{P}]$:

$$\sup_{\mathbf{x},\mathbf{y}\in\mathbb{S}}\left|k(\mathbf{x},\mathbf{y})-\hat{k}(\mathbf{x},\mathbf{y})\right|=\sup_{g\in\mathcal{G}}\left|\Lambda g-\Lambda_{m}g\right|=\|\Lambda-\Lambda_{m}\|_{\mathcal{G}}.$$

• $f(\omega_{1:m}) = \|\Lambda - \Lambda_m\|_{\mathcal{G}}$ concentrates (bounded difference):

$$\|\Lambda - \Lambda_m\|_{\mathcal{G}} \preceq \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \|\Lambda - \Lambda_m\|_{\mathcal{G}} + \frac{1}{\sqrt{m}}.$$

 $\textcircled{O} \ \mathcal{G} \ \text{is 'nice'} \ (\text{uniformly bounded, separable Carathéodory}) \Rightarrow$

$$\frac{\mathbb{E}_{\boldsymbol{\omega}_{1:m}} \left\| \boldsymbol{\Lambda} - \boldsymbol{\Lambda}_{m} \right\|_{\mathcal{G}}}{\mathbb{E}_{\boldsymbol{\omega}_{1:m}}} \xrightarrow{\mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right)}{\mathbb{E}_{\boldsymbol{\epsilon}} \sup_{g \in \mathcal{G}} \left| \frac{1}{m} \sum_{j=1}^{m} \epsilon_{j} g(\omega_{j}) \right|}}.$$

Uniform bound: proof idea – continued

Using Dudley's entropy bound:

$$\mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}
ight) \precsim rac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), u)} \mathrm{d}u.$$

Uniform bound: proof idea - continued

Using Dudley's entropy bound:

$$\mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}
ight) \precsim rac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), u)} \mathrm{d}u.$$

 $\textcircled{O} \ \mathcal{G} \ \text{is smoothly parameterized by a compact set} \Rightarrow$

$$\mathcal{N}(\mathcal{G}, L^2(\Lambda_m), u) \leq \left(\frac{4|\mathfrak{S}|A}{u} + 1\right)^d, \ A(\omega_{1:m}) = \sqrt{\frac{1}{m} \sum_{j=1}^m \|\omega_j\|_2^2}.$$

Uniform bound: proof idea – continued

Using Dudley's entropy bound:

$$\mathcal{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}
ight) \precsim rac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), u)} \mathrm{d}u.$$

 $\textcircled{O} \ \mathcal{G} \ \text{is smoothly parameterized by a compact set} \Rightarrow$

$$\mathcal{N}(\mathcal{G}, L^2(\Lambda_m), u) \leq \left(\frac{4|\mathfrak{S}|A}{u} + 1\right)^d, \ A(\omega_{1:m}) = \sqrt{\frac{1}{m} \sum_{j=1}^m \|\omega_j\|_2^2}.$$

O Putting together $[|\mathcal{G}|_{L^2(\Lambda_m)} \leq 2$, Jensen inequality] we get the result.

Step-1: empirical process form

• Recall the notation:

$$\Lambda g = \int_{\mathbb{R}^d} g(\omega) \mathrm{d} \Lambda(\omega), \quad \Lambda_m g = \int_{\mathbb{R}^d} g(\omega) \mathrm{d} \Lambda_m(\omega) = \frac{1}{m} \sum_{j=1}^m g(\omega_j).$$

Step-1: empirical process form

• Recall the notation:

$$\Lambda g = \int_{\mathbb{R}^d} g(\omega) \mathrm{d} \Lambda(\omega), \quad \Lambda_m g = \int_{\mathbb{R}^d} g(\omega) \mathrm{d} \Lambda_m(\omega) = rac{1}{m} \sum_{j=1}^m g(\omega_j).$$

• Reformulation of the objective:

$$\sup_{\mathbf{x},\mathbf{y}\in\mathbb{S}}\left|k(\mathbf{x},\mathbf{y})-\hat{k}(\mathbf{x},\mathbf{y})\right|=\sup_{g\in\mathcal{G}}\left|\Lambda g-\Lambda_{m}g\right|=:\left\|\Lambda-\Lambda_{m}\right\|_{\mathcal{G}},$$

where

$$\begin{split} \mathcal{G} &= \{ g_{\mathbf{z}} : \mathbf{z} \in \mathbb{S}_{\Delta} \}, \\ \mathbb{S}_{\Delta} &= \mathbb{S} - \mathbb{S} = \{ \mathbf{x} - \mathbf{y} : \mathbf{x}, \mathbf{y} \in \mathbb{S} \}, \\ g_{\mathbf{z}} : \boldsymbol{\omega} \in \mathbb{R}^{d} \mapsto \cos \left(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z} \right) \in \mathbb{R}. \end{split}$$

Step-2: bounded diff. property of $f(\omega_{1:m}) = \|\Lambda - \Lambda_m\|_{\mathcal{G}}$

McDiarmid inequality: Let $\omega_1, \ldots, \omega_m \in D$ be independent r.v.-s, and $f: D^m \to \mathbb{R}$ satisfy the bounded diff. property $(\forall r)$:

$$\sup_{u_1,\ldots,u_m,u_r'\in D} \left|f(u_1,\ldots,u_m)-f(u_1,\ldots,u_{r-1},u_r',u_{r+1},\ldots,u_m)\right| \leq c_r.$$

Then for $\forall \beta > 0$

$$\mathbb{P}\left(f(\boldsymbol{\omega}_{1:m}) - \mathbb{E}\left[f(\boldsymbol{\omega}_{1:m})\right] \geq \beta\right) \leq e^{-\frac{2\beta^2}{\sum_{r=1}^m c_r^2}}$$

Step-2: bounded difference property of $\|\Lambda - \Lambda_m\|_{\mathcal{G}}$

Our choice:
$$f(\omega_1, \ldots, \omega_m) := \|\Lambda - \Lambda_m\|_{\mathcal{G}}$$
.

$$|f(\omega_1, \dots, \omega_{r-1}, \omega_r, \omega_{r+1}, \dots, \omega_m) - f(\omega_1, \dots, \omega_{r-1}, \omega'_r, \omega_{r+1}, \dots, \omega_m)| = \\ = \left| \sup_{g \in \mathcal{G}} \left| \Lambda g - \frac{1}{m} \sum_{j=1}^{r} g(\omega_j) \right| - \sup_{g \in \mathcal{G}} \left| \Lambda g - \frac{1}{m} \sum_{j=1}^{r} g(\omega_j) + \frac{1}{m} \left[g(\omega_r) - g(\omega'_r) \right] \right| \right|$$

Step-2: bounded difference property of $\|\Lambda - \Lambda_m\|_{\mathcal{G}}$

Our choice:
$$f(\omega_1, \ldots, \omega_m) := \|\Lambda - \Lambda_m\|_{\mathcal{G}}$$
.

$$\begin{aligned} \left|f(\omega_{1},\ldots,\omega_{r-1},\omega_{r},\omega_{r+1},\ldots,\omega_{m})-f(\omega_{1},\ldots,\omega_{r-1},\omega_{r}',\omega_{r+1},\ldots,\omega_{m})\right| &=\\ &=\left|\sup_{g\in\mathcal{G}}\left|\Lambda g-\frac{1}{m}\sum_{j=1}g(\omega_{j})\right|-\sup_{g\in\mathcal{G}}\left|\Lambda g-\frac{1}{m}\sum_{j=1}g(\omega_{j})+\frac{1}{m}\left[g(\omega_{r})-g(\omega_{r}')\right]\right|\right|\\ &\stackrel{(*)}{\leq}\frac{1}{m}\sup_{g\in\mathcal{G}}\left|g(\omega_{r})-g(\omega_{r}')\right|\end{aligned}$$

Step-2: bounded difference property of $\|\Lambda - \Lambda_m\|_{\mathcal{G}}$

Our choice:
$$f(\boldsymbol{\omega}_1,\ldots,\boldsymbol{\omega}_m) := \|\boldsymbol{\Lambda}-\boldsymbol{\Lambda}_m\|_{\mathcal{G}}.$$

$$\begin{aligned} \left|f(\omega_{1},\ldots,\omega_{r-1},\omega_{r},\omega_{r+1},\ldots,\omega_{m})-f(\omega_{1},\ldots,\omega_{r-1},\omega_{r}',\omega_{r+1},\ldots,\omega_{m})\right| &=\\ &=\left|\sup_{g\in\mathcal{G}}\left|\Lambda g-\frac{1}{m}\sum_{j=1}g(\omega_{j})\right|-\sup_{g\in\mathcal{G}}\left|\Lambda g-\frac{1}{m}\sum_{j=1}g(\omega_{j})+\frac{1}{m}\left[g(\omega_{r})-g(\omega_{r}')\right]\right|\right|\\ &\stackrel{(*)}{\leq}\frac{1}{m}\sup_{g\in\mathcal{G}}\left|g(\omega_{r})-g(\omega_{r}')\right| &\leq \frac{1}{m}\sup_{g\in\mathcal{G}}\left(|g(\omega_{r})|+|g(\omega_{r}')|\right)\end{aligned}$$

Step-2: bounded difference property of $\|\Lambda - \Lambda_m\|_{\mathcal{G}}$

- /

Our choice:
$$f(\omega_1, \ldots, \omega_m) := \|\Lambda - \Lambda_m\|_{\mathcal{G}}$$
.
 $|f(\omega_1, \ldots, \omega_{r-1}, \omega_r, \omega_{r+1}, \ldots, \omega_m) - f(\omega_1, \ldots, \omega_{r-1}, \omega'_r, \omega_{r+1}, \ldots, \omega_m)| =$
 $= \left| \sup_{g \in \mathcal{G}} \left| \Lambda_g - \frac{1}{m} \sum_{j=1}^r g(\omega_j) \right| - \sup_{g \in \mathcal{G}} \left| \Lambda_g - \frac{1}{m} \sum_{j=1}^r g(\omega_j) + \frac{1}{m} \left[g(\omega_r) - g(\omega'_r) \right] \right|$
 $\stackrel{(*)}{\leq} \frac{1}{m} \sup_{g \in \mathcal{G}} |g(\omega_r) - g(\omega'_r)| \leq \frac{1}{m} \sup_{g \in \mathcal{G}} (|g(\omega_r)| + |g(\omega'_r)|)$
 $\leq \frac{1}{m} \left[\sup_{g \in \mathcal{G}} |g(\omega_r)| + \sup_{g \in \mathcal{G}} |g(\omega'_r)| \right]$

Step-2: bounded difference property of $\|\Lambda - \Lambda_m\|_{\mathcal{G}}$

`

Our choice:
$$f(\omega_1, \ldots, \omega_m) := \|\Lambda - \Lambda_m\|_{\mathcal{G}}$$
.
 $|f(\omega_1, \ldots, \omega_{r-1}, \omega_r, \omega_{r+1}, \ldots, \omega_m) - f(\omega_1, \ldots, \omega_{r-1}, \omega'_r, \omega_{r+1}, \ldots, \omega_m)| =$
 $= \left| \sup_{g \in \mathcal{G}} \left| \Lambda g - \frac{1}{m} \sum_{j=1}^{r} g(\omega_j) \right| - \sup_{g \in \mathcal{G}} \left| \Lambda g - \frac{1}{m} \sum_{j=1}^{r} g(\omega_j) + \frac{1}{m} \left[g(\omega_r) - g(\omega'_r) \right] \right|$
 $\stackrel{(*)}{\leq} \frac{1}{m} \sup_{g \in \mathcal{G}} |g(\omega_r) - g(\omega'_r)| \leq \frac{1}{m} \sup_{g \in \mathcal{G}} (|g(\omega_r)| + |g(\omega'_r)|)$
 $\leq \frac{1}{m} \left[\sup_{g \in \mathcal{G}} |g(\omega_r)| + \sup_{g \in \mathcal{G}} |g(\omega'_r)| \right] \leq \frac{1+1}{m} = \frac{2}{m},$

(*): next slide.

- /

Step-2: (*) = reverse triangle inequality with sup

• Lemma: \mathcal{G} : set of functions, $a, b : \mathcal{G} \to \mathbb{R}$ maps; then

$$\left|\sup_{g\in\mathcal{G}}|a(g)|-\sup_{g\in\mathcal{G}}|a(g)+b(g)|\right|$$
Step-2: (*) = reverse triangle inequality with sup

• Lemma: \mathcal{G} : set of functions, $a, b : \mathcal{G} \to \mathbb{R}$ maps; then

$$\left|\sup_{g\in\mathcal{G}}|a(g)|-\sup_{g\in\mathcal{G}}|a(g)+b(g)|\right|\leq \sup_{g\in\mathcal{G}}|b(g)|.$$

Step-2: (*) = reverse triangle inequality with sup

• Lemma: \mathcal{G} : set of functions, $a, b: \mathcal{G} \to \mathbb{R}$ maps; then

$$\sup_{g\in\mathcal{G}}|a(g)|-\sup_{g\in\mathcal{G}}|a(g)+b(g)| \leq \sup_{g\in\mathcal{G}}|b(g)|.$$

T

Proof: combine

$$\sup_{g\in\mathcal{G}}|a(g)+b(g)|\leq \sup_{g\in\mathcal{G}}(|a(g)|+|b(g)|)\leq \sup_{g\in\mathcal{G}}|a(g)|+\sup_{g\in\mathcal{G}}|b(g)|,$$

Step-2: (*) = reverse triangle inequality with sup

• Lemma: \mathcal{G} : set of functions, $a, b: \mathcal{G} \to \mathbb{R}$ maps; then

$$\sup_{g\in\mathcal{G}}|a(g)|-\sup_{g\in\mathcal{G}}|a(g)+b(g)| \leq \sup_{g\in\mathcal{G}}|b(g)|.$$

Proof: combine

$$\begin{aligned} \sup_{g \in \mathcal{G}} |a(g) + b(g)| &\leq \sup_{g \in \mathcal{G}} (|a(g)| + |b(g)|) \leq \sup_{g \in \mathcal{G}} |a(g)| + \sup_{g \in \mathcal{G}} |b(g)|, \\ \sup_{g \in \mathcal{G}} |a(g)| &= \sup_{g \in \mathcal{G}} |a(g) + b(g) - b(g)| \\ &\leq \sup_{g \in \mathcal{G}} |a(g) + b(g)| + \sup_{g \in \mathcal{G}} |b(g)|. \end{aligned}$$

Step-2: (*) = reverse triangle inequality with sup

• Lemma: \mathcal{G} : set of functions, $a, b : \mathcal{G} \to \mathbb{R}$ maps; then

$$\sup_{g\in\mathcal{G}}|a(g)|-\sup_{g\in\mathcal{G}}|a(g)+b(g)| \leq \sup_{g\in\mathcal{G}}|b(g)|.$$

Т

Proof: combine

$$\begin{aligned} \sup_{g \in \mathcal{G}} |a(g) + b(g)| &\leq \sup_{g \in \mathcal{G}} (|a(g)| + |b(g)|) \leq \sup_{g \in \mathcal{G}} |a(g)| + \sup_{g \in \mathcal{G}} |b(g)|, \\ \sup_{g \in \mathcal{G}} |a(g)| &= \sup_{g \in \mathcal{G}} |a(g) + b(g) - b(g)| \\ &\leq \sup_{g \in \mathcal{G}} |a(g) + b(g)| + \sup_{g \in \mathcal{G}} |b(g)|. \\ &\Rightarrow \pm \left[\sup_{g \in \mathcal{G}} |a(g)| - \sup_{g \in \mathcal{G}} |a(g) + b(g)| \right] \leq \sup_{g \in \mathcal{G}} |b(g)|. \end{aligned}$$

• Our choice: $a(g) = \Lambda g - \frac{1}{m} \sum_{j=1} g(\omega_j), \ b(g) = \frac{1}{m} [g(\omega_r) - g(\omega'_r)].$

Applying McDiarmid to $f(c_r = \frac{2}{m})$: for $\forall \tau > 0$ with probability $1 - e^{-\tau}$

$$\|\Lambda - \Lambda_m\|_{\mathcal{G}} \leq \underbrace{\mathbb{E}_{\omega_{1:m}} \|\Lambda - \Lambda_m\|_{\mathcal{G}}}_{\overset{1:m}{\longrightarrow}} + \frac{\sqrt{2\tau}}{\sqrt{m}}.$$

Step-3: bounding this term

Step-3: bounding $\mathbb{E}_{\omega_{1:m}} \|\Lambda - \Lambda_m\|_{\mathcal{G}}$

 $\mathcal{G} = \{ g_{\mathbf{z}} : \mathbf{z} \in \mathcal{S}_{\Delta} \} \text{ is a separable Carathéodory family, i.e.}$ $\mathbf{O} \quad \boldsymbol{\omega} \mapsto \cos \left(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z} \right) \text{: measurable for } \forall \mathbf{z} \in \mathcal{S}_{\Delta}.$

Step-3: bounding $\mathbb{E}_{\omega_{1:m}} \|\Lambda - \Lambda_m\|_{\mathcal{G}}$

 $\mathcal{G} = \{g_{\mathbf{z}} : \mathbf{z} \in \mathcal{S}_{\Delta}\} \text{ is a separable Carathéodory family, i.e.}$ $\boldsymbol{0} \quad \boldsymbol{\omega} \mapsto \cos(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z}): \text{ measurable for } \forall \mathbf{z} \in \mathcal{S}_{\Delta}.$ $\boldsymbol{2} \quad \mathbf{z} \mapsto \cos(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z}): \text{ continuous for } \forall \boldsymbol{\omega}.$

Step-3: bounding $\mathbb{E}_{\omega_{1:m}} \|\Lambda - \Lambda_m\|_{\mathcal{G}}$

- $\mathcal{G} = \{g_{\textbf{z}}: \textbf{z} \in \mathbb{S}_{\Delta}\}$ is a separable Carathéodory family, i.e.
 - $\omega \mapsto \cos(\omega^T \mathbf{z})$: measurable for $\forall \mathbf{z} \in S_{\Delta}$.
 - **2** $\mathbf{z} \mapsto \cos(\boldsymbol{\omega}^T \mathbf{z})$: continuous for $\forall \boldsymbol{\omega}$.
 - **③** \mathbb{R}^d is separable, $S_\Delta \subseteq \mathbb{R}^d \Rightarrow S_\Delta$: separable.

Step-3: bounding $\mathbb{E}_{\omega_{1:m}} \| \Lambda - \Lambda_m \|_{\mathcal{G}}$

$$\mathbb{E}\omega_{1:m} \|\Lambda - \Lambda_m\|_{\mathcal{G}} \le 2\mathbb{E}\omega_{1:m} [\underbrace{\Lambda(\mathcal{G}, \omega_{1:m})}_{:=\mathbb{E}_{\epsilon}} \sup_{g \in \mathcal{G}} \left| \frac{1}{m} \sum_{j=1}^{m} \epsilon_j g(\omega_j) \right|$$

using the uniformly boundedness of $\mathcal{G}(\sup_{g\in\mathcal{G}}\|g\|_{\infty}\leq 1<\infty).$

Using Dudley's entropy integral [Bousquet, 2003, Eq. (4.4)]:

$$\Re\left(\mathcal{G},(\boldsymbol{\omega}_{j})_{j=1}^{m}\right) \leq \frac{8\sqrt{2}}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G},L^{2}(\Lambda_{m}),r)} \mathrm{d}r,$$

Using Dudley's entropy integral [Bousquet, 2003, Eq. (4.4)]:

$$\Re\left(\mathcal{G},(\boldsymbol{\omega}_{j})_{j=1}^{m}\right) \leq \frac{8\sqrt{2}}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G},L^{2}(\Lambda_{m}),r)} \mathrm{d}r,$$

where

•
$$L^2(\Lambda_m) = L^2(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \Lambda_m), \|g\|_{L^2(\Lambda_m)} = \sqrt{\frac{1}{m} \sum_{j=1}^m g^2(\omega_j)},$$

Using Dudley's entropy integral [Bousquet, 2003, Eq. (4.4)]:

$$\Re\left(\mathcal{G},(\boldsymbol{\omega}_{j})_{j=1}^{m}\right) \leq \frac{8\sqrt{2}}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G},L^{2}(\Lambda_{m}),r)} \mathrm{d}r,$$

where

•
$$L^{2}(\Lambda_{m}) = L^{2}(\mathbb{R}^{d}, \mathcal{B}(\mathbb{R}^{d}), \Lambda_{m}), \|g\|_{L^{2}(\Lambda_{m})} = \sqrt{\frac{1}{m} \sum_{j=1}^{m} g^{2}(\omega_{j})},$$

• $|\mathcal{G}|_{L^{2}(\Lambda_{m})} = \sup_{g_{1},g_{2}\in\mathcal{G}} \|g_{1} - g_{2}\|_{L^{2}(\Lambda_{m})},$

Using Dudley's entropy integral [Bousquet, 2003, Eq. (4.4)]:

$$\Re\left(\mathcal{G},(\omega_j)_{j=1}^m\right) \leq \frac{8\sqrt{2}}{\sqrt{m}} \int_0^{|\mathcal{G}|_{L^2(\Lambda_m)}} \sqrt{\log \mathcal{N}(\mathcal{G},L^2(\Lambda_m),r)} \mathrm{d}r,$$

where

Step-5: bound on $|\mathcal{G}|_{L^2(\Lambda_m)}$

$$\begin{split} |\mathcal{G}|_{L^{2}(\Lambda_{m})} &= \sup_{g_{1},g_{2}\in\mathcal{G}} \|g_{1} - g_{2}\|_{L^{2}(\Lambda_{m})} \leq \sup_{g_{1},g_{2}\in\mathcal{G}} \left(\|g_{1}\|_{L^{2}(\Lambda_{m})} + \|g_{2}\|_{L^{2}(\Lambda_{m})}\right) \\ &\leq \sup_{g_{1}\in\mathcal{G}} \|g_{1}\|_{L^{2}(\Lambda_{m})} + \sup_{g_{1}\in\mathcal{G}} \|g_{2}\|_{L^{2}(\Lambda_{m})} \overset{(*)}{\leq} 2, \end{split}$$

Step-5: bound on $|\mathcal{G}|_{L^2(\Lambda_m)}$

$$\begin{split} |\mathcal{G}|_{L^{2}(\Lambda_{m})} &= \sup_{g_{1},g_{2}\in\mathcal{G}} \|g_{1} - g_{2}\|_{L^{2}(\Lambda_{m})} \leq \sup_{g_{1},g_{2}\in\mathcal{G}} \left(\|g_{1}\|_{L^{2}(\Lambda_{m})} + \|g_{2}\|_{L^{2}(\Lambda_{m})}\right) \\ &\leq \sup_{g_{1}\in\mathcal{G}} \|g_{1}\|_{L^{2}(\Lambda_{m})} + \sup_{g_{1}\in\mathcal{G}} \|g_{2}\|_{L^{2}(\Lambda_{m})} \stackrel{(*)}{\leq} 2, \\ &\sup_{g\in\mathcal{G}} \|g\|_{L^{2}(\Lambda_{m})} \stackrel{(*)}{=} \sup_{z\in\mathbb{S}_{\Delta}} \sqrt{\frac{1}{m}\sum_{j=1}^{m} g_{z}^{2}(\omega_{j})} = \sup_{z\in\mathbb{S}_{\Delta}} \sqrt{\frac{1}{m}\sum_{j=1}^{m} \left[\cos\left(\omega_{j}^{\mathsf{T}} \mathbf{z}\right)\right]^{2}} \leq 1. \end{split}$$

Let g_{z_1} , $g_{z_2} \in \mathcal{G}$. We want to bound $\|g_{z_1} - g_{z_2}\|_{L^2(\Lambda_m)}$. One term:

$$\begin{aligned} \left| \cos \left(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z}_{1} \right) - \cos \left(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z}_{2} \right) \right| &\stackrel{(*)}{\leq} \left\| \nabla_{\mathbf{z}} \cos \left(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z}_{c} \right) \right\|_{2} \|\mathbf{z}_{1} - \mathbf{z}_{2}\|_{2} \\ &= \left\| -\sin \left(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z}_{c} \right) \boldsymbol{\omega} \right\|_{2} \|\mathbf{z}_{1} - \mathbf{z}_{2}\|_{2} \\ &\leq \left\| \boldsymbol{\omega} \right\|_{2} \|\mathbf{z}_{1} - \mathbf{z}_{2}\|_{2}, \end{aligned}$$

where (*): mean-value theorem, $\mathbf{z}_c \in (\mathbf{z}_1, \mathbf{z}_2)$.

Step-5: bound on $\mathcal{N}(\mathcal{G}, L^2(\Lambda_m), r)$

• Smooth parameterization:

$$\|g_{\mathbf{z}_{1}} - g_{\mathbf{z}_{2}}\|_{L^{2}(\Lambda_{m})} \leq \sqrt{\frac{1}{m} \sum_{j=1}^{m} \left(\|\omega_{j}\|_{2} \|\mathbf{z}_{1} - \mathbf{z}_{2}\|_{2}\right)^{2}}$$
$$= \|\mathbf{z}_{1} - \mathbf{z}_{2}\|_{2} \sqrt{\frac{1}{m} \sum_{j=1}^{m} \|\omega_{j}\|_{2}^{2}}.$$
$$\underbrace{\sqrt{\frac{1}{m} \sum_{j=1}^{m} \|\omega_{j}\|_{2}^{2}}}_{=:\mathcal{A} = \mathcal{A}(\omega_{1:m})}.$$

• *r*-net on $(\mathcal{S}_{\Delta}, \|\cdot\|_2) \Rightarrow r' = rA$ -net on $(\mathcal{G}, L^2(\Lambda_m))$.

Step-5: bound on $\mathcal{N}(\mathcal{G}, L^2(\Lambda_m), r)$

• Until now:

$$\mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r) \leq \mathcal{N}\left(\mathbb{S}_{\Delta}, \left\|\cdot\right\|_{2}, \frac{r}{A}\right).$$

• Until now:

$$\mathcal{N}(\mathcal{G}, L^2(\Lambda_m), r) \leq \mathcal{N}\left(\mathbb{S}_{\Delta}, \left\|\cdot\right\|_2, \frac{r}{A}\right).$$

• S_{Δ} can be covered by a ball of radius $\frac{|S_{\Delta}|}{2} \leq \frac{2|S|}{2} = |S|$.

• Until now:

$$\mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r) \leq \mathcal{N}\left(\mathbb{S}_{\Delta}, \left\|\cdot\right\|_{2}, \frac{r}{A}\right).$$

- S_{Δ} can be covered by a ball of radius $\frac{|S_{\Delta}|}{2} \le \frac{2|S|}{2} = |S|$.
- ϵ -covering number of $\|\cdot\|_2$ -ball in \mathbb{R}^d with radius R: $\leq (\frac{4R}{\epsilon} + 1)^d$ [van de Geer, 2009, Lemma 2.5] \Rightarrow

• Until now:

$$\mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r) \leq \mathcal{N}\left(\mathbb{S}_{\Delta}, \left\|\cdot\right\|_{2}, \frac{r}{A}\right).$$

- S_{Δ} can be covered by a ball of radius $\frac{|S_{\Delta}|}{2} \le \frac{2|S|}{2} = |S|$.
- ϵ -covering number of $\|\cdot\|_2$ -ball in \mathbb{R}^d with radius R: $\leq (\frac{4R}{\epsilon} + 1)^d$ [van de Geer, 2009, Lemma 2.5] \Rightarrow

• We got
$$[\epsilon = \frac{r}{A}, R = |S|]$$

$$\mathcal{N}(\mathcal{G}, L^2(\Lambda_m), r) \leq \left(rac{4|\mathfrak{S}|A}{r} + 1
ight)^d.$$

$$\mathcal{R}(\mathcal{G}, \boldsymbol{\omega}_{1:m}) \leq \frac{8\sqrt{2d}}{\sqrt{m}} \int_0^2 \sqrt{\log\left(\frac{4|\mathcal{S}|\mathcal{A}}{r} + 1\right)} \, \mathrm{d}r$$

$$\begin{aligned} \mathcal{R}\left(\mathcal{G},\boldsymbol{\omega}_{1:m}\right) &\leq \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2} \sqrt{\log\left(\frac{4|\mathcal{S}|A}{r}+1\right)} \,\mathrm{d}r \\ &\stackrel{(a)}{\leq} \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2} \sqrt{\log\left(\frac{4|\mathcal{S}|A+2}{r}\right)} \,\mathrm{d}r \end{aligned}$$

(a): $r \le 2$

$$\begin{aligned} \mathcal{R}(\mathcal{G}, \boldsymbol{\omega}_{1:m}) &\leq \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2} \sqrt{\log\left(\frac{4|\mathcal{S}|A}{r} + 1\right)} \,\mathrm{d}r \\ &\leq \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2} \sqrt{\log\left(\frac{4|\mathcal{S}|A+2}{r}\right)} \,\mathrm{d}r \end{aligned}$$

(a): $r \le 2$, (b): $2|S|A+1 \le (2|S|+1)(A+1)$.

$$\begin{aligned} \mathcal{R}(\mathcal{G}, \boldsymbol{\omega}_{1:m}) &\leq \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2} \sqrt{\log\left(\frac{4|S|A}{r} + 1\right)} \,\mathrm{d}r \\ &\stackrel{(a)}{\leq} \frac{8\sqrt{2d}}{\sqrt{m}} \int_{0}^{2} \sqrt{\log\left(\frac{4|S|A+2}{r}\right)} \,\mathrm{d}r \\ &\stackrel{(b)}{\leq} \frac{8\sqrt{2d}}{\sqrt{m}} \Bigg[\int_{0}^{2} \sqrt{\log\frac{2\left(2|S|+1\right)}{r}} \,\mathrm{d}r + 2\sqrt{\log(A+1)} \Bigg]. \end{aligned}$$

(a): $r \le 2$, (b): $2|S|A + 1 \le (2|S| + 1)(A + 1)$.

$$\mathcal{R}(\mathcal{G}, \boldsymbol{\omega}_{1:m}) \stackrel{(a)}{\leq} \frac{16\sqrt{2d}}{\sqrt{m}} \left(\int_0^1 \sqrt{\log \frac{B+1}{r}} \, \mathrm{d}r + \sqrt{\log(A+1)} \right),$$

(a): change of variables, B := 2|S|

$$\Re\left(\mathcal{G},\omega_{1:m}\right) \stackrel{(a)}{\leq} \frac{16\sqrt{2d}}{\sqrt{m}} \left(\int_0^1 \sqrt{\log\frac{B+1}{r}} \,\mathrm{d}r + \sqrt{\log(A+1)}\right),\,$$

(a): change of variables,
$$B := 2|S|$$
, (b):
$$\int_0^1 \sqrt{\log \frac{a}{\epsilon}} d\epsilon \le \sqrt{\log a} + \frac{1}{2\sqrt{\log a}} (a > 1).$$

$$\begin{aligned} \mathcal{R}(\mathcal{G},\boldsymbol{\omega}_{1:m}) &\stackrel{(a)}{\leq} \frac{16\sqrt{2d}}{\sqrt{m}} \left(\int_0^1 \sqrt{\log \frac{B+1}{r}} \, \mathrm{d}r + \sqrt{\log(A+1)} \right), \\ &\stackrel{(b)}{\leq} \frac{16\sqrt{2d}}{\sqrt{m}} \left[\sqrt{\log(B+1)} + \frac{1}{2\sqrt{\log(B+1)}} + \sqrt{\log(A+1)} \right]. \end{aligned}$$

(a): change of variables,
$$B := 2|S|$$
, (b):
$$\int_0^1 \sqrt{\log \frac{a}{\epsilon}} d\epsilon \le \sqrt{\log a} + \frac{1}{2\sqrt{\log a}} (a > 1). \Rightarrow \text{ by Jensen}$$

Uniform guarantee

Let k be continuous, $\sigma^2 := \int_{\mathbb{R}^d} \|\boldsymbol{\omega}\|^2 \, \mathrm{d} \Lambda(\boldsymbol{\omega}) < \infty$. Then for $\forall \tau > 0$ and compact set $\mathcal{S} \subset \mathbb{R}^d$

$$\begin{split} \Lambda^m \left(\|\hat{k} - k\|_{L^{\infty}(\mathbb{S})} \geq \frac{h(d, |\mathbb{S}|, \sigma) + \sqrt{2\tau}}{\sqrt{m}} \right) &\leq e^{-\tau}, \\ h(d, |\mathbb{S}|, \sigma) &:= 32\sqrt{2d\log(2|\mathbb{S}| + 1)} + 16\sqrt{\frac{2d}{\log(2|\mathbb{S}| + 1)}} + \\ &\quad 32\sqrt{2d\log(\sigma + 1)}. \end{split}$$

Consequence-1 (Borel-Cantelli lemma)

• A.s. convergence on compact sets: $\hat{k} \xrightarrow{m \to \infty} k$ at rate $\sqrt{\frac{\log |S|}{m}}$.

Consequence-1 (Borel-Cantelli lemma)

A.s. convergence on compact sets: k̂ →∞ k at rate √ log |S|/m.
 Growing diameter:

•
$$\frac{\log |\mathfrak{S}_m|}{m} \xrightarrow{m \to \infty} 0$$
 is enough (i.e., $|\mathfrak{S}_m| = e^{o(m)}$).

Consequence-1 (Borel-Cantelli lemma)

- A.s. convergence on compact sets: $\hat{k} \xrightarrow{m \to \infty} k$ at rate $\sqrt{\frac{\log |S|}{m}}$.
- Growing diameter:
 - $\frac{\log |S_m|}{m} \xrightarrow{m \to \infty} 0$ is enough (i.e., $|S_m| = e^{o(m)}$).
- Specifically:
 - asymptotic optimality [Csörgő and Totik, 1983, Theorem 2] (if k(z) vanishes at ∞).

Consequence-2: L^p guarantee $(1 \le p)$

Idea:

Note that

$$\begin{split} \|\hat{k} - k\|_{L^{p}(\mathbb{S})} &:= \left(\int_{\mathbb{S}}\int_{\mathbb{S}}|\hat{k}(\mathbf{x}, \mathbf{y}) - k(\mathbf{x}, \mathbf{y})|^{p} \,\mathrm{d}\mathbf{x} \,\mathrm{d}\mathbf{y}\right)^{\frac{1}{p}} \\ &\leq \|\hat{k} - k\|_{L^{\infty}(\mathbb{S})} \mathrm{vol}^{2/p}(\mathbb{S}). \end{split}$$

-

Consequence-2: L^p guarantee $(1 \le p)$

Idea:

Note that

$$\begin{split} \|\hat{k} - k\|_{L^{p}(\mathbb{S})} &:= \left(\int_{\mathbb{S}} \int_{\mathbb{S}} |\hat{k}(\mathbf{x}, \mathbf{y}) - k(\mathbf{x}, \mathbf{y})|^{p} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} \right)^{\frac{1}{p}} \\ &\leq \|\hat{k} - k\|_{L^{\infty}(\mathbb{S})} \mathrm{vol}^{2/p}(\mathbb{S}). \end{split}$$

$$\bullet \ \mathrm{vol}(\mathbb{S}) \leq \mathrm{vol}(B), \text{ where } B := \left\{ \mathbf{x} \in \mathbb{R}^{d} : \|\mathbf{x}\|_{2} \leq \frac{|\mathbb{S}|}{2} \right\}, \end{split}$$

-

Consequence-2: L^p guarantee $(1 \le p)$

Idea:

Note that

$$\begin{split} \|\hat{k} - k\|_{L^p(\mathbb{S})} &:= \left(\int_{\mathbb{S}} \int_{\mathbb{S}} |\hat{k}(\mathbf{x}, \mathbf{y}) - k(\mathbf{x}, \mathbf{y})|^p \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} \right)^{\frac{1}{p}} \\ &\leq \|\hat{k} - k\|_{L^{\infty}(\mathbb{S})} \mathrm{vol}^{2/p}(\mathbb{S}). \end{split}$$

• vol(S)
$$\leq$$
 vol(B), where $B := \left\{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 \leq \frac{|S|}{2} \right\}$,
• vol(B) $= \frac{\pi^{d/2}|S|^d}{2^d \Gamma\left(\frac{d}{2}+1\right)}, \ \Gamma(t) = \int_0^\infty u^{t-1} e^{-u} \,\mathrm{d}u. \Rightarrow$

L^p guarantee

Under the previous assumptions, and $1 \le p < \infty$:

$$\Lambda^m\left(\|\hat{k}-k\|_{L^p(\mathbb{S})} \geq \left(\frac{\pi^{d/2}|\mathbb{S}|^d}{2^d\Gamma(\frac{d}{2}+1)}\right)^{2/p} \frac{h(d,|\mathbb{S}|,\sigma) + \sqrt{2\tau}}{\sqrt{m}}\right) \leq e^{-\tau}$$
L^p guarantee

Under the previous assumptions, and $1 \leq p < \infty$:

$$\Lambda^m\left(\|\hat{k}-k\|_{L^p(\mathbb{S})} \geq \left(\frac{\pi^{d/2}|\mathbb{S}|^d}{2^d\Gamma(\frac{d}{2}+1)}\right)^{2/p} \frac{h(d,|\mathbb{S}|,\sigma) + \sqrt{2\tau}}{\sqrt{m}}\right) \leq e^{-\tau}.$$

Hence,

$$\|\hat{k} - k\|_{L^{p}(\mathbb{S})} = O_{a.s.}\left(\underbrace{m^{-1/2}|\mathbb{S}|^{2d/p}\sqrt{\log|\mathbb{S}|}}_{L^{p}(\mathbb{S})\text{-consistency if }\underbrace{m \to \infty}{0}}\right)$$

L^p guarantee

Under the previous assumptions, and $1 \leq p < \infty$:

$$\Lambda^m\left(\|\hat{k}-k\|_{L^p(\mathbb{S})} \geq \left(\frac{\pi^{d/2}|\mathbb{S}|^d}{2^d\Gamma(\frac{d}{2}+1)}\right)^{2/p}\frac{h(d,|\mathbb{S}|,\sigma)+\sqrt{2\tau}}{\sqrt{m}}\right) \leq e^{-\tau}.$$

Hence,

$$\|\hat{k} - k\|_{L^{p}(\mathbb{S})} = O_{a.s.} \left(\underbrace{m^{-1/2} |\mathcal{S}|^{2d/p} \sqrt{\log |\mathcal{S}|}}_{L^{p}(\mathbb{S})\text{-consistency if } \xrightarrow{m \to \infty} 0} \right).$$

Uniform guarantee: $|\mathbb{S}_m| = e^{m^{\delta < 1}}$; now: $\frac{|\mathbb{S}_m|^{2d/p}}{\sqrt{m}} \to 0 \Rightarrow |\mathbb{S}_m| = o(m^{\frac{p}{4d}})$.

Direct L^p guarantee (proof after discussion)

Under the previous assumptions, and 1 :

$$\Lambda^{m}\left(\|\hat{k}-k\|_{L^{p}(\mathbb{S})} \geq \left(\frac{\pi^{d/2}|\mathbb{S}|^{d}}{2^{d}\Gamma(\frac{d}{2}+1)}\right)^{2/p} \left(\frac{C'_{p}}{m^{1-\max\{\frac{1}{2},\frac{1}{p}\}}} + \frac{\sqrt{2\tau}}{\sqrt{m}}\right)\right) \leq e^{-\tau},$$

 C'_p : universal constant; only *p*-dependent (not |S| or *m*-dep.).

Direct L^p guarantee (proof after discussion)

Under the previous assumptions, and 1 :

$$\Lambda^{m}\left(\|\hat{k}-k\|_{L^{p}(\mathbb{S})} \geq \left(\frac{\pi^{d/2}|\mathbb{S}|^{d}}{2^{d}\Gamma(\frac{d}{2}+1)}\right)^{2/p} \left(\frac{C'_{p}}{m^{1-\max\{\frac{1}{2},\frac{1}{p}\}}} + \frac{\sqrt{2\tau}}{\sqrt{m}}\right)\right) \leq e^{-\tau},$$

 C'_p : universal constant; only *p*-dependent (not |S| or *m*-dep.). Note: if $2 \le p$, then

•
$$m^{1-\max\{\frac{1}{2},\frac{1}{p}\}} = \sqrt{m}$$
 [we got rid of $\sqrt{\log(S)}$],

• $\|\hat{k} - k\|_{L^p(S_m)} \xrightarrow{a.s.} 0$ if $|S_m| = o\left(m^{\frac{p}{4d}}\right)$ as $m \to \infty$.

Direct L^p result: High-level idea

By the bounded difference property:

$$\|k-\hat{k}\|_{L^p(\mathbb{S})} \leq \mathbb{E}_{\boldsymbol{\omega}_{1:m}}\|k-\hat{k}\|_{L^p(\mathbb{S})} + \mathrm{vol}^{2/p}(\mathbb{S})\sqrt{\frac{2\tau}{m}}.$$

Direct L^p result: High-level idea

By the bounded difference property:

$$\|k-\hat{k}\|_{L^p(\mathbb{S})} \leq \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \|k-\hat{k}\|_{L^p(\mathbb{S})} + \operatorname{vol}^{2/p}(\mathbb{S}) \sqrt{\frac{2\tau}{m}}.$$

2 By $L^p \cong (L^{p'})^*$ $(\frac{1}{p} + \frac{1}{p'} = 1)$, the separability of $L^{p'}(S)$ and symmetrization [van der Vaart and Wellner, 1996, Lemma 2.3.1]:

$$\mathbb{E}_{\boldsymbol{\omega}_{1:m}} \| k - \hat{k} \|_{L^{p}(\mathbb{S})} \leq \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \underbrace{\mathbb{E}_{\boldsymbol{\varepsilon}} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \boldsymbol{\omega}_{i}, \cdot - \cdot \rangle) \right\|_{L^{p}(\mathbb{S})}}_{=:(*)}$$

Direct L^p result: High-level idea

By the bounded difference property:

$$\|k-\hat{k}\|_{L^p(\mathbb{S})} \leq \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \|k-\hat{k}\|_{L^p(\mathbb{S})} + \operatorname{vol}^{2/p}(\mathbb{S}) \sqrt{\frac{2\tau}{m}}.$$

2 By $L^p \cong (L^{p'})^*$ $(\frac{1}{p} + \frac{1}{p'} = 1)$, the separability of $L^{p'}(S)$ and symmetrization [van der Vaart and Wellner, 1996, Lemma 2.3.1]:

$$\mathbb{E}_{\boldsymbol{\omega}_{1:m}} \| k - \hat{k} \|_{L^{p}(S)} \leq \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \underbrace{\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \boldsymbol{\omega}_{i}, \cdot - \cdot \rangle) \right\|_{L^{p}(S)}}_{=:(*)}$$

Since $L^{p}(S)$ is of type min $(2, p) \exists C'_{p}$ such that

$$(*) \leq C_p' \left(\sum_{i=1}^m \|\cos(\langle oldsymbol{\omega}_i, \cdot - \cdot
angle)\|_{L^p(\mathbb{S})}^{\min(2,p)}
ight)^{rac{1}{\min(2,p)}}$$

 $f(oldsymbol{\omega}_1,\ldots,oldsymbol{\omega}_m):=\|k-\hat{k}\|_{L^p(\mathbb{S})}$ has bounded difference:

$$\hat{k}_i(\mathbf{x}, \mathbf{y}) = rac{1}{m} \sum_{j \neq i} \cos(\omega_j^T(\mathbf{x} - \mathbf{y})) + rac{1}{m} \cos(\tilde{\omega}_i^T(\mathbf{x} - \mathbf{y})),$$

$$\sup_{(\boldsymbol{\omega}_i)_{i=1}^m, \tilde{\boldsymbol{\omega}}_i} \left| \|k - \hat{k}\|_{L^p(\mathbb{S})} - \|k - \hat{k}_i\|_{L^p(\mathbb{S})} \right| \leq$$

$$\leq \sup_{(oldsymbol{\omega}_i)_{i=1}^m, ilde{oldsymbol{\omega}}_i} \| \hat{k}_i - \hat{k} \|_{L^p(\mathbb{S})}$$

(

 $f(oldsymbol{\omega}_1,\ldots,oldsymbol{\omega}_m):=\|k-\hat{k}\|_{L^p(\mathbb{S})}$ has bounded difference:

$$egin{aligned} &\hat{k}_i(\mathbf{x},\mathbf{y}) = rac{1}{m}\sum_{j
eq i}\cos(\omega_j^T(\mathbf{x}-\mathbf{y})) + rac{1}{m}\cos(ilde{\omega}_i^T(\mathbf{x}-\mathbf{y})), \ &\sup_{\omega_i)_{i=1}^m, ilde{\omega}_i} \left| \|k-\hat{k}\|_{L^p(\mathbb{S})} - \|k-\hat{k}_i\|_{L^p(\mathbb{S})}
ight| \le \end{aligned}$$

$$\leq \sup_{(\boldsymbol{\omega}_i)_{i=1}^m, \tilde{\boldsymbol{\omega}}_i} \|\hat{k}_i - \hat{k}\|_{L^p(\mathbb{S})} \leq \frac{2}{m} \sup_{\boldsymbol{\omega}_i} \|\cos(\langle \boldsymbol{\omega}_i, \cdot - \cdot \rangle)\|_{L^p(\mathbb{S})}$$

 $f(oldsymbol{\omega}_1,\ldots,oldsymbol{\omega}_m):=\|k-\hat{k}\|_{L^p(\mathbb{S})}$ has bounded difference:

$$\begin{split} \hat{k}_i(\mathbf{x}, \mathbf{y}) &= \frac{1}{m} \sum_{j \neq i} \cos(\omega_j^T(\mathbf{x} - \mathbf{y})) + \frac{1}{m} \cos(\tilde{\omega}_i^T(\mathbf{x} - \mathbf{y})), \\ \sup_{(\omega_i)_{i=1}^m, \tilde{\omega}_i} \left| \|k - \hat{k}\|_{L^p(\mathbb{S})} - \|k - \hat{k}_i\|_{L^p(\mathbb{S})} \right| \leq \\ &\leq \sup_{(\omega_i)_{i=1}^m, \tilde{\omega}_i} \|\hat{k}_i - \hat{k}\|_{L^p(\mathbb{S})} \leq \frac{2}{m} \sup_{\omega_i} \|\cos(\langle \omega_i, \cdot - \cdot \rangle)\|_{L^p(\mathbb{S})} \\ &\leq \frac{2}{m} \operatorname{vol}^{2/p}(\mathbb{S}) =: c_r. \end{split}$$

 \Rightarrow We can apply the McDiarmid inequality.

)

We write $\|\cdot\|_{L^p}$ as a countable sup

Let
$$1 < p' < \infty$$
.
• Let (X, \mathcal{A}, μ) , $\mu(X) < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$. Then
 $\left[L^{p'}(X, \mathcal{A}, \mu) \right]^* = \{F_f : f \in L^p(X, \mathcal{A}, \mu)\},$
 $F_f(u) = \int_X uf d\mu,$

and $||f||_{L^p} = ||F_f|| = \sup_{||g||_{L^{p'}}=1} |F_f(g)| =: (*).$

We write $\|\cdot\|_{L^p}$ as a countable sup

Let
$$1 < p' < \infty$$
.
• Let $(X, \mathcal{A}, \mu), \ \mu(X) < \infty, \ \frac{1}{p} + \frac{1}{p'} = 1$. Then
 $\left[L^{p'}(X, \mathcal{A}, \mu) \right]^* = \{F_f : f \in L^p(X, \mathcal{A}, \mu)\},$
 $F_f(u) = \int_X uf d\mu,$

and $||f||_{L^p} = ||F_f|| = \sup_{||g||_{L^{p'}}=1} |F_f(g)| =: (*).$

 Moreover, since for X = S, L^{p'}(S) is separable [Cohn, 2013, Prop. 3.4.5] ⇒ ∃ G ⊆ S_{L^{p'}(S)}(0,1) countable [Carothers, 2004, Lemma 6.7]: (*) = sup_{g∈G} |F_f(g)|.

$$\|k - \hat{k}\|_{L^p(\mathbb{S})} = \left\| \mathsf{F}_{k-\hat{k}} \right\| = \sup_{g \in \mathcal{G}} \left| \int_{\mathbb{S} \times \mathbb{S}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y}) \right] \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y} \right| =: (*)$$

$$\|k - \hat{k}\|_{L^{p}(S)} = \left\|F_{k-\hat{k}}\right\| = \sup_{g \in \mathcal{G}} \left|\int_{S \times S} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y}\right| =: (*)$$
$$\int_{S \times S} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y}$$

$$\begin{split} \|k - \hat{k}\|_{L^{p}(\mathbb{S})} &= \left\|F_{k-\hat{k}}\right\| = \sup_{g \in \mathcal{G}} \left|\int_{\mathbb{S} \times \mathbb{S}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y} \right| =: (*) \\ &\int_{\mathbb{S} \times \mathbb{S}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y} \\ &= \int_{\mathbb{S} \times \mathbb{S}} g(\mathbf{x}, \mathbf{y}) \left[\int_{\mathbb{R}^{d}} \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) d(\Lambda - \Lambda_{m})(\omega)\right] d\mathbf{x} d\mathbf{y} \end{split}$$

$$\begin{aligned} \|k - \hat{k}\|_{L^{p}(S)} &= \left\|F_{k-\hat{k}}\right\| = \sup_{g \in \mathcal{G}} \left|\int_{S \times S} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y} \right| =: (* \\ \int_{S \times S} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y})\right] d\mathbf{x} d\mathbf{y} \\ &= \int_{S \times S} g(\mathbf{x}, \mathbf{y}) \left[\int_{\mathbb{R}^{d}} \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) d(\Lambda - \Lambda_{m})(\omega)\right] d\mathbf{x} d\mathbf{y} \\ &= \int_{\mathbb{R}^{d}} \underbrace{\int_{S \times S} g(\mathbf{x}, \mathbf{y}) \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) d\mathbf{x} d\mathbf{y}}_{=: \tilde{g}_{g}(\omega): \text{ measurable } \leftarrow \text{ dominated convergence}} \end{aligned}$$

$$\begin{split} \|k - \hat{k}\|_{L^{p}(\mathbb{S})} &= \left\| F_{k-\hat{k}} \right\| = \sup_{g \in \mathcal{G}} \left| \int_{\mathbb{S} \times \mathbb{S}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y}) \right] d\mathbf{x} d\mathbf{y} \right| =: (* \\ \int_{\mathbb{S} \times \mathbb{S}} g(\mathbf{x}, \mathbf{y}) \left[k(\mathbf{x}, \mathbf{y}) - \hat{k}(\mathbf{x}, \mathbf{y}) \right] d\mathbf{x} d\mathbf{y} \\ &= \int_{\mathbb{S} \times \mathbb{S}} g(\mathbf{x}, \mathbf{y}) \left[\int_{\mathbb{R}^{d}} \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) d(\Lambda - \Lambda_{m})(\omega) \right] d\mathbf{x} d\mathbf{y} \\ &= \int_{\mathbb{R}^{d}} \underbrace{\int_{\mathbb{S} \times \mathbb{S}} g(\mathbf{x}, \mathbf{y}) \cos(\omega^{T}(\mathbf{x} - \mathbf{y})) d\mathbf{x} d\mathbf{y}}_{=: \tilde{g}_{\mathcal{G}}(\omega): \text{ measurable} \leftarrow \text{ dominated convergence}} d(\Lambda - \Lambda_{m})(\omega) \Rightarrow \\ (*) &= \sup_{\tilde{g} \in \tilde{\mathcal{G}}: = \{ \tilde{g}_{\mathcal{G}} : g \in \mathcal{G} \}} \|(\Lambda - \Lambda_{m}) \tilde{g}\|, \end{split}$$

By symmetrization [(a)]

we get

$$\mathbb{E}_{\boldsymbol{\omega}_{1:m}} \| k - \hat{k} \|_{L^{p}(S)} \stackrel{(a)}{\leq} 2\mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \sup_{\tilde{g} \in \tilde{\mathcal{G}}} \left| \frac{1}{m} \sum_{i=1}^{m} \varepsilon_{i} \tilde{g}(\boldsymbol{\omega}_{i}) \right|$$

By symmetrization [(a)], \tilde{g} def. [(b)]

we get

$$\begin{split} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \| \boldsymbol{k} - \hat{\boldsymbol{k}} \|_{L^{p}(\mathbb{S})} &\stackrel{(a)}{\leq} 2 \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \sup_{\tilde{g} \in \tilde{\mathcal{G}}} \left| \frac{1}{m} \sum_{i=1}^{m} \varepsilon_{i} \tilde{g}(\boldsymbol{\omega}_{i}) \right| \\ &\stackrel{(b)}{=} \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \sup_{g \in \mathcal{G}} \left| \sum_{i=1}^{m} \varepsilon_{i} \int_{\mathbb{S} \times \mathbb{S}} g(\mathbf{x}, \mathbf{y}) \cos\left(\boldsymbol{\omega}_{i}^{T}(\mathbf{x} - \mathbf{y})\right) d\mathbf{x} d\mathbf{y} \right| \end{split}$$

By symmetrization [(a)], \tilde{g} def. [(b)]

we get

$$\begin{split} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \| \boldsymbol{k} - \hat{\boldsymbol{k}} \|_{L^{p}(\mathbb{S})} &\stackrel{(a)}{\leq} 2\mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \sup_{\tilde{\boldsymbol{g}} \in \tilde{\mathcal{G}}} \left| \frac{1}{m} \sum_{i=1}^{m} \varepsilon_{i} \tilde{\boldsymbol{g}}(\boldsymbol{\omega}_{i}) \right| \\ &\stackrel{(b)}{=} \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \sup_{\boldsymbol{g} \in \mathcal{G}} \left| \sum_{i=1}^{m} \varepsilon_{i} \int_{\mathbb{S} \times \mathbb{S}} \boldsymbol{g}(\mathbf{x}, \mathbf{y}) \cos\left(\boldsymbol{\omega}_{i}^{T}(\mathbf{x} - \mathbf{y})\right) d\mathbf{x} d\mathbf{y} \right| \\ &= \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \sup_{\boldsymbol{g} \in \mathcal{G}} \left| \int_{\mathbb{S} \times \mathbb{S}} \boldsymbol{g}(\mathbf{x}, \mathbf{y}) \left[\sum_{i=1}^{m} \varepsilon_{i} \cos\left(\boldsymbol{\omega}_{i}^{T}(\mathbf{x} - \mathbf{y})\right) \right] d\mathbf{x} d\mathbf{y} \right| \end{split}$$

By symmetrization [(a)], \tilde{g} def. [(b)] and $L^{p} \cong (L^{p'})^{*}$ [(c)], we get

$$\begin{split} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \| \boldsymbol{k} - \hat{\boldsymbol{k}} \|_{L^{p}(S)} &\stackrel{(a)}{\leq} 2 \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \sup_{\tilde{g} \in \tilde{\mathcal{G}}} \left| \frac{1}{m} \sum_{i=1}^{m} \varepsilon_{i} \tilde{g}(\boldsymbol{\omega}_{i}) \right| \\ &\stackrel{(b)}{=} \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \sup_{g \in \mathcal{G}} \left| \sum_{i=1}^{m} \varepsilon_{i} \int_{S \times S} g(\mathbf{x}, \mathbf{y}) \cos\left(\boldsymbol{\omega}_{i}^{T}(\mathbf{x} - \mathbf{y})\right) d\mathbf{x} d\mathbf{y} \right| \\ &= \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \sup_{g \in \mathcal{G}} \left| \int_{S \times S} g(\mathbf{x}, \mathbf{y}) \left[\sum_{i=1}^{m} \varepsilon_{i} \cos\left(\boldsymbol{\omega}_{i}^{T}(\mathbf{x} - \mathbf{y})\right) \right] d\mathbf{x} d\mathbf{y} \right| \\ &\stackrel{(c)}{=} \frac{2}{m} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \boldsymbol{\omega}_{i}, \cdot - \cdot \rangle) \right\|_{L^{p}(S)}. \end{split}$$

Rademacher functions: $r_j(s) = sgn(sin(2^j \pi s)) \in L^2[0, 1]$ (j = 1, ...).

Properties of Rademacher functions:

• ONS in *L*²[0, 1].

Properties of Rademacher functions:

- ONS in $L^2[0,1]$.
- ② $[r_1(t); ...; r_m(t)] = [\epsilon_1; ...; \epsilon_m] \in \{-1, 1\}^m$ Rademacher vector, where $t \sim U[0, 1] \Rightarrow$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{j=1}^{m} \varepsilon_j f_j \right\| = \int_0^1 \left\| \sum_{j=1}^{m} r_j(s) f_j \right\| \mathrm{d}s.$$

A $(Z, \|\cdot\|)$ Banach space is of type $q \in (1, 2]$ if $\exists C \in \mathbb{R}$

$$\int_0^1 \left\| \sum_{j=1}^m r_j(s) f_j \right\| \mathrm{d} s \leq C \left(\sum_{j=1}^m \|f_j\|^q \right)^{\frac{1}{q}}, \forall m, \forall \{f_j\}_{j=1}^m \subseteq Z.$$

A $(Z, \|\cdot\|)$ Banach space is of type $q \in (1, 2]$ if $\exists C \in \mathbb{R}$

$$\int_0^1 \left\| \sum_{j=1}^m r_j(s) f_j \right\| \mathrm{d} s \leq C \left(\sum_{j=1}^m \|f_j\|^q \right)^{\frac{1}{q}}, \forall m, \forall \{f_j\}_{j=1}^m \subseteq Z.$$

Notes:

• q choice: $\forall (\nexists)$ B-space is of type 1 (> 2).

A $(Z, \|\cdot\|)$ Banach space is of type $q \in (1, 2]$ if $\exists C \in \mathbb{R}$

$$\int_0^1 \left\| \sum_{j=1}^m r_j(s) f_j \right\| \mathrm{d} s \leq C \left(\sum_{j=1}^m \|f_j\|^q \right)^{\frac{1}{q}}, \forall m, \forall \{f_j\}_{j=1}^m \subseteq Z.$$

Notes:

- **Q** q choice: $\forall (\nexists)$ B-space is of type 1 (> 2).
- **2** \forall Hilbert space is of type 2.

A $(Z, \|\cdot\|)$ Banach space is of type $q \in (1, 2]$ if $\exists C \in \mathbb{R}$

$$\int_0^1 \left\| \sum_{j=1}^m r_j(s) f_j \right\| \mathrm{d} s \leq C \left(\sum_{j=1}^m \|f_j\|^q \right)^{\frac{1}{q}}, \forall m, \forall \{f_j\}_{j=1}^m \subseteq Z.$$

Notes:

- **Q** q choice: \forall (\nexists) B-space is of type 1 (> 2).
- **2** \forall Hilbert space is of type 2.
- $Z = L^{p}(X, \mathcal{A}, \mu)$ is of type $q = \min(2, p)$ [Lindenstrauss and Tzafriri, 1979, page 73] \Rightarrow

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \boldsymbol{\omega}_{i}, \cdot - \cdot \rangle) \right\|_{L^{p}(\mathbb{S})} \leq C_{p}' \left(\sum_{i=1}^{m} \|\cos(\langle \boldsymbol{\omega}_{i}, \cdot - \cdot \rangle)\|_{L^{p}(\mathbb{S})}^{\min(2,p)} \right)^{\frac{1}{\min(2,p)}} =: (*)$$

$$\sum_{i=1}^m \|\cos(\langle \omega_i,\cdot-\cdot
angle)\|_{L^p(\mathbb{S})}^{\min(2,p)} =$$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \right\|_{L^{p}(\mathbb{S})}^{\leq C_{p}'} \left(\sum_{i=1}^{m} \|\cos(\langle \omega_{i}, \cdot - \cdot \rangle)\|_{L^{p}(\mathbb{S})}^{\min(2,p)} \right)^{\frac{1}{\min(2,p)}} =: (*)$$

$$\sum_{i=1}^{m} \|\cos(\langle \omega_{i}, \cdot - \cdot \rangle)\|_{L^{p}(\mathbb{S})}^{\min(2,p)} = \sum_{i=1}^{m} \left(\int_{\mathbb{S}\times\mathbb{S}} \underbrace{\left|\cos(\omega_{i}^{T}(\mathbf{x}-\mathbf{y}))\right|^{p}}_{\leq 1} \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y} \right)^{\frac{\min(2,p)}{p}}$$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \right\|_{L^{p}(\mathbb{S})}^{\leq C_{p}'} \left(\sum_{i=1}^{m} \|\cos(\langle \omega_{i}, \cdot - \cdot \rangle)\|_{L^{p}(\mathbb{S})}^{\min(2,p)} \right)^{\frac{1}{\min(2,p)}} =: (*)$$

$$\sum_{i=1}^{m} \|\cos(\langle \omega_{i}, \cdot - \cdot \rangle)\|_{L^{p}(\mathbb{S})}^{\min(2,p)} = \sum_{i=1}^{m} \left(\int_{\mathbb{S} \times \mathbb{S}} \underbrace{\left|\cos(\omega_{i}^{T}(\mathbf{x} - \mathbf{y}))\right|^{p}}_{\leq 1} \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y} \right)^{\frac{\min(2,p)}{p}}$$

$$\leq m \left[\mathrm{vol}^{2}(\mathbb{S}) \right]^{\frac{\min(2,p)}{p}} \Rightarrow$$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i=1}^{m} \varepsilon_{i} \cos(\langle \omega_{i}, \cdot - \cdot \rangle) \right\|_{L^{p}(\mathbb{S})}^{\leq C_{p}'} \left(\sum_{i=1}^{m} \|\cos(\langle \omega_{i}, \cdot - \cdot \rangle)\|_{L^{p}(\mathbb{S})}^{\min(2,p)} \right)^{\frac{1}{\min(2,p)}} =: (*)$$

$$\sum_{i=1}^{m} \|\cos(\langle \omega_{i}, \cdot - \cdot \rangle)\|_{L^{p}(\mathbb{S})}^{\min(2,p)} = \sum_{i=1}^{m} \left(\int_{\mathbb{S}\times\mathbb{S}} \underbrace{\left|\cos(\omega_{i}^{T}(\mathbf{x} - \mathbf{y}))\right|^{p}}_{\leq 1} \mathrm{d}\mathbf{x}\mathrm{d}\mathbf{y} \right)^{\frac{\min(2,p)}{p}}$$

$$\leq m \left[\mathrm{vol}^{2}(\mathbb{S}) \right]^{\frac{\min(2,p)}{p}} \Rightarrow$$

$$(*) \leq C_{p}' m^{\frac{1}{\min(2,p)} = \max\left\{ \frac{1}{2}, \frac{1}{p} \right\}} \mathrm{vol}^{2/p}(\mathbb{S}).$$

Summary

Finite sample

- $L^{\infty}(S)$ guarantee $\xrightarrow{\text{spec.}} |S_m| = e^{o(m)} \text{optimal!}$
- $L^{p}(S)$ results (\Leftarrow uniform, type of L^{p}).

Summary

Finite sample

- $L^{\infty}(\mathbb{S})$ guarantee $\xrightarrow{\text{spec.}} |\mathbb{S}_m| = e^{o(m)} \text{optimal!}$
- $L^{p}(S)$ results (\Leftarrow uniform, type of L^{p}).

Thank you for the attention!

Contents

- Borel-Cantelli lemma.
- McDiarmid inequality.
- $L^{\infty}(S)$ is *not* separable.

Borel-Cantelli lemma

- Assume: $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$.
- Then $\mathbb{P}(\infty$ -ly many of them occur) = 0. Formally,

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right) = 0,$$
$$\limsup_{n\to\infty}A_n := \bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k.$$
McDiarmid inequality [Shawe-Taylor and Cristianini, 2004]

Let $\omega_1, \ldots, \omega_m \in D$ be independent r.v.-s, and $f : D^m \to \mathbb{R}$ satisfy the bounded diff. property $(\forall r)$:

 $\sup_{u_1,...,u_m,u'_r\in D} |f(u_1,...,u_m) - f(u_1,...,u_{r-1},u'_r,u_{r+1},...,u_m)| \le c_r.$

Then for $\forall \beta > 0$

$$\mathbb{P}\left(f(\boldsymbol{\omega}_1,\ldots,\boldsymbol{\omega}_m)-\mathbb{E}\left[f(\boldsymbol{\omega}_1,\ldots,\boldsymbol{\omega}_m)\right]\geq\beta\right)\leq e^{-\frac{2\beta^2}{\sum_{r=1}^m c_r^2}}.$$

Note: specifically, if $c = c_r (\forall r)$, $\tau = \frac{2\epsilon^2}{\sum_{r=1}^m c_r^2} = \frac{2\epsilon^2}{mc^2} \Leftrightarrow \epsilon = c\sqrt{\frac{\tau m}{2}}$ gives $\mathbb{P}(f(X_1, \dots, X_m) < \mathbb{E}[f(X_1, \dots, X_m)] + c\sqrt{\frac{\tau m}{2}}) \ge 1 - e^{-\tau}$.

$L^{\infty}(S)$ is *not* separable

- Assume that 0 ∈ S.
- Take $S := \{I_{B(0,r)}\}_{r>0} \subseteq L^{\infty}(S)$.
- |S| > countable, and for $\forall s_1 \neq s_2 \in S$: $\|s_1 s_2\|_{L^{\infty}(S)} = 1$.

Bousquet, O. (2003).

New approaches to statistical learning theory. Annals of the Institute of Statistical Mathematics, 55:371–389.

Carothers, N. L. (2004).

A Short Course on Banach Space Theory. Cambridge University Press.

- Cohn, D. L. (2013). *Measure Theory: Second Edition.* Birkhäuser Basel.
- Gorgő, S. and Totik, V. (1983).

On how long interval is the empirical characteristic function uniformly consistent?

Acta Sci. Math. (Szeged), 45:141–149.

Lindenstrauss, J. and Tzafriri, L. (1979).
Classical Banach Spaces II – Function Spaces.
Springer-Verlag.

Rahimi, A. and Recht, B. (2007).

Random features for large-scale kernel machines. In Neural Information Processing Systems (NIPS), pages 1177 - 1184.

- Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press.
- Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Springer.
- van de Geer, S. A. (2009). Empirical Processes in M-Estimation. Cambridge University Press.
- van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer-Verlag.