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Abstract: In this talk I am going to focus on the distribution regression problem: regressing to
vector-valued outputs from probability measures. Many important machine learning and statistical
tasks fit into this framework, including multi-instance learning or point estimation problems with-
out analytical solution such as hyperparameter or entropy estimation. Despite the large number of
available heuristics in the literature, the inherent two-stage sampled nature of the problem makes the
theoretical analysis quite challenging: in practice only samples from sampled distributions are ob-
servable, and the estimates have to rely on similarities computed between sets of points. To the best
of our knowledge, the only existing technique with consistency guarantees for distribution regres-
sion requires density estimation as an intermediate step (which often performs poorly in practice),
and the domain of the distributions to be compact Euclidean. I propose a simple, analytically com-
putable, ridge regression based alternative to distribution regression by embedding the distributions
to a reproducing kernel Hilbert space, and learning the regressor from the embeddings to the outputs.
I am going to present the main ideas why this scheme is consistent in the two-stage sampled setup
under mild conditions (on separable topological domains enriched with kernels) and present an exact
computational-statistical efficiency tradeoff description showing that the studied estimator is able to
match the one-stage sampled minimax optimal rate. Specifically, this result answers a 16-year-old
open question by establishing the consistency of the classical set kernel [Haussler, 1999; Gärtner
et. al, 2002] in regression, and also covers more recent kernels on distributions, including those due
to [Christmann and Steinwart, 2010]. [Joint work with Bharath Sriperumbudur, Barnabás Póczos,
Arthur Gretton.]

Preprint: http://arxiv.org/abs/1411.2066
Code: https://bitbucket.org/szzoli/ite/
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