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Motivation: 'Classical’ Information Theory

o Kullback-Leibler divergence:

KL(P,Q) = JRd p(x) log {Zg;] dx.
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KL(P,Q) = JRd p(x) log {Zg;] dx.

@ Mutual information:
I (P) = KL (]P’, @,“,,”lem> .
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Q /(P)=0.
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Motivation: 'Classical’ Information Theory

o Kullback-Leibler divergence:

KL(P,Q) = JRd p(x) log {Zg;] dx.

@ Mutual information:
I (P) = KL (]P’, @,“,,”lem> .
Properties:
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Motivation: 'Classical’ Information Theory

o Kullback-Leibler divergence:

KL(P,Q) = JRd p(x) log {Zg;] dx.

@ Mutual information:
I (P) = KL (]P’, @,“,,”lem> .
Properties:

Q /(P)>0.
Q@ /(P)=0<P=g"_ P,

Alternatives: Rényi, Tsallis, L2 divergence. .. Typically: X = R9. J
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Euclidean Space — Inner Product — Kernel

Extension of k(x,y) = xy leads to kernels. ]
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Extension of k(x,y) = xTy leads to kernels. Why? J

@ Classification:
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Euclidean Space — Inner Product — Kernel

Extension of k(x,y) = xTy leads to kernels. Why? J

@ Classification:

Input Space Feature Space

© Representation of distributions:
P — Ex-pp(X).

©(x) = x: mean, o(x) = e/¢*): characteristic function.
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Diverse Set of Domains, Kernel Examples

Lln, i@ Seriea it
\»M’WWWWM%

o X =R7 v >0:

ko(x,¥) = (,y) +7)P,  ke(x,y) = e MIxvl5,

1
ke(xay) = e_WHx_yH% kC(X,y) =1+ . 2
v x—yl3
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Diverse Set of Domains, Kernel Examples

Lln, i@ Seriea it
\»M’WWWWM%

o X =R7 v >0:

ko(x,¥) = (,y) +7)P,  ke(x,y) = e MIxvl5,

1
ke(xay) = e_WHx_yH% kC(X,y) =1+ . 2
v x—yl3

o X = strings, texts:
o r-spectrum kernel: # of common < r-substrings.
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Diverse Set of Domains, Kernel Examples

L, time series v}t
WAMAMM MM

o X =R7 v >0:

ko(x,¥) = (,y) +7)P,  ke(x,y) = e MIxvl5,

1
kelxoy) = eV ke(xy) = 14—
vx— YH2

o X = strings, texts:
o r-spectrum kernel: # of common < r-substrings.

@ X = time-series: dynamic time-warping.
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Diverse Set of Domains, Kernel Examples

L, time series v}t
WAMAMM MM

o X =R7 v >0:

ko(x,¥) = (,y) +7)P,  ke(x,y) = e MIxvl5,

1
ke(xay) = e_WHx_yH% kC(X,y) =1+ T 2
v lx = yl3
o X = strings, texts:
o r-spectrum kernel: # of common < r-substrings.
@ X = time-series: dynamic time-warping.

@ X = trees, graphs, dynamical systems, sets, permutations, ...
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Objects of Interest

'KL divergence & mutual information’ on kernel-endowed domains.J

@ Mean embedding:

Zoltidn Szabé HSIC, An Independence Measure?



Objects of Interest

'KL divergence & mutual information’ on kernel-endowed domains.J

@ Mean embedding:

pk(P) = JX o(x) dP(x) e H.
k(%)

@ Maximum mean discrepancy:

MMDy (P, Q) := [k (P) — pk(Q)] 3¢, -
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Objects of Interest

'KL divergence & mutual information’ on kernel-endowed domains.J

@ Mean embedding:

pk(P) = f o(x) dP(x) e H.
X ~Y—~—
k("X)
@ Maximum mean discrepancy:
MMD (P, Q) := [k (P) — pk(Q) [, -

@ Hilbert-Schmidt independence criterion, k = ®lekm:

HSIC (P) := MMDy (P,@M:ﬂ?m) .
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Objects of Interest

@ Mean embedding:
pi(P) = f o(x) dP(x) € H.
xX ~Y—~—
k("X)
@ Maximum mean discrepancy:
MMD (P, Q) := [k (P) — pk(Q) [, -

@ Hilbert-Schmidt independence criterion, k = ®lekm:

HSIC (P) := MMDy (P,@M:ﬂ?m) .

When is HSIC an independence measure? Conditions on k;,-s? )
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Ingredients
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Ingredients: Domain of the Distributions (X))

o HSIC = X = xM_ X, product space.
o X, different modalltles — images, texts, audio, ...
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Ingredients: Domain of the Distributions (X))

o HSIC = X = xM_ X, product space.
o X, different modalities — images, texts, audio, ...

X kernel-enriched domains.
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Ingredients: Kernel, RKHS (X := X, k := kp)

Given: X set. H(ilbert space).
o Kernel:

K(a,b) = (ip(a), @ (b)Ysc.
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Ingredients: Kernel, RKHS (X := X, k := kp)

Given: X set. H(ilbert space).
o Kernel:

k(av b) = <L,Q(3), Sp(b)>5{
o Reproducing kernel of a 7{ = R¥:

k(-,b) € H, f(b) =<{f, k(-,b))s.
N ) N

~
l reproducing property
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Ingredients: Kernel, RKHS (X := X, k := kp)

Given: X set. H(ilbert space).
o Kernel:

k(av b) = <L,Q(3), Sp(b)>5{
o Reproducing kernel of a 7{ = R¥:

k(-,b) € H, f(b) =<{f, k(-,b))s.
N ) N

~
l reproducing property

P, k(a, b) = (k(- a), k(-, b))s.
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Ingredients: Kernel, RKHS (X := X, k := kp)

Given: X set. H(ilbert space).
o Kernel:

k(av b) = <L,Q(3), Sp(b)>5{
o Reproducing kernel of a 7{ = R¥:

k(-,b) € H, f(b) =<{f, k(-,b))s.
N ) N

~
l reproducing property

= k(a, b) = (k(- @), k(-5 b)yac. Hi = {20y aik(:,xi)}-
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Ingredients: Kernel, RKHS (X := X, k := kp)

Given: X set. H(ilbert space).

o Kernel:

k(av b) = <L,Q(3), Sp(b)>5{
o Reproducing kernel of a 7{ = R¥:

k(-,b) € H, f(b) =<{f, k(-,b))s.
N ) N

~
l reproducing property

= k(a, b) = (k(- @), k(-5 b)yac. Hi = {20y aik(:,xi)}-

Equivalent definitions. We represent distributions in an RKHS. .. J
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Mean Embedding

e Dirac measure: dy — k(-, x).
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X

Bochner |ntegra|
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Mean Embedding

e Dirac measure: dy — k(-, x). Generally:

Jk X Ej‘fk
X

Bochner |ntegra|

o Jup < §[K(- )|y, dB(x) <
%,_/

k(x,x)
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Mean Embedding

e Dirac measure: dy — k(-, x). Generally:

Jk Ej‘fk
X

Bochner |ntegra|

o up = [[k(-, )3, dP(x) £ . Assume: bounded k.
H—’

k(x,x)
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Mean Embedding, MMD: Applications & Review

@ Applications:

o two-sample testing [Borgwardt et al., 2006, Gretton et al., 2012],

o domain adaptation [Zhang et al., 2013], -generalization
[Blanchard et al., 2017],

o kernel Bayesian inference [Song et al., 2011, Fukumizu et al., 2013]

e approximate Bayesian computation [Park et al., 2016], probabilistic
programming [Scholkopf et al., 2015],

e model criticism [Lloyd et al., 2014, Kim et al., 2016],

o distribution classification [Muandet et al., 2011, Zaheer et al., 2017],
distribution regression [Szabd et al., 2016, Law et al., 2018],

° [Kusano et al., 2016].

@ Review [Muandet et al., 2017].

Let us switch to HSIC. )
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MMD £, HSIC

MMD with k = @M k.
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MMD £, HSIC

MMD with k = @M k.

M
H km Xm7 m ,
HSIC, (P) := MMD, (P,@mzlﬂ”m) :

Applications:
@ blind source separation [Gretton et al., 2005],

o feature selection [Song et al., 2012], post selection inference
[Yamada et al., 2016],

@ independence testing [Gretton et al., 2008], causal inference
[Mooij et al., 2016, Pfister et al., 2017, Strobl et al., 2017].
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Central in Applications: Characteristic Property

@ MMD: k is called characteristic [Fukumizu et al., 2008] if

MMD(P,Q)=0 < P = Q.
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@ MMD: k is called characteristic [Fukumizu et al., 2008] if
MMD,(P,Q)=0< P =Q.
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Central in Applications: Characteristic Property

@ MMD: k is called characteristic [Fukumizu et al., 2008] if
MMD,(P,Q)=0< P =Q.
e HSIC: k = ®M:1km will be called Z-characteristic if

HSIC,(P)=0 < P = @N_,P,,.

° ®n’\f:1km: characteristic = Z-characteristic.

o @Y kp, is Z-characteristic: conditions in terms of kpy-s?

o ®M_ kp, is characteristic: relation?
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Characteristic Property: Description on R¢

For continuous bounded shift-invariant kernels on R¢:

k(x,x") = ko(x — x) @ f e @ N (W)
Rd

(%): Bochner's theorem.
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Characteristic Property: Description on R¢

For continuous bounded shift-invariant kernels on R¢:
k(x,x') = ko(x — x') & f e X @) A (w) =
]Rd
e — polse, = llee — CQHL2(/\) -

(%): Bochner's theorem, cp: characteristic function of P.
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Characteristic Property: Description on R¢

For continuous bounded shift-invariant kernels on R¢:
k(x,x') = ko(x — x') & f e X @) A (w) =
]Rd
e — polse, = llee — CQHL2(/\) -

(%): Bochner's theorem, cp: characteristic function of P.

Theorem ([Sriperumbudur et al., 2010])

k is characteristic iff. supp(\) = RY.

Zoltidn Szabé HSIC, An Independence Measure?



Examples on R; Similarly RY

kernel name kg ko (w) supp (ko)
. _ X2 o2w?

Gaussian e 252 ce” 2 R
H —olx| 2_o

Laplacian e \/:UZJMQ R

. 1 sj 2n+2
Bap1-spline = X[_%%](X) 42;% R

Sinc M (ot \/7X o’o’] [70‘ U]
\/27r2.:_n( — n‘il )5(w /) {0,+£1,+2 ..., +n}

2n+2

1 sin
n+1 sinz(—

Fejér

)

NI [
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Universality [Steinwart, 2001, Sriperumbudur et al., 2010]

k is called characteristic (recall!)/universal if

. + .
Mk - Ml (X) '—>j‘fk, Mk - Mb(.)() '—>fH:k
— — ——
probability measures on X bounded signed measures on X’
is injective.

Zoltidn Szabé HSIC, An Independence Measure?



Universality [Steinwart, 2001, Sriperumbudur et al., 2010]

k is called characteristic (recall!)/universal if

. + .
Mk - Ml (X) '—>j‘fk, Mk - Mb(.)() '—>fH:k
— — ——
probability measures on X bounded signed measures on X’
is injective.

o Example: Mp(X) 3P —@M_ P,
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k is called characteristic (recall!)/universal if

. + .
Mk - Ml (X) '—>j‘fk, Mk - Mb(.)() '—>fH:k
— — ——
probability measures on X bounded signed measures on X’
is injective.

o Example: Mp(X) 3P —@M_ P,

@ Universal = characteristic = 7Z-characteristic.
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Universality [Steinwart, 2001, Sriperumbudur et al., 2010]

k is called characteristic (recall!)/universal if

. + .
Mk - Ml (X) '—>j‘fk, Mk - Mb(.)() Hj{k
— — ——
probability measures on X bounded signed measures on X’
is injective.

e Example: Mp(X) s P — ®',‘n”:1]P’m.
@ Universal = characteristic = Z-characteristic.

Challenge

Characteristic/Z-characteristic/universality of ®¥_; ky, in terms of
km-s!
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Existing Results, M = 2

e [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
ki&ky: universal = ki ® ky: universal (= Z-characteristic).
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Existing Results, M = 2

e [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
ki&ky: universal = ki ® ky: universal (= Z-characteristic).
@ Distance covariance [Lyons, 2013, Sejdinovic et al., 2013]:
k1& ko> characteristic & ki ® k»: Z-characteristic.
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Existing Results, M = 2

e [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
ki&ky: universal = ki ® ky: universal (= Z-characteristic).
@ Distance covariance [Lyons, 2013, Sejdinovic et al., 2013]:
k1& ko> characteristic & ki ® k»: Z-characteristic.

Extension to M > 2.
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Existing Results, M = 2

e [Blanchard et al., 2011, Waegeman et al., 2012, Gretton, 2015]:
ki&ky: universal = ki ® ky: universal (= Z-characteristic).
@ Distance covariance [Lyons, 2013, Sejdinovic et al., 2013]:
k1& ko> characteristic & ki ® k»: Z-characteristic.

Extension to M > 2.

Main Challenge
'®km: I-characteristic < kp,: characteristic (Vm)' does NOT hold.
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Idea: Characteristic Property as pd

@ Characteristic property:

F=P; —P, #0= pup #0.
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Idea: Characteristic Property as pd

@ Characteristic property:
F=P, —Py#0= ur #0.

Here: F € My(X), F(X) = Py (X) — Po(X) = 0.
ISR
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Idea: Characteristic Property as

@ Characteristic property:
F=P, —Py#0= ur #0.

Here: F € My(X), F(X) = Py (X) — Po(X) = 0.
v 1

@ Observation [Sriperumbudur et al., 2010]: k is characteristic iff.

lugl3, >0, VF € My(X)\{0} F(X)=0.

F1
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Idea: Characteristic Property as

@ Characteristic property:
F=P, —Py#0= ur #0.

Here: F € My(X), F(X) = Py (X) — Po(X) = 0.
v 1

@ Observation [Sriperumbudur et al., 2010]: k is characteristic iff.

lugl3, >0, VF € My(X)\{0} F(X)=0.

F1

@ We saw: k is universal iff.

el > 0, VE € Mp(X)\{0] .
—_—

F2
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F F-pd k
Mp(X) universal
[M(2)]° characteristic
[Mp (X)]° < Mp (X).
characteristic = universal.
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F | F-pd k
Mp(X) universal
[M(2)]° characteristic

Z:={P- ®M=1Pm} Z-characteristic

7 c M, (X)]° M, (X).

N

Z-characteristic = characteristic = universal.
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QM _ km Z-char char universal

~
~

=/

[Sriperumbudur et al., 2011]
(k)M char -universal
[Sriperumbudur et al., 2011]

Zoltidn Szabé HSIC, An Independence Measure?



Results
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Characteristic Property of @¥_, k,

Proposition

(i) ®M_, km: characteristic = (km)M_, are characteristic.

(il P
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Characteristic Property of @¥_, k,

Proposition

(i) ®M_, km: characteristic = (km)M_, are characteristic.

(il P

o X, ={1,2}, 7x, = P({1,2}), km(x,x) = 2050 —1, M = 2.

@ ki = ko: characteristic, but ki1 ® ko is not characteristic.

@ ki ® ko is T-characteristic.
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Characteristic Property of @¥_, k,

Proposition

(i) ®M_, km: characteristic = (km)M_, are characteristic.

(il -

o X, ={1,2}, 7x, = P({1,2}), km(x,x) = 2050 —1, M = 2.

@ ki = ko: characteristic, but ki1 ® ko is not characteristic.

@ ki ® ko is T-characteristic.

Witness: 0 # Fa € Mp(X), AeR?*2

0=F(X), 0= |k (F) I3, -
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Z-characteristic Property

In the previous example:

ki, ko: characteristic = ki ® ky: Z-characteristic.

In fact:
@ this holds for any bounded kernel,

@ +converse for any M > 2!
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ki, ko, k3: characteristic = ®3 _,k,,: Z-characteristic

o X, =1{1,2}, 7x, = P({1,2}), km(x,x') = 205 —1, M =3.
@ Then

o (km)3,_,: characteristic.
° ®?,,:1 km: is not T-characteristic. Witness:

. 1 . . 1 . 1
P1,1,1 = 57 P1,1,2 = 107 P121 = 107 P1,2,2 = 107
. 1 _ 1 . 1 _ 1
P2,1,1 = 5’ P2,12 = 10’ P221 = 10’ P222 = 10
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-7-characteristicity: Analytical Solution

Parameter: z = (29, z1,...,25) € [0,1]°.
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-7-characteristicity: Analytical Solution

Parameter: z = (29, z1,. .., 25) € [0,1]°. Example: p1,1,1 =

2+ 21+ 24+ 25 — 32021 — bzoz4 — bz124 — 2023 — 22029 — 22123 — 32025

— 22473 — 2120 — 32125 — 22420 — 42425 — 7329 — 2325 — Z9Z5 + 222212 + 222221
+ 4z2zf + 222224 + 42125 + 221224 + 222220 + 221223 + 222252 + 222225 + 22223
+ 221252 + 22275 + 2222 + 224252 +4z2z5 — 22 — 77 — 322 + 223 — zg
+ 0202124 + 2202173 + 2202423 + 2202120 + 4202125 + 4202420 + b212423
+ 6202425 + 2212420 + 6212425 + 2202320 + 2202325 + 2212320 + 2222025

+ 2212325 + 2242320 + 2242325 + 2212025 + 2242025

B 22070 — 21 — 224 — 23 — 20 — 225 — 2o + 22024 + 22124 + 22020 + 22123 + 22075

+ 22423 + 22125 + 22420 + Az425 + 22329 + 22325 + 22925 + 2zf + 2252
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-7-characteristicity: Analytical Solution

Parameter: z = (29, z1,. .., 25) € [0,1]°. Example: p1,1,1 =

2+ 21+ 24+ 25 — 32021 — bzoz4 — bz124 — 2023 — 22029 — 22123 — 32025

— 22473 — 2120 — 32125 — 22420 — 42425 — 7329 — 2325 — Z9Z5 + 222212 + 222221
+ 4z2zf + 222224 + 42125 + 221224 + 222220 + 221223 + 222252 + 222225 + 22223
+ 221252 + 22275 + 2222 + 224252 +4z2z5 — 22 — 77 — 322 + 223 — zg
+ 0202124 + 2202173 + 2202423 + 2202120 + 4202125 + 4202420 + b212423
+ 6202425 + 2212420 + 6212425 + 2202320 + 2202325 + 2212320 + 2222025

+ 2212325 + 2242320 + 2242325 + 2212025 + 2242025

B 22070 — 21 — 224 — 23 — 20 — 225 — 2o + 22024 + 22124 + 22020 + 22123 + 22075

+ 22423 + 22125 + 22420 + Az425 + 22329 + 22325 + 22925 + 2zf + 2252

(1 1 1 1 1 1
We chose: z = (1ov 10° 107 10’ 107 10)-
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R & Translation-invariance: All Notions Coincide

Proposition

Assume kn, : R9m x R9m — R are continuous, translation-invariant
kernels. Then the followings are equivalent:

(i) (km)M_,-s are characteristic.
(i) ®M_, km: I-characteristic.

(i) ®M_,km: characteristic.
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R & Translation-invariance: All Notions Coincide

Proposition

Assume kn, : R9m x R9m — R are continuous, translation-invariant
kernels. Then the followings are equivalent:

(i) (km)M_,-s are characteristic.
(i) ®M_, km: I-characteristic.

(i) ®M_,km: characteristic.

We already know

(i) = (i) = (i).
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R & Translation-invariance: All Notions Coincide

Proposition

Assume kn, : R9m x R9m — R are continuous, translation-invariant
kernels. Then the followings are equivalent:

(i) (km)M_,-s are characteristic.
(i) ®M_, km: I-characteristic.

(i) ®M_,km: characteristic.

We already know
(i) = (i) = (i).

Remains: (iii) < (i). Proof: Bochner theorem.
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Universality of @¥_, k,,

We saw: for M > 3

(km)’\m/’:1 are characteristic = ®f‘n/’:1km: Z-characteristic.

Proposition

M

m—1 are universal.

®M_ km: universal < (km)
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The Tricky Direction: If (k,,)M_, are Universal ...

m=1

Goal: injectivity of pu = pugm . on Mp(X), i.e.
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The Tricky Direction: If (k,,)M_, are Universal ...

m=1

Goal: injectivity of pu = pugm . on Mp(X), i.e.

u(F) =0 F = 0.

Enough:
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Proof ldea

0 = u(F) = L OM_ ki (- o) AF (),
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Proof ldea

0= u(F) = f OV K-+ ) A ().
X
J
0= f TT X0 (6m) @1 Kine X0m) AF(x), VB,
X m=1

0=F (xM_1Bn) = L WM p ) dE(x), VB,
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Proof ldea

0= u(F) = f OV K-+ ) A ().
X
J
0= f TT X0 (6m) @1 Kine X0m) AF(x), VB,
X m=1

0=F (xM_1Bn) = L WM p ) dE(x), VB,

We proceed by induction (J =0,..., M).
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Example

char <———universal

®f‘n/’:1km : Z-char
Prop. (M=2)
Y 3
Example (M=3) $ '.8
ﬂ [Sriperumbudur et al., 2011]
universal

(km)M_, - char
[Sriperumbudur et al., 2011]
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We studied the validness of HSIC. J

@ HSIC = product structure:
o Space: X = xM_ x,.
o Kernel: k = @Y_, k.

@ F-pd property = complete answer in terms of kp,-s.
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We studied the validness of HSIC. J

@ HSIC = product structure:
o Space: X = xM_ x,.
o Kernel: k = @Y_, k.

@ F-pd property = complete answer in terms of kp,-s.
e ITE toolkit, preprint (maths — JMLR):

https://bitbucket.org/szzoli/ite/
http://arxiv.org/abs/1708.08157
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Thank you for the attention!
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