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Model Criticism

Data = robbery events in
Chicago in 2016.
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Model Criticism

Is this a good model?
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Model Criticism

Goals:

1 Test if a (complicated)
model fits the data.

2 If it does not, show a
location where it fails.
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Goodness-of-fit Testing

Given:

1 Sample fxigni=1
i :i :d :� q (unknown) on Rd ,

2 Unnormalized density p (known model).

H0 : p = q

H1 : p 6= q

Want a test : : :

1 Nonparametric.

2 Linear-time. Runtime is O(n). Fast.
3 Interpretable. Model criticism by finding F.
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

Observe X = fx1; : : : ;xng � q

Observe Y = fy1; : : : ;yng � p
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

Gaussian kernel on xi

Gaussian kernel on yi
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

v

�q(v) = Ex�qkv(x)

�p(v) = Ey�pkv(y)
(mean embedding of p)
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

v
MMD(q ; p) = kwitnessk
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

v

witness2(v) = (�q(v)� �p(v))2| {z }
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

v

witness2(v) = (�q(v)� �p(v))2| {z }

witness2(v) can be used to find a good test location v� = F .
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Model Criticism by the MMD Witness
Find a location v at which q and p differ most (ME test)
[Jitkrittum et al., 2016].
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Find a location v at which q and p differ most (ME test)
[Jitkrittum et al., 2016].

score: 25

Best v

witness(v) = Ex�q [ kv(x) ]� Ey�p[ kv(y) ]

score(v) =
witness2(v)
noise(v)

=
witness2(v)q

Vx�q [kv(x)] + Vy�p[kv(y)]
:No sample from p.

Difficult to generate.
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate Ey�p [kv(y)].
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Problem: No sample from p. Cannot estimate Ey�p [kv(y)].

Idea: Define Tp such that Ey�p(Tpkv)(y) = 0; for any v.

(Stein) witness(v) = Ex�q [ Tpkv(x) ]

Proposal: Good v should have high

score(v) =
witness2(v)
noise(v)

:
signal-to-noise
ratio

score(v) can be estimated in linear-time.
Goodness-of-fit test:

1 Find v� = argmaxv score(v).
2 Reject H0 if witness2(v�) > threshold.
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Proposal: Model Criticism with the Stein Witness

score(v) =
witness2(v)
noise(v)

:
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Proposal: Model Criticism with the Stein Witness

score: 0.16

score(v) =
witness2(v)
noise(v)

:

7/23



Proposal: Model Criticism with the Stein Witness

score: 0.44

score(v) =
witness2(v)
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Theory
1 What is Tpkv?

2 Test statistic

3 Distributions of the test statistic, test threshold.

4 What does v� = argmaxv score(v) do theoretically?
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(1) What is Tpkv?
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(assume limjyj!1 kv(y)p(y))
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(2) Proposal: The Finite Set Stein Discrepancy (FSSD)

Recall Stein witness: g(v) := Ex�q
h

1
p(x)

d
dx [kv(x)p(x)]

i
.

- 4 - 2 2 4

0.1

0.2

0.3

0.4

p(x)

q(x)

g(x)

FSSD statistic: Evaluate g2 at J test locations V = fv1; : : : ;vJg.
Population FSSD

FSSD2 =
1
dJ

JX
j=1

kg(vj )k22:

Unbiased estimator \FSSD2 computable in O(d2Jn) time. (d = input
dimension)
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(2) FSSD is a Discrepancy Measure

FSSD2 = 1
dJ
PJ

j=1 kg(vj )k22:

Theorem 1 (FSSD is a discrepancy measure).
Main conditions:

1 (Nice kernel) Kernel k is C0-universal, and real analytic e.g.,
Gaussian kernel.

2 (Vanishing boundary) limkxk!1 p(x)kv(x) = 0.

3 (Avoid “blind spots”) Locations v1; : : : ;vJ � � which has a density.

Then, for any J � 1, �-almost surely,

FSSD2 = 0 () p = q.

Summary: Evaluating the witness at random locations is sufficient to
detect the discrepancy between p; q .
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(2) What Are “Blind Spots”?

Recall g(v) : = Ex�q

�
1

p(x)
d
dx

[kv(x)p(x)]
�
:

Consider p = N (0; 1) and q = N (0; �2
q). Use unit-width Gaussian kernel.

g(v) =
v exp

�
� v2

2+2�2
q

� �
�2
q � 1

�
�
1+ �2

q
�3=2

−5.0 −2.5 0.0 2.5 5.0

−0.25

0.00

0.25
p = N (0, 1)

q = N (0, 4)

g

If v = 0, then FSSD2 = g2(v) = 0 regardless of �2
q .

If g 6= 0, and k is real analytic, R = fv j g(v) = 0g (blind spots) has 0
Lebesgue measure.

So, if v � a distribution with a density, then v =2 R.
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(3) Asymptotic Distributions of �̂n := n\FSSD2

0 20 40 60 80
λ̂n

PH0
(λ̂n)

Under H0 : p = q , asymptotically

�̂n := n \FSSD2 d!
dJX
i=1

(Z 2
i � 1)!i ;

f!igdJi=1 are non-negative, computable quantities.
Z1; : : : ;ZdJ

i :i :d :� N (0; 1)

Under H1 : p 6= q , asymptotically
p
n(\FSSD2 � FSSD2)

d! N (0; �2
H1):

witness2(V ) noise(V )
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(4) What Does argmaxv score(v) Do?

Proposition 1 (Asymptotic test power).
For large n, the test power P(reject H0 j H1 true) =

PH1(n\FSSD2 > T�)

� �

�p
n
FSSD2

�H1

� T�p
n�H1

�
;

where � = CDF of N (0; 1).
0 20 40 60 80

λ̂n

PH0
(λ̂n)

Tα

PH1
(λ̂n)

For large n , the 2nd term dominates.

argmax
V ;�2

k

PH1(n \FSSD2 > T�) � argmax
V ;�2

k

24\FSSD2d�H1

= score(V ; �2
k )

35 :
Maximize score(V ; �2

k ) () Maximize test power

In practice, split fxigni=1 into independent training/test sets. Optimize
on tr. Goodness-of-fit test on te.
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Kernel Stein Discrepancy (KSD) [Liu et al., 2016, Chwialkowski et al., 2016]

Recall Stein witness:
g(v) := Ex�q

h
1

p(x)
d
dx [kv(x)p(x)]

i
. - 4 - 2 2 4

- 0.2

0.2

0.4

p(x)

q(x)

g(x)

KSD

v

witness

KSD2 = kgk2RKHS (RKHS norm).

Good when the difference between
p; q is spatially diffuse.

Proposed FSSD

v

witness

FSSD2 = 1
dJ
PJ

j=1 kg(vj )k22:
Good when the difference between

p; q is local.
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Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: [Liu et al., 2016, Chwialkowski et al., 2016]

KSD2 = kgk2RKHS =

double sumsz }| {
Ex�qEy�q hp(x;y)

where

hp(x;y) := [@x log p(x)] k(x;y) [@y log p(y)]

+ [@y log p(y)] @xk(x;y)

+ [@x log p(x)] @yk(x;y)

+ @x@yk(x;y)

and k is a kernel.

7 The “double sums” make it O(d2n2). Slow.
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Linear-Time Kernel Stein Discrepancy (LKS)

[Liu et al., 2016] also proposed a linear version of KSD.
For fxigni=1 � q , KSD test statistic is

2
n(n � 1)

X
i<j

hp(xi ;xj ):

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

LKS test statistic is a “running average”

2
n

n=2X
i=1

hp(x2i�1;x2i ):

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Both unbiased. LKS has O(d2n) runtime. Same as proposed FSSD.
7 LKS has high variance. Poor test power.

18/23



Simulation Settings

Gaussian kernel k(x;v) = exp

�
�kx�vk22

2�2
k

�
Method Description

1 FSSD-opt Proposed. With optimization. J = 5.
2 FSSD-rand Proposed. Random test locations.

3 KSD
Quadratic-time kernel Stein discrepancy
[Liu et al., 2016, Chwialkowski et al., 2016]

4 LKS Linear-time running average version of KSD.

5 MMD-opt
MMD two-sample test [Gretton et al., 2012]. With
optimization.

6 ME-test
Mean Embeddings two-sample test
[Jitkrittum et al., 2016]. With optimization.

Two-sample tests need to draw sample from p.

Tests with optimization use 20% of the data.

Significance level � = 0:05.
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Gaussian Vs. Laplace

p = Gaussian. q = Laplace. Same mean and variance. High-order
moments differ.

Sample size n = 1000.

1 5 10 15
dimension d

0.0

0.5

1.0

R
ej
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ti

on
ra
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2000 4000
Sample size n
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0.5

1.0

R
ej

ec
ti

on
ra

te FSSD-opt

FSSD-rand

KSD

LKS

MMD-opt

ME-opt

Optimization increases the power.

Two-sample tests can perform well in this case (p; q clearly differ).

20/23



Gaussian-Bernoulli Restricted Boltzmann Machine (RBM)
p(x) is the marginal of

p(x;h) =
1
Z
exp

�
x>Bh+ b>x+ c>x� 1

2
kxk2

�
;

where x 2 R50, h 2 f�1g40 is latent. Randomly pick B;b; c.
q(x) = p(x) with i.i.d. N (0; �per ) noise added to all entries of B.
Sample size n = 1000.
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MMD-opt

ME-opt

KSD (O(n2)), FSSD-opt (O(n)) comparable. LKS has low power.
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Interpretable Test Locations: Chicago Crime

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

n = 11957 robbery events
in Chicago in 2016.
� lat/long coordinates =

sample from q .

Model spatial density with
Gaussian mixtures.

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

Model p = 2-component Gaus-
sian mixture.

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

Score surface

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

F = optimized v.

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime
F = optimized v.
No robbery in Lake Michigan.

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

Model p = 10-component Gaus-
sian mixture.

Learned test locations are in-
terpretable.

22/23



Interpretable Test Locations: Chicago Crime

Capture the right tail better.

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are in-
terpretable.
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Conclusion

Proposed The Finite Set Stein Discrepancy (FSSD).
Goodness-of-fit test based on FSSD is

1 nonparametric,
2 linear-time,
3 tunable (parameters automatically tuned).
4 interpretable.

A Linear-Time Kernel Goodness-of-Fit Test
Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton

NIPS 2017 (best paper award)

Paper: http://papers.nips.cc/paper/
6630-a-linear-time-kernel-goodness-of-fit-test

Python code: https://github.com/wittawatj/kgof
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http://papers.nips.cc/paper/6630-a-linear-time-kernel-goodness-of-fit-test
http://papers.nips.cc/paper/6630-a-linear-time-kernel-goodness-of-fit-test
https://github.com/wittawatj/kgof


Questions?

Thank you

24/23



Illustration: Score Surface
Consider J = 1 location.
score(v) =

\FSSD2(v)c�H1 (v)
(gray), p in wireframe, fxigni=1 � q in purple, H =

best v.

p = N
 
0;

 
1 0
0 1

!!
vs. q = N

 
0;

 
2 0
0 1

!!
.
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2
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Illustration: Score Surface

Consider J = 1 location.
score(v) =

\FSSD2(v)c�H1 (v)
(gray), p in wireframe, fxigni=1 � q in purple, H =

best v.

p = N (0; I) vs. q = Laplace with same mean & variance.
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FSSD and KSD in 1D Gaussian Case

Consider p = N (0; 1) and q = N (�q ; �
2
q).

Assume J = 1 feature for n \FSSD2. Gaussian kernel (bandwidth = �2
k ).

FSSD2 =
�2
ke
�
(v��q )2

�
2
k
+�2

q
��
�2
k + 1

�
�q + v

�
�2
q � 1

��2�
�2
k + �2

q
�3 :

If �q 6= 0; �2
q 6= 1, and v = �(�

2
k+1)�q

(�2
q�1)

, then FSSD2 = 0 !

� This is why v should be drawn from a distribution with a density.

For KSD, Gaussian kernel (bandwidth = �2).

S2 =
�2
q
�
�2 + 2�2

q
�
+
�
�2
q � 1

�
2�

�2 + 2�2
q
�q 2�2

q
�2 + 1

:
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FSSD is a Discrepancy Measure

Theorem 2.
Let V = fv1; : : : ;vJg � Rd be drawn i.i.d. from a distribution � which
has a density. Let X be a connected open set in Rd . Assume

1 (Nice RKHS) Kernel k : X � X ! R is C0-universal, and real
analytic.

2 (Stein witness not too rough) kgk2F <1.

3 (Finite Fisher divergence) Ex�qkrx log
p(x)
q(x)k2 <1 .

4 (Vanishing boundary) limkxk!1 p(x)g(x) = 0.

Then, for any J � 1, �-almost surely

FSSD2 = 0 if and only if p = q.

Gaussian kernel k(x;v) = exp

�
�kx�vk22

2�2
k

�
works.

In practice, J = 1 or J = 5.
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Asymptotic Distributions of\FSSD2

Recall �(x;v) := 1
p(x)@x[k(x;v)p(x)] 2 Rd :

� (x) := vertically stack �(x;v1); : : : �(x;vJ ) 2 RdJ . Feature vector of x.
Mean feature: � := Ex�q [� (x)].
�r := covx�r [� (x)] 2 RdJ�dJ for r 2 fp; qg

Proposition 2 (Asymptotic distributions).

Let Z1; : : : ;ZdJ
i :i :d :� N (0; 1), and f!igdJi=1 be the eigenvalues of �p.

1 Under H0 : p = q, asymptotically n \FSSD2 d!PdJ
i=1(Z

2
i � 1)!i .

� Easy to simulate to get p-value.
� Simulation cost independent of n.

2 Under H1 : p 6= q, we have
p
n(\FSSD2 � FSSD2)

d! N (0; �2
H1
) where

�2
H1

:= 4�>�q�. Implies P(reject H0)! 1 as n !1.

But, how to estimate �p? No sample from p!

Theorem: Using �̂q (computed with fxigni=1 � q) still leads to a
consistent test.
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Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of n \FSSD2 is

c(FSSD) := FSSD2=!1;

where !1 is the maximum eigenvalue of �p := covx�p [� (x)].

Theorem 4.
The Bahadur slope of the linear-time kernel Stein (LKS) statisticp
ncS2

l is

c(LKS) =
1
2
[Eqhp(x;x0)]

2

Ep

h
h2
p (x;x0)

i ;
where hp is the U-statistic kernel of the KSD statistic.
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Bahadur Slope and Bahadur Efficiency
Bahadur slope u rate of p-value ! 0 under H1 as n !1.
Measure a test’s sensitivity to the departure from H0.

H0 : � = 0;

H1 : � 6= 0:

Typically pvaln � exp
�
�1

2c(�)n
�
where c(�) > 0 under H1, and

c(0) = 0 [Bahadur, 1960].
c(�) higher =) more sensitive. Good.

0 50 100
n

0.0

0.5

1.0

p
-v

al
u

e

p-value of T
(1)
n

p-value of T
(2)
n

Bahadur slope

c(�) := �2 plim
n!1

log (1� F (Tn))

n
;

where F (t) = CDF of Tn under H0.

Bahadur efficiency = ratio of slopes
of two tests.
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Gaussian Mean Shift Problem
Consider p = N (0; 1) and q = N (�q ; 1).

Assume J = 1 location for n \FSSD2. Gaussian kernel (bandwidth = �2
k )

c(FSSD)(�q ; v ; �2
k ) =

�2
k

�
�2
k + 2

�3
�2
qe

v2

�
2
k
+2
�
(v��q )2

�
2
k
+1q

2
�2
k
+ 1

�
�2
k + 1

� �
�6
k + 4�4

k + (v2 + 5)�2
k + 2

� :
For LKS, Gaussian kernel (bandwidth = �2).

c(LKS)(�q ; �
2) =

�
�2
�5=2 �

�2 + 4
�5=2

�4
q

2 (�2 + 2) (�8 + 8�6 + 21�4 + 20�2 + 12)
:

Theorem 5 (FSSD is at least two times more efficient).

Fix �2
k = 1 for n \FSSD2. Then, 8�q 6= 0, 9v 2 R, 8�2 > 0, we have

Bahadur efficiency
c(FSSD)(�q ; v ; �2

k )

c(LKS)(�q ; �2)
> 2:
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Harder RBM Problem

Perturb only one entry of B 2 R50�40 (in the RBM).

B1;1  B1;1 +N (0; �2
per = 0:12).

2000 4000
Sample size n

0.00
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R
ej

ec
ti

on
ra

te

2000 4000
Sample size n

0.0

0.5

1.0

R
ej

ec
ti

on
ra

te FSSD-opt

FSSD-rand

KSD

LKS

MMD-opt

ME-opt

Two-sample tests fail. Samples from p; q look roughly the same.

FSSD-opt is comparable to KSD at low n . One order of magnitude
faster.
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