

Optimal Regression on Sets

Zoltán Szabó¹, Bharath K. Sriperumbudur², Barnabás Póczos³, Arthur Gretton¹ (¹Gatsby Unit, UCL; ²Department of Statistics, PSU; ³Machine Learning Department, CMU).

- Bag-of-objects representation: experimental design, computer vision, NLP, networks.
- Problem formulation:
 - Labelled training bags: $\hat{\mathbf{z}} = \left\{ \left(\hat{P}_i, y_i \right) \right\}_{i=1}^{\ell}$. Test bag: \hat{P} . $N := |\hat{P}_i|$.
 - Estimator, prediction:

$$f_{\hat{\mathbf{z}}}^{\lambda} = \operatorname*{arg\,min}_{f \in \mathcal{H}(\mathcal{K})} \frac{1}{\ell} \sum_{i=1}^{\ell} \left[f(\underbrace{\mu_{\hat{P}_i}}_{i=1}) - y_i \right]^2 + \lambda \|f\|_{\mathcal{H}}^2,$$
feature of \hat{P}_i

$$\hat{y}(\hat{P}) = \mathbf{g}^{T}(\mathbf{G} + \ell \lambda \mathbf{I})^{-1} \mathbf{y}, \ \mathbf{g} = \left[\mathbf{K} \left(\mu_{\hat{P}}, \mu_{\hat{P}_{i}} \right) \right], \ \mathbf{G} = \left[\mathbf{K} \left(\mu_{\hat{P}_{i}}, \mu_{\hat{P}_{j}} \right) \right], \ \mathbf{y} = [y_{i}].$$

• Similarity of distributions: $K(P, Q) = \mathbb{E}_{a \sim P, b \sim Q} k(a, b) = \Big\langle \underbrace{\mathbb{E}_a \varphi(a)}_{, \mathbb{E}_b \varphi(b)} \Big\rangle.$

feature of distribution P=:

• Quality of estimator: $\mathcal{R}(f) = \mathbb{E}_{(\mu_P, y) \sim \rho} [f(\mu_P) - y]^2$, $f_{\rho} = \text{best regressor}$.

• Known: assuming $f_{\rho} \in \mathcal{H}$

- best/achieved rate: R(f^λ_z) − R(f_ρ) = O(ℓ^{-bc}_{bc+1}),
 b − size of the input space, c − smoothness of f_ρ.

Our result:

- With $N = \tilde{\mathcal{O}}(\ell^a)$ and $2 \leq a$, $f_{\hat{z}}^{\lambda}$ has the best achievable rate; $a = \frac{b(c+1)}{bc+1} < 2 : \checkmark$
- $\circ \Rightarrow$ Regression with set kernel is consistent (17-year-old open problem)
- Practical: state-of-the-art aerosol prediction.
- Details (JMLR submission), code (in ITE):

http://arxiv.org/abs/1411.2066, https://bitbucket.org/szzoli/ite/

Acknowledgements: This work was supported by the Gatsby Charitable Foundation, and by NSF grants IIS1247658 and IIS1250350. The work was carried out while Bharath K. Sriperumbudur was a research fellow in the Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge, UK.