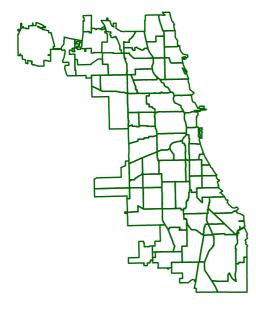
A Linear-Time Kernel Goodness-of-Fit Test

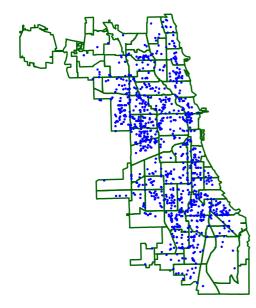
Wittawat Jitkrittum^{1,*} Wenkai Xu¹ Zoltán Szabó² Kenji Fukumizu³ Arthur Gretton¹

wittawatj@gmail.com

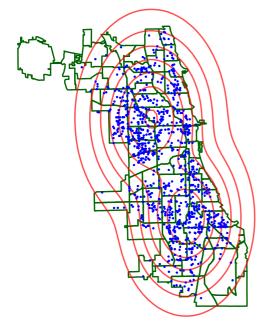
¹Gatsby Unit, University College London *(Now at Max Planck Institute for Intelligent Systems) ²CMAP, École Polytechnique ³The Institute of Statistical Mathematics, Tokyo

> Sertis, Bangkok 23 March 2018

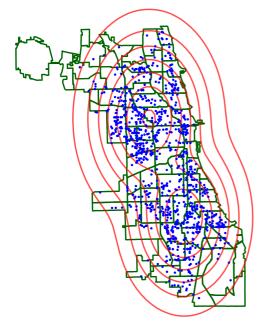




Data = robbery events inChicago in 2016.

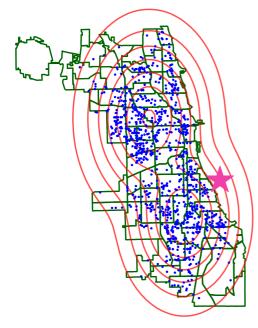


Is this a good model?



Goals:

- Test if a (complicated) model fits the data.
- If it does not, show a location where it fails.



Goals:

- Test if a (complicated) model fits the data.
- If it does not, show a location where it fails.

Goodness-of-fit Testing

Given:

- 1 Sample $\{\mathbf{x}_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$ (unknown) on \mathbb{R}^d ,
- 2 Unnormalized density p (known model).

 $egin{array}{ll} H_0\colon oldsymbol{p}=oldsymbol{q}\ H_1\colon oldsymbol{p}
eq oldsymbol{q} \end{array}$

Want a test ...

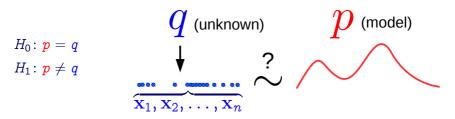
- 1 Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable.Model criticism by finding 🔭

Goodness-of-fit Testing

Given:

1 Sample $\{\mathbf{x}_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$ (unknown) on \mathbb{R}^d ,

2 Unnormalized density p (known model).



Want a test ...

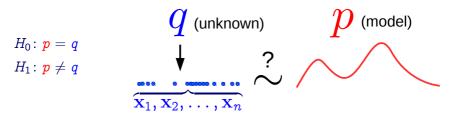
- 1 Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable.Model criticism by finding 🥕

Goodness-of-fit Testing

Given:

1 Sample $\{\mathbf{x}_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$ (unknown) on \mathbb{R}^d ,

2 Unnormalized density p (known model).

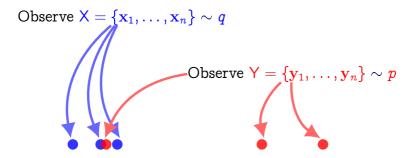


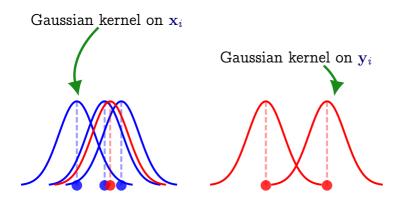
Want a test ...

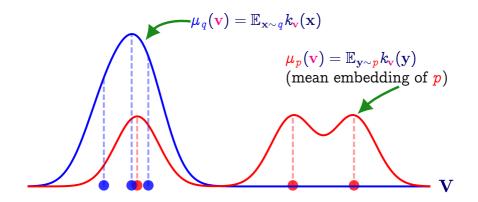
- 1 Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable. Model criticism by finding 📩

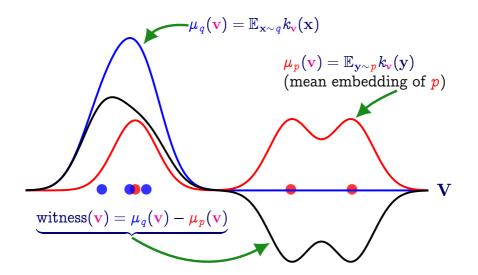
Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

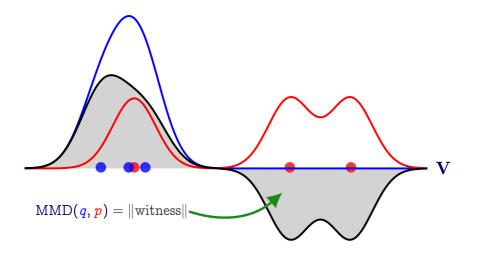
• • • •



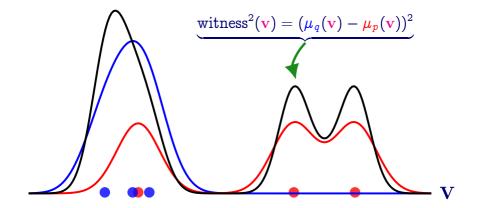




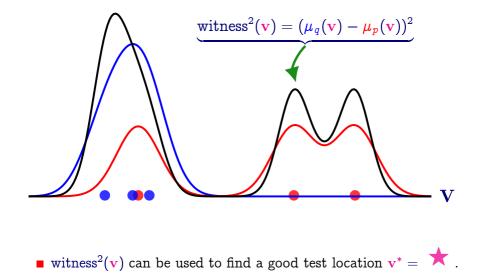




Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)



Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)



• Find a location **v** at which q and p differ most (ME test)

Find a location **v** at which q and p differ most (ME test)

[Jitkrittum et al., 2016].

 $ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad]$

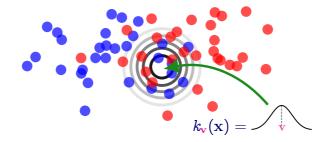
Find a location \mathbf{v} at which q and p differ most (ME test)

$$egin{aligned} & ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad] \ & ext{score}(\mathbf{v}) = rac{ ext{witness}^2(\mathbf{v})}{ ext{noise}(\mathbf{v})} = rac{ ext{witness}^2(\mathbf{v})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]}}. \end{aligned}$$

Find a location **v** at which q and p differ most (ME test)

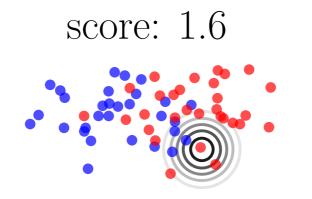
$$egin{aligned} & ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad] \ & ext{score}(\mathbf{v}) = rac{ ext{witness}^2(\mathbf{v})}{ ext{noise}(\mathbf{v})} = rac{ ext{witness}^2(\mathbf{v})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]}}. \end{aligned}$$

Find a location \mathbf{v} at which q and p differ most (ME test)



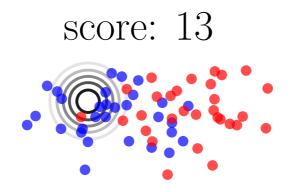
$$egin{aligned} & ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad] \ & ext{score}(\mathbf{v}) = rac{ ext{witness}^2(\mathbf{v})}{ ext{noise}(\mathbf{v})} = rac{ ext{witness}^2(\mathbf{v})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]}}. \end{aligned}$$

Find a location \mathbf{v} at which q and p differ most (ME test)



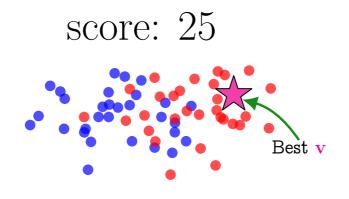
$$egin{aligned} & ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad] \ & ext{score}(\mathbf{v}) = rac{ ext{witness}^2(\mathbf{v})}{ ext{noise}(\mathbf{v})} = rac{ ext{witness}^2(\mathbf{v})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]}}. \end{aligned}$$

Find a location \mathbf{v} at which q and p differ most (ME test)



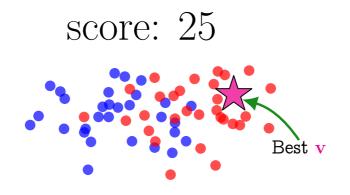
$$egin{aligned} & ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad] \ & ext{score}(\mathbf{v}) = rac{ ext{witness}^2(\mathbf{v})}{ ext{noise}(\mathbf{v})} = rac{ ext{witness}^2(\mathbf{v})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]}}. \end{aligned}$$

Find a location \mathbf{v} at which q and p differ most (ME test)



$$egin{aligned} & ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad] \ & ext{score}(\mathbf{v}) = rac{ ext{witness}^2(\mathbf{v})}{ ext{noise}(\mathbf{v})} = rac{ ext{witness}^2(\mathbf{v})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]}}. \end{aligned}$$

Find a location \mathbf{v} at which q and p differ most (ME test)



$$egin{aligned} & ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad] \\ & ext{score}(\mathbf{v}) = rac{ ext{witness}^2(\mathbf{v})}{ ext{noise}(\mathbf{v})} = egin{aligned} & ext{No sample from } p. \\ & ext{Difficult to generate.} \end{array} \end{bmatrix}$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(\text{Stein}) \text{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p} [\quad T_p k_{\mathbf{v}}(\mathbf{y}) \quad]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(\text{Stein}) \text{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[T_p / \mathbf{v}] - \mathbb{E}_{\mathbf{y} \sim p}[T_p / \mathbf{v}]$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{y}}(\mathbf{y})]$.

(Stein) witness(\mathbf{v}) = $\mathbb{E}_{\mathbf{x} \sim q}$ [] - $\mathbb{E}_{\mathbf{y} \sim p}$ [

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(\text{Stein}) \text{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

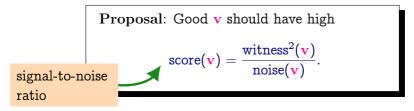
 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad]$

Idea: Define T_p such that $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$, for any \mathbf{v} .

Proposal: Good **v** should have high $score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad]$

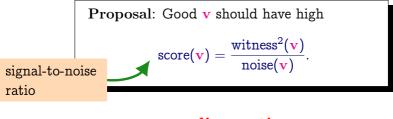


The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad]$

Idea: Define T_p such that $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$, for any \mathbf{v} .



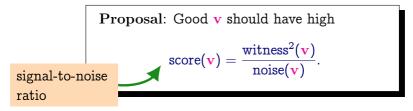
• score(v) can be estimated in linear-time.

The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad]$

Idea: Define T_p such that $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$, for any \mathbf{v} .

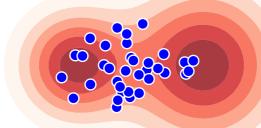


• score(v) can be estimated in <u>linear-time</u>.

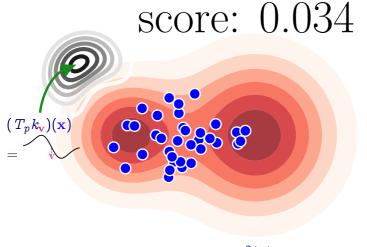
Goodness-of-fit test:

- 1 Find $\mathbf{v}^* = \arg \max_{\mathbf{v}} \operatorname{score}(\mathbf{v})$.
- 2 Reject H_0 if witness²(\mathbf{v}^*) > threshold.

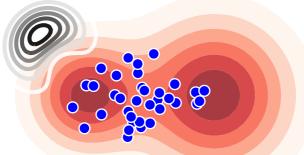
$$score(\mathbf{v}) = rac{witness^2(\mathbf{v})}{noise(\mathbf{v})}$$



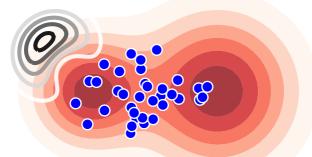
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



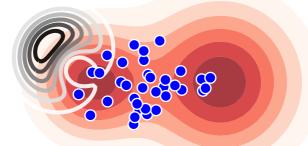
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



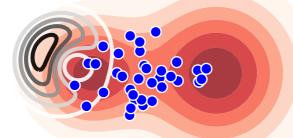
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



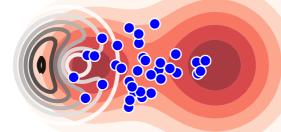
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



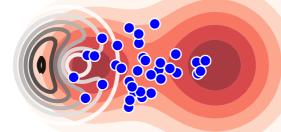
$$\operatorname{score}(\mathbf{v}) = \frac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



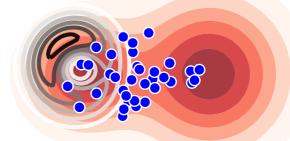
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



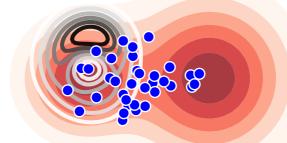
$$\operatorname{score}(\mathbf{v}) = \frac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



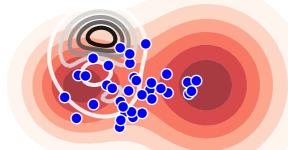
$$\operatorname{score}(\mathbf{v}) = \frac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



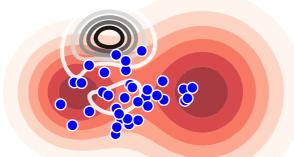
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



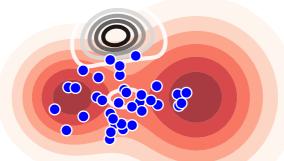
$$\operatorname{score}(\mathbf{v}) = \frac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



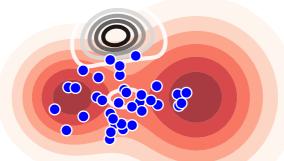
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



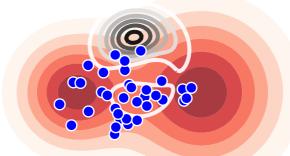
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



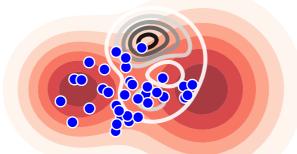
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



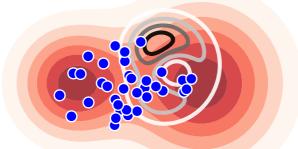
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



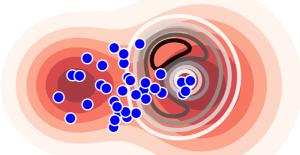
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



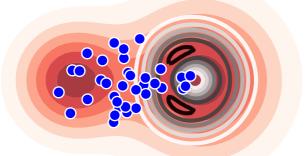
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



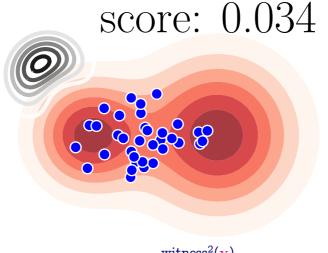
$$\operatorname{score}(\mathbf{v}) = \frac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



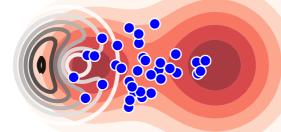
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



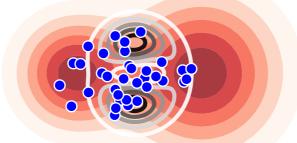
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



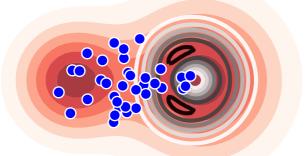
$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



$$\operatorname{score}(\mathbf{v}) = \frac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$



$$\operatorname{score}(\mathbf{v}) = rac{\operatorname{witness}^2(\mathbf{v})}{\operatorname{noise}(\mathbf{v})}.$$

Theory

- 1 What is $T_p k_v$?
- 2 Test statistic
- 3 Distributions of the test statistic, test threshold.
- 4 What does $\mathbf{v}^* = \arg \max_{\mathbf{v}} \operatorname{score}(\mathbf{v})$ do theoretically?

Recall witness(\mathbf{v}) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_pk_{\mathbf{v}})(\mathbf{y}) = rac{1}{p(\mathbf{y})}rac{d}{d\mathbf{y}}[k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$
 Normalizer cancels $T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

 $\mathbb{E}_{\mathbf{y} \sim p}\left[(\,T_p k_{\mathbf{v}})(\mathbf{y})\right]$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y}\sim p}\left[(\,T_pk_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty}\left[(\,T_pk_{\mathbf{v}})(\mathbf{y})
ight]p(\mathbf{y})\mathrm{d}\mathbf{y}$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y}\sim p}\left[(\,T_pk_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty}\left[rac{1}{p(\mathbf{y})}rac{d}{d\mathbf{y}}[k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})]
ight]p(\mathbf{y})\,\mathrm{d}\mathbf{y}$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p}\left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty} \left[rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})]
ight] p(\mathbf{y}) \mathrm{d}\mathbf{y}$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$egin{aligned} \mathbb{E}_{\mathbf{y}\sim p}\left[(\,T_p\,k_\mathbf{v}^{\phantom{\mathbf{v}}})(\mathbf{y})
ight]&=\int_{-\infty}^{\infty}\,\left[rac{1}{p(\mathbf{y})}rac{d}{d\mathbf{y}}[k_\mathbf{v}^{\phantom{\mathbf{v}}}(\mathbf{y})p(\mathbf{y})]
ight]p(\mathbf{y})\,\mathrm{d}\mathbf{y}\ &=\int_{-\infty}^{\infty}\,rac{d}{d\mathbf{y}}[k_\mathbf{v}^{\phantom{\mathbf{v}}}(\mathbf{y})p(\mathbf{y})]\,\mathrm{d}\mathbf{y} \end{aligned}$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\begin{split} \mathbb{E}_{\mathbf{y} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y}) \right] &= \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \right] p(\mathbf{y}) d\mathbf{y} \\ &= \int_{-\infty}^{\infty} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] d\mathbf{y} \\ &= [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]_{\mathbf{y} = -\infty}^{\mathbf{y} = \infty} \end{split}$$

(1) What is $T_p k_v$?

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$
 Normalizer cancels

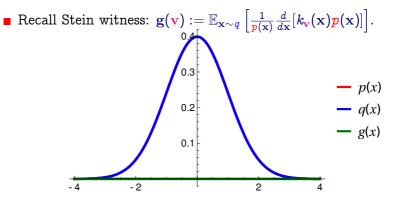
Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

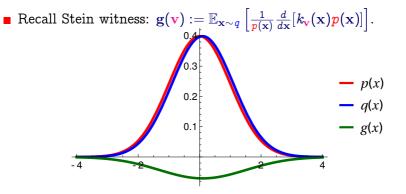
[Liu et al., 2016, Chwialkowski et al., 2016]

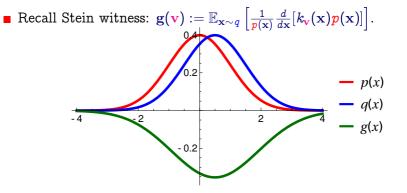
Proof:

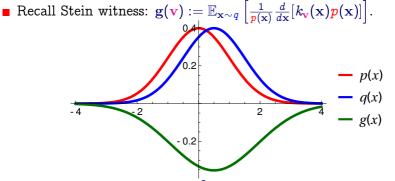
$$\mathbb{E}_{\mathbf{y}\sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y}) \right] = \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \right] p(\mathbf{y}) d\mathbf{y}$$
$$= \int_{-\infty}^{\infty} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] d\mathbf{y}$$
$$= [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]_{\mathbf{y}=-\infty}^{\mathbf{y}=\infty}$$
$$= 0$$

 $(ext{assume lim}_{|\mathbf{y}|
ightarrow \infty} k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y}))$









FSSD statistic: Evaluate g² at J test locations V = {v₁,..., v_J}.
Population FSSD

$$ext{FSSD}^2 = rac{1}{dJ}\sum_{j=1}^J \| extbf{g}(extbf{v}_j)\|_2^2.$$

Unbiased estimator FSSD² computable in O(d²Jn) time. (d = input dimension)

(2) FSSD is a Discrepancy Measure

• FSSD² = $\frac{1}{dJ} \sum_{j=1}^{J} \|\mathbf{g}(\mathbf{v}_j)\|_2^2$.

Theorem 1 (FSSD is a discrepancy measure).

Main conditions:

- 1 (Nice kernel) Kernel k is C₀-universal, and real analytic e.g., Gaussian kernel.
- 2 (Vanishing boundary) $\lim_{\|\mathbf{x}\|\to\infty} p(\mathbf{x})k_{\mathbf{v}}(\mathbf{x}) = \mathbf{0}$.
- 3 (Avoid "blind spots") Locations $\mathbf{v}_1, \ldots, \mathbf{v}_J \sim \eta$ which has a density. Then, for any J > 1, η -almost surely,

 $\mathrm{FSSD}^2 = 0 \iff p = q.$

Summary: Evaluating the witness at random locations is sufficient to detect the discrepancy between p, q.

$$\text{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

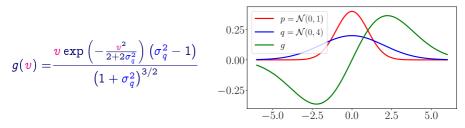
$$g(v)= rac{v \exp \left(-rac{v^2}{2+2\sigma_q^2}
ight) \left(\sigma_q^2-1
ight)}{\left(1+\sigma_q^2
ight)^{3/2}}$$

If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

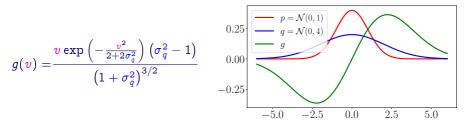


If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

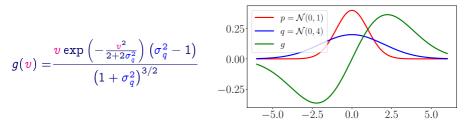


If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.



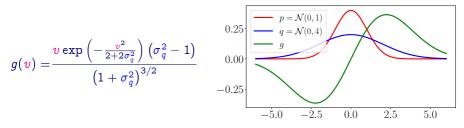
• If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

• If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.

So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

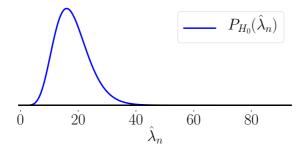


• If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

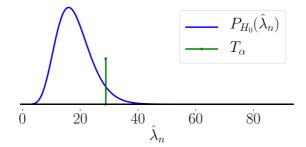
If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.

So, if $v \sim$ a distribution with a density, then $v \notin R$.

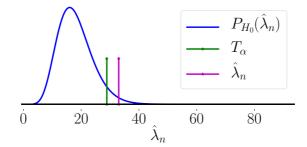
(3) Asymptotic Distributions of $\hat{\lambda}_n := n \widehat{\text{FSSD}^2}$



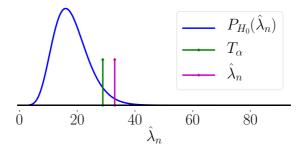
(3) Asymptotic Distributions of $\hat{\lambda}_n := n \widetilde{\mathrm{FSSD}^2}$



(3) Asymptotic Distributions of $\hat{\lambda}_n := n \widehat{\text{FSSD}^2}$



(3) Asymptotic Distributions of $\hat{\lambda}_n := n \widehat{\text{FSSD}^2}$

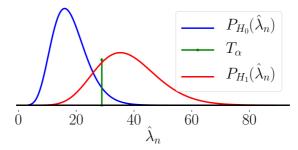


Under $H_0: p = q$, asymptotically

$$\hat{\lambda}_n := n \widehat{\mathrm{FSSD}^2} \stackrel{d}{ o} \sum_{i=1}^{dJ} (Z_i^2 - 1) \omega_i,$$

• $\{\omega_i\}_{i=1}^{dJ}$ are non-negative, computable quantities. $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$

(3) Asymptotic Distributions of $\hat{\lambda}_n := n \widehat{\mathrm{FSSD}^2}$



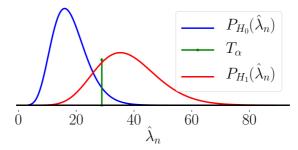
Under $H_0: p = q$, asymptotically

$$\hat{\lambda}_n := n \widehat{\mathrm{FSSD}^2} \stackrel{d}{ o} \sum_{i=1}^{dJ} (Z_i^2 - 1) \omega_i,$$

• $\{\omega_i\}_{i=1}^{dJ}$ are non-negative, computable quantities. $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$

 $\ \ \, \text{ Under } H_1: p \neq q, \text{ asymptotically } \sqrt{n} (\widehat{\mathrm{FSSD}^2} - \mathrm{FSSD}^2) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma_{H_1}^2).$

(3) Asymptotic Distributions of $\hat{\lambda}_n := n \widehat{\text{FSSD}^2}$



Under $H_0: p = q$, asymptotically

$$\hat{\lambda}_n := n \widehat{\mathrm{FSSD}^2} \stackrel{d}{ o} \sum_{i=1}^{dJ} (Z_i^2 - 1) \omega_i,$$

• $\{\omega_i\}_{i=1}^{dJ}$ are non-negative, computable quantities. $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$

■ Under $H_1: p \neq q$, asymptotically $\sqrt{n}(\widehat{\text{FSSD}^2} - \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$. witness²(V) noise(V)

(4) What Does $\arg \max_{v} \operatorname{score}(v)$ Do?

Proposition 1 (Asymptotic test power).

For large n, the test power $\mathbb{P}(reject \ H_0 \mid H_1 \ true) =$

$$\mathbb{P}_{H_1}(\widehat{n\mathrm{FSSD}^2} > T_{lpha}) \ pprox \Phi\left(\sqrt{n}rac{\mathrm{FSSD}^2}{\sigma_{H_1}} - rac{T_{lpha}}{\sqrt{n}\sigma_{H_1}}
ight),$$
 where $\Phi=\ CDF$ of $\mathcal{N}(0,1).$



• For large n, the 2^{nd} term dominates.

$$rg\max_{V,\sigma_k^2} \mathbb{P}_{H_1}(\widehat{n\mathrm{FSSD}^2} > T_lpha) pprox rg\max_{V,\sigma_k^2} \left[rac{\mathrm{FSSD}^2}{\widehat{\sigma_{H_1}}} = \mathrm{score}(V,\sigma_k^2)
ight].$$

Maximize score(V, σ_k^2) \iff Maximize test power

In practice, split {x_i}ⁿ_{i=1} into independent training/test sets. Optimize on tr. Goodness-of-fit test on te.

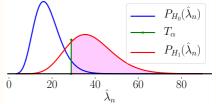
(4) What Does $\arg \max_{v} \operatorname{score}(v)$ Do?

Proposition 1 (Asymptotic test power).

For large n, the test power $\mathbb{P}(reject \ H_0 \mid H_1 \ true) =$

$$\mathbb{P}_{H_{1}}(n\widehat{\mathrm{FSSD}^{2}} > T_{\alpha})$$

$$\approx \Phi\left(\sqrt{n}\frac{\mathrm{FSSD}^{2}}{\sigma_{H_{1}}} - \frac{T_{\alpha}}{\sqrt{n}\sigma_{H_{1}}}\right),$$
where $\Phi = CDF$ of $\mathcal{N}(0, 1).$



• For large n, the 2^{nd} term dominates.

$$rg\max_{V,\sigma_k^2} \mathbb{P}_{H_1}(n\widehat{\mathrm{FSSD}}^2 > T_{lpha}) pprox rg\max_{V,\sigma_k^2} \left[rac{\widehat{\mathrm{FSSD}}^2}{\widehat{\sigma_{H_1}}} = \mathrm{score}(V,\sigma_k^2)
ight].$$

Maximize score(V, σ_k^2) \iff Maximize test power

In practice, split {x_i}ⁿ_{i=1} into independent training/test sets. Optimize on tr. Goodness-of-fit test on te.

(4) What Does $\arg \max_{\mathbf{v}} \operatorname{score}(\mathbf{v})$ Do?

Proposition 1 (Asymptotic test power).

For large n, the test power $\mathbb{P}(reject \ H_0 \mid H_1 \ true) =$

$$\mathbb{P}_{H_{1}}(n\widehat{\mathrm{FSSD}}^{2} > T_{\alpha})$$

$$\approx \Phi\left(\sqrt{n}\frac{\mathrm{FSSD}^{2}}{\sigma_{H_{1}}} - \frac{T_{\alpha}}{\sqrt{n}\sigma_{H_{1}}}\right),$$

$$\dot{0} \qquad 2\dot{0} \qquad 4\dot{0} \qquad \dot{h}_{\alpha} \qquad \dot{h}_{\alpha}$$
where $\Phi = CDF$ of $\mathcal{N}(0, 1).$

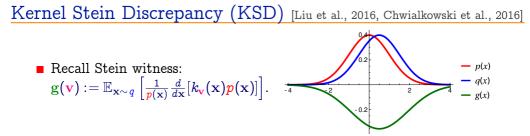
• For large n, the 2^{nd} term dominates.

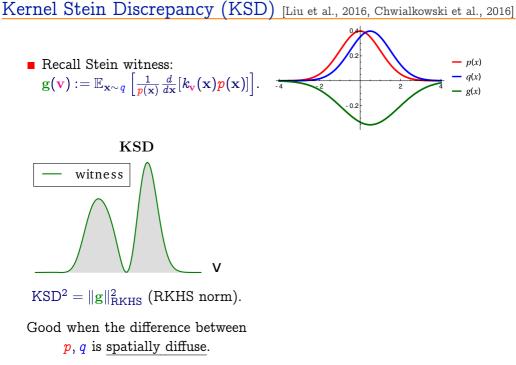
$$\arg \max_{V,\sigma_k^2} \mathbb{P}_{H_1}(n\widehat{\mathrm{FSSD}}^2 > T_{\alpha}) \approx \arg \max_{V,\sigma_k^2} \left[\frac{\widehat{\mathrm{FSSD}}^2}{\widehat{\sigma_{H_1}}} = \operatorname{score}(V, \sigma_k^2) \right].$$
Maximize score(V, σ_i^2) \iff Maximize test power

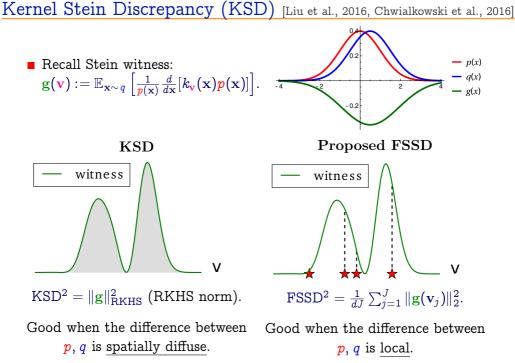
 \sim

In practice, split {x_i}ⁿ_{i=1} into independent training/test sets. Optimize on tr. Goodness-of-fit test on te.

Related Works







Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: [Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathrm{KSD}^2 = \|\mathbf{g}\|^2_{\mathrm{RKHS}} = \underbrace{\underbrace{\mathsf{double sums}}_{\mathbf{x} \sim q} \mathbb{E}_{\mathbf{y} \sim q}}_{\mathbf{y} \sim q} h_p(\mathbf{x}, \mathbf{y})$$

where

 $egin{aligned} h_p(\mathbf{x},\mathbf{y}) &:= \left[\partial_\mathbf{x}\log p(\mathbf{x})
ight]k(\mathbf{x},\mathbf{y})\left[\partial_\mathbf{y}\log p(\mathbf{y})
ight]\ &+ \left[\partial_\mathbf{y}\log p(\mathbf{y})
ight]\partial_\mathbf{x}k(\mathbf{x},\mathbf{y})\ &+ \left[\partial_\mathbf{x}\log p(\mathbf{x})
ight]\partial_\mathbf{y}k(\mathbf{x},\mathbf{y})\ &+ \partial_\mathbf{x}\partial_\mathbf{y}k(\mathbf{x},\mathbf{y}) \end{aligned}$

and k is a kernel.

• X The "double sums" make it $\mathcal{O}(d^2n^2)$. Slow.

Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: [Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathrm{KSD}^2 = \|\mathbf{g}\|^2_{\mathrm{RKHS}} = \underbrace{\overline{\mathbb{E}_{\mathbf{x} \sim q} \mathbb{E}_{\mathbf{y} \sim q}}}_{\mathbf{x} \sim q} h_p(\mathbf{x}, \mathbf{y})$$

where

$$egin{aligned} h_{p}(\mathbf{x},\mathbf{y}) &:= \left[\partial_{\mathbf{x}}\log p(\mathbf{x})
ight]k(\mathbf{x},\mathbf{y})\left[\partial_{\mathbf{y}}\log p(\mathbf{y})
ight]\ &+ \left[\partial_{\mathbf{y}}\log p(\mathbf{y})
ight]\partial_{\mathbf{x}}k(\mathbf{x},\mathbf{y})\ &+ \left[\partial_{\mathbf{x}}\log p(\mathbf{x})
ight]\partial_{\mathbf{y}}k(\mathbf{x},\mathbf{y})\ &+ \partial_{\mathbf{x}}\partial_{\mathbf{y}}k(\mathbf{x},\mathbf{y}) \end{aligned}$$

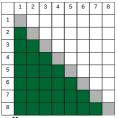
and k is a kernel.

• X The "double sums" make it $\mathcal{O}(d^2n^2)$. Slow.

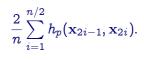
Linear-Time Kernel Stein Discrepancy (LKS)

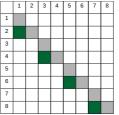
[Liu et al., 2016] also proposed a linear version of KSD.
For {x_i}ⁿ_{i=1} ~ q, KSD test statistic is

$$rac{2}{n(n-1)}\sum_{i < j}h_p(\mathbf{x}_i,\mathbf{x}_j).$$



LKS test statistic is a "running average"





Both unbiased. LKS has O(d²n) runtime. Same as proposed FSSD.
X LKS has high variance. Poor test power.

Simulation Settings

Gaussian kernel
$$k(\mathbf{x},\mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}
ight)$$

	Method	Description
1 2	FSSD-opt FSSD-rand	Proposed. With optimization. $J = 5$. Proposed. Random test locations.
		Quadratic-time kernel Stein discrepancy [Liu et al., 2016, Chwialkowski et al., 2016]
4		Linear-time running average version of KSD.
5	MMD-opt	MMD two-sample test [Gretton et al., 2012]. With optimization.
6	ME-test	$\underline{\mathbf{M}}$ ean $\underline{\mathbf{E}}$ mbeddings two-sample test [Jitkrittum et al., 2016]. With optimization.

- Two-sample tests need to draw sample from p.
- Tests with optimization use 20% of the data.
- Significance level $\alpha = 0.05$.

Simulation Settings

Gaussian kernel
$$k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}\right)$$

	Method	Description
1 2	FSSD-opt FSSD-rand	Proposed. With optimization. $J = 5$. Proposed. Random test locations.
3	KSD	Quadratic-time kernel Stein discrepancy [Liu et al., 2016, Chwialkowski et al., 2016]
4	LKS	Linear-time running average version of KSD.
5	MMD-opt	MMD two-sample test [Gretton et al., 2012]. With optimization.
6	ME-test	\mathbf{M} ean \mathbf{E} mbeddings two-sample test [Jitkrittum et al., 2016]. With optimization.

- Two-sample tests need to draw sample from p.
- Tests with optimization use 20% of the data.
- Significance level $\alpha = 0.05$.

Simulation Settings

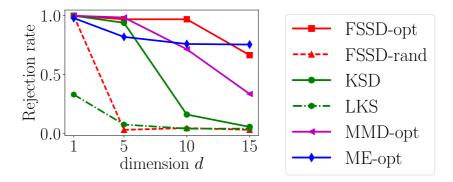
Gaussian kernel
$$k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}\right)$$

	Method	Description
1 2	FSSD-opt FSSD-rand	Proposed. With optimization. $J = 5$. Proposed. Random test locations.
3	KSD LKS	Quadratic-time kernel Stein discrepancy [Liu et al., 2016, Chwialkowski et al., 2016] Linear-time running average version of KSD.
5	MMD-opt	MMD two-sample test [Gretton et al., 2012]. With optimization.
6	ME-test	Mean Embeddings two-sample test [Jitkrittum et al., 2016]. With optimization.

- Two-sample tests need to draw sample from p.
- Tests with optimization use 20% of the data.
- Significance level $\alpha = 0.05$.

Gaussian Vs. Laplace

- p = Gaussian. q = Laplace. Same mean and variance. High-order moments differ.
- Sample size n = 1000.



- Optimization increases the power.
- Two-sample tests can perform well in this case (p, q clearly differ).

• $p(\mathbf{x})$ is the marginal of

$$p(\mathbf{x},\mathbf{h}) = rac{1}{Z} \exp\left(\mathbf{x}^{ op} \mathbf{B} \mathbf{h} + \mathbf{b}^{ op} \mathbf{x} + \mathbf{c}^{ op} \mathbf{x} - rac{1}{2} \|\mathbf{x}\|^2
ight),$$

where $\mathbf{x} \in \mathbb{R}^{50}$, $\mathbf{h} \in \{\pm 1\}^{40}$ is latent. Randomly pick $\mathbf{B}, \mathbf{b}, \mathbf{c}$.

q(x) = p(x) with i.i.d. N(0, σ_{per}) noise added to all entries of B.
Sample size n = 1000.

• $p(\mathbf{x})$ is the marginal of

$$p(\mathbf{x},\mathbf{h}) = rac{1}{Z} \exp\left(\mathbf{x}^{ op} \mathbf{B} \mathbf{h} + \mathbf{b}^{ op} \mathbf{x} + \mathbf{c}^{ op} \mathbf{x} - rac{1}{2} \|\mathbf{x}\|^2
ight),$$

where $\mathbf{x} \in \mathbb{R}^{50}$, $\mathbf{h} \in \{\pm 1\}^{40}$ is latent. Randomly pick \mathbf{B} , \mathbf{b} , \mathbf{c} . $q(\mathbf{x}) = p(\mathbf{x})$ with i.i.d. $\mathcal{N}(0, \sigma_{per})$ noise added to all entries of \mathbf{B} . Sample size n = 1000.

• $p(\mathbf{x})$ is the marginal of

$$p(\mathbf{x},\mathbf{h}) = rac{1}{Z} \exp\left(\mathbf{x}^{ op} \mathbf{B} \mathbf{h} + \mathbf{b}^{ op} \mathbf{x} + \mathbf{c}^{ op} \mathbf{x} - rac{1}{2} \|\mathbf{x}\|^2
ight),$$

where $\mathbf{x} \in \mathbb{R}^{50}$, $\mathbf{h} \in \{\pm 1\}^{40}$ is latent. Randomly pick $\mathbf{B}, \mathbf{b}, \mathbf{c}$.

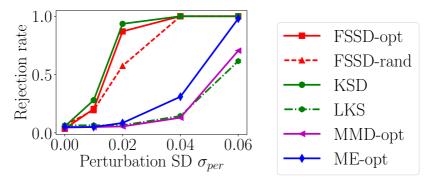
• $q(\mathbf{x}) = p(\mathbf{x})$ with i.i.d. $\mathcal{N}(0, \sigma_{per})$ noise added to all entries of **B**.

Sample size n = 1000.

• $p(\mathbf{x})$ is the marginal of

$$p(\mathbf{x},\mathbf{h}) = rac{1}{Z} \exp\left(\mathbf{x}^ op \mathbf{B}\mathbf{h} + \mathbf{b}^ op \mathbf{x} + \mathbf{c}^ op \mathbf{x} - rac{1}{2} \|\mathbf{x}\|^2
ight),$$

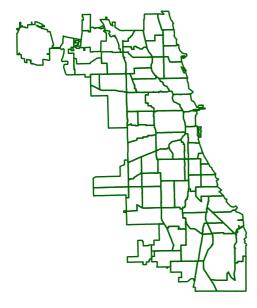
where $\mathbf{x} \in \mathbb{R}^{50}$, $\mathbf{h} \in \{\pm 1\}^{40}$ is latent. Randomly pick \mathbf{B} , \mathbf{b} , \mathbf{c} . $q(\mathbf{x}) = p(\mathbf{x})$ with i.i.d. $\mathcal{N}(0, \sigma_{per})$ noise added to all entries of \mathbf{B} . Sample size n = 1000.

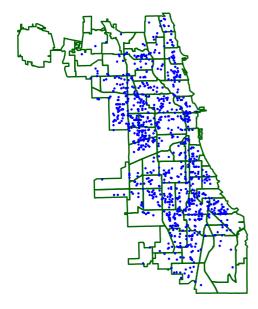


KSD ($\mathcal{O}(n^2)$), FSSD-opt ($\mathcal{O}(n)$) comparable. LKS has low power.

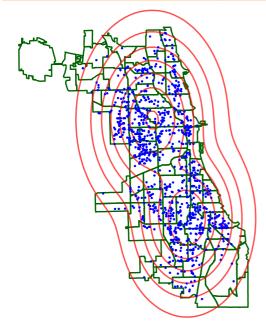
Interpretable Test Locations: Chicago Crime



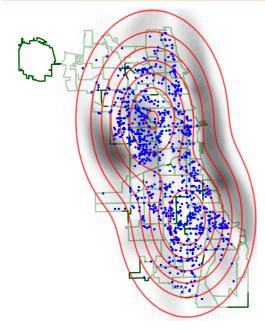




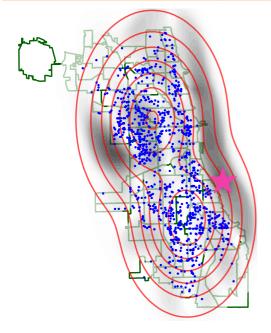
- n = 11957 robbery events in Chicago in 2016.
 - lat/long coordinates = sample from q.
- Model spatial density with Gaussian mixtures.



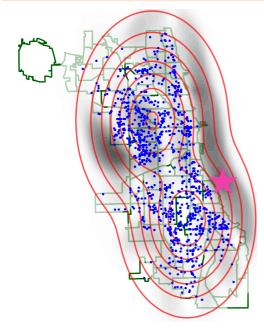
Model p = 2-component Gaussian mixture.



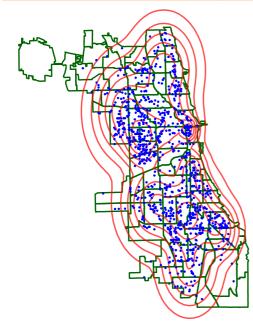
Score surface



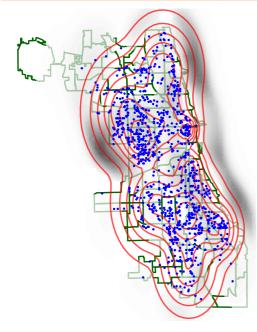
 \star = optimized v.



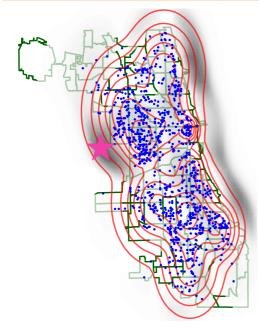
 \star = optimized **v**. No robbery in Lake Michigan.



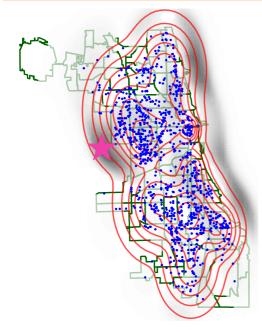
Model p = 10-component Gaussian mixture.



Capture the right tail better.



Still, does not capture the left tail.



Still, does not capture the left tail.

Learned test locations are interpretable.

Conclusion

- Proposed The Finite Set Stein Discrepancy (FSSD).
- Goodness-of-fit test based on FSSD is
 - 1 nonparametric,
 - 2 linear-time,
 - 3 tunable (parameters automatically tuned).
 - 4 interpretable.

A Linear-Time Kernel Goodness-of-Fit Test Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton NIPS 2017 (best paper award)

- Paper: http://papers.nips.cc/paper/ 6630-a-linear-time-kernel-goodness-of-fit-test
- Python code: https://github.com/wittawatj/kgof

Thank you

Illustration: Score Surface

Consider J = 1 location.
 score(v) = FSSD²(v)/σ_{H₁}(v) (gray), p in wireframe, {x_i}ⁿ_{i=1} ~ q in purple, ★ = best v.

$$p = \mathcal{N}\left(oldsymbol{0}, \left(egin{array}{c} 1 & 0 \ 0 & 1 \end{array}
ight)
ight) ext{ vs. } q = \mathcal{N}\left(oldsymbol{0}, \left(egin{array}{c} 2 & 0 \ 0 & 1 \end{array}
ight)
ight).$$

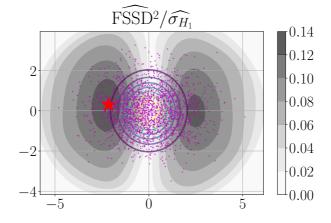
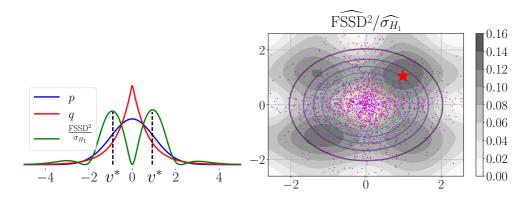


Illustration: Score Surface

Consider J = 1 location.
 score(v) = FSSD²(v)/σ_{H₁}(v) (gray), p in wireframe, {x_i}_{i=1}ⁿ ~ q in purple, ★ = best v.

 $p = \mathcal{N}(0, \mathbf{I})$ vs. q = Laplace with same mean & variance.



FSSD and KSD in 1D Gaussian Case

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, \sigma_q^2)$.

Assume J = 1 feature for $n \widehat{\text{FSSD}^2}$. Gaussian kernel (bandwidth = σ_k^2).

$$\text{FSSD}^{2} = \frac{\sigma_{k}^{2} e^{-\frac{(v-\mu_{q})^{2}}{\sigma_{k}^{2}+\sigma_{q}^{2}}} \left(\left(\sigma_{k}^{2}+1\right) \mu_{q}+v \left(\sigma_{q}^{2}-1\right) \right)^{2}}{\left(\sigma_{k}^{2}+\sigma_{q}^{2}\right)^{3}}.$$

If
$$\mu_q \neq 0, \sigma_q^2 \neq 1$$
, and $v = -\frac{(\sigma_k^2 + 1)\mu_q}{(\sigma_q^2 - 1)}$, then $\text{FSSD}^2 = 0$!

This is why v should be drawn from a distribution with a density.
For KSD, Gaussian kernel (bandwidth = κ²).

$$S^{2} = \frac{\mu_{q}^{2} \left(\kappa^{2} + 2\sigma_{q}^{2}\right) + \left(\sigma_{q}^{2} - 1\right)^{2}}{\left(\kappa^{2} + 2\sigma_{q}^{2}\right) \sqrt{\frac{2\sigma_{q}^{2}}{\kappa^{2}} + 1}}$$

FSSD and KSD in 1D Gaussian Case

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, \sigma_q^2)$.

• Assume J = 1 feature for $n \widehat{\text{FSSD}^2}$. Gaussian kernel (bandwidth = σ_k^2).

$$\text{FSSD}^{2} = \frac{\sigma_{k}^{2} e^{-\frac{(v-\mu_{q})^{2}}{\sigma_{k}^{2}+\sigma_{q}^{2}}} \left(\left(\sigma_{k}^{2}+1\right) \mu_{q}+v \left(\sigma_{q}^{2}-1\right) \right)^{2}}{\left(\sigma_{k}^{2}+\sigma_{q}^{2}\right)^{3}}.$$

If
$$\mu_q \neq 0, \sigma_q^2 \neq 1$$
, and $v = -\frac{(\sigma_k^2+1)\mu_q}{(\sigma_q^2-1)}$, then $\text{FSSD}^2 = 0$!

This is why v should be drawn from a distribution with a density.
For KSD, Gaussian kernel (bandwidth = κ²).

$$S^{2} = \frac{\mu_{q}^{2} \left(\kappa^{2} + 2\sigma_{q}^{2}\right) + \left(\sigma_{q}^{2} - 1\right)^{2}}{\left(\kappa^{2} + 2\sigma_{q}^{2}\right) \sqrt{\frac{2\sigma_{q}^{2}}{\kappa^{2}} + 1}}$$

FSSD is a Discrepancy Measure

Theorem 2.

П

Let $V = {\mathbf{v}_1, \dots, \mathbf{v}_J} \subset \mathbb{R}^d$ be drawn i.i.d. from a distribution η which has a density. Let \mathcal{X} be a connected open set in \mathbb{R}^d . Assume

- 1 (Nice RKHS) Kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is C_0 -universal, and real analytic.
- 2 (Stein witness not too rough) $\|g\|_{\mathcal{F}}^2 < \infty$.
- 3 (Finite Fisher divergence) $\mathbb{E}_{\mathbf{x} \sim q} \| \nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} \|^2 < \infty$.
- 4 (Vanishing boundary) $\lim_{\|\mathbf{x}\| \to \infty} p(\mathbf{x}) \mathbf{g}(\mathbf{x}) = \mathbf{0}$.

Then, for any $J \ge 1$, η -almost surely

 $FSSD^2 = 0$ if and only if p = q.

Gaussian kernel
$$k(\mathbf{x},\mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}
ight)$$
 works

In practice, J = 1 or J = 5.

- Recall $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \partial_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v})p(\mathbf{x})] \in \mathbb{R}^d$.
- $\tau(\mathbf{x}) := \text{vertically stack } \xi(\mathbf{x}, \mathbf{v}_1), \dots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}$. Feature vector of \mathbf{x} .
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- $\Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[au(\mathbf{x})] \in \mathbb{R}^{dJ imes dJ}$ for $r \in \{p,q\}$

Proposition 2 (Asymptotic distributions).

Let $Z_1,\ldots,Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p = q$, asymptotically $n \widetilde{\mathrm{FSSD}^2} \stackrel{d}{ o} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$.
 - Easy to simulate to get p-value.

• Simulation cost independent of n.

2 Under $H_1: p \neq q$, we have $\sqrt{n}(\overline{\text{FSSD}^2} - \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Theorem: Using $\hat{\Sigma}_q$ (computed with $\{\mathbf{x}_i\}_{i=1}^n \sim q$) still leads to a consistent test.

- Recall $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \partial_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v})p(\mathbf{x})] \in \mathbb{R}^d$.
- $\tau(\mathbf{x}) :=$ vertically stack $\xi(\mathbf{x}, \mathbf{v}_1), \dots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}$. Feature vector of \mathbf{x} .
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- $\Sigma_r := \operatorname{cov}_{\mathbf{x}\sim r}[au(\mathbf{x})] \in \mathbb{R}^{dJ imes dJ}$ for $r \in \{p,q\}$

Proposition 2 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p = q$, asymptotically $n \widehat{\text{FSSD}^2} \stackrel{d}{\rightarrow} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.

2 Under $H_1: p \neq q$, we have $\sqrt{n}(\overline{\mathrm{FSSD}^2} - \mathrm{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(reject \ H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Theorem: Using $\hat{\Sigma}_q$ (computed with $\{\mathbf{x}_i\}_{i=1}^n \sim q$) still leads to a consistent test.

- Recall $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \partial_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v})p(\mathbf{x})] \in \mathbb{R}^d$.
- $\tau(\mathbf{x}) :=$ vertically stack $\xi(\mathbf{x}, \mathbf{v}_1), \dots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}$. Feature vector of \mathbf{x} .
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- $\bullet \ \Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathbf{x})] \in \mathbb{R}^{dJ \times dJ} \text{ for } r \in \{p,q\}$

Proposition 2 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p = q$, asymptotically $n \widehat{\text{FSSD}^2} \stackrel{d}{\rightarrow} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widehat{\mathrm{FSSD}^2} \mathrm{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(reject \ H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Theorem: Using Σ_q (computed with {x_i}ⁿ_{i=1} ~ q) still leads to a consistent test.

- Recall $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \partial_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v})p(\mathbf{x})] \in \mathbb{R}^d$.
- $\tau(\mathbf{x}) :=$ vertically stack $\xi(\mathbf{x}, \mathbf{v}_1), \ldots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}$. Feature vector of \mathbf{x} .
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- $\Sigma_r := \operatorname{cov}_{\mathbf{x}\sim r}[au(\mathbf{x})] \in \mathbb{R}^{dJ imes dJ}$ for $r \in \{p,q\}$

Proposition 2 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p = q$, asymptotically $n \widehat{\text{FSSD}^2} \stackrel{d}{\rightarrow} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widehat{\mathrm{FSSD}^2} \mathrm{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Theorem: Using Σ̂_q (computed with {x_i}ⁿ_{i=1} ~ q) still leads to a consistent test.

Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of $nFSSD^2$ is

 $c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1,$

where ω_1 is the maximum eigenvalue of $\Sigma_p := \operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$.

Theorem 4.

The Bahadur slope of the linear-time kernel Stein (LKS) statistic $\sqrt{n} \widehat{S_l^2}$ is

$$c^{(\mathrm{LKS})} = rac{1}{2} rac{\left[\mathbb{E}_q h_p(\mathbf{x},\mathbf{x}')
ight]^2}{\mathbb{E}_p \left[h_p^2(\mathbf{x},\mathbf{x}')
ight]},$$

where h_p is the U-statistic kernel of the KSD statistic.

Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of $nFSSD^2$ is

 $c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1,$

where ω_1 is the maximum eigenvalue of $\Sigma_p := \operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$.

Theorem 4.

The Bahadur slope of the linear-time kernel Stein (LKS) statistic $\sqrt{n}\widehat{S_l^2}$ is

$$c^{(\mathrm{LKS})} = rac{1}{2} rac{\left[\mathbb{E}_q h_p(\mathbf{x},\mathbf{x}')
ight]^2}{\mathbb{E}_p\left[h_p^2(\mathbf{x},\mathbf{x}')
ight]},$$

where h_p is the U-statistic kernel of the KSD statistic.

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

Typically pval_n ≈ exp (-¹/₂c(θ)n) where c(θ) > 0 under H₁, and c(0) = 0 [Bahadur, 1960].
 c(θ) higher ⇒ more sensitive. Good.

Bahadur slope

$$c(heta):=-2 \mathop{\mathrm{plim}}\limits_{n
ightarrow\infty} rac{\log\left(1-F(\,T_n)
ight)}{n},$$

where F(t) = CDF of T_n under H_0 .

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

Typically pval_n ≈ exp (-¹/₂c(θ)n) where c(θ) > 0 under H₁, and c(0) = 0 [Bahadur, 1960].
 c(θ) higher ⇒ more sensitive. Good.

Bahadur slope

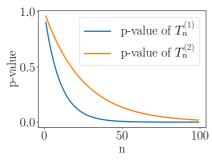
$$c(heta):=-2 \lim_{n o \infty} rac{\log \left(1-F(T_n)
ight)}{n},$$

where F(t) = CDF of T_n under H_0 .

- Bahadur slope \cong rate of p-value $\rightarrow 0$ under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- \bullet $c(\theta)$ higher \Longrightarrow more sensitive. Good.



Bahadur slope

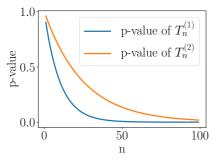
$$c(heta):=-2 \mathop{\mathrm{plim}}\limits_{n
ightarrow\infty} rac{\log\left(1-F(\,T_n)
ight)}{n},$$

where $F(t) = ext{CDF}$ of T_n under H_0 .

- Bahadur slope \cong rate of p-value $\rightarrow 0$ under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $c(\theta)$ higher \implies more sensitive. Good.



Bahadur slope

$$c(heta):=-2 \lim_{n o \infty} rac{\log \left(1-F(\,T_n)
ight)}{n},$$

where F(t) = CDF of T_n under H_0 .

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J = 1 location for $n FSSD^2$. Gaussian kernel (bandwidth $= \sigma_k^2$)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}}.$$

For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_q,\kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}.$$

Theorem 5 (FSSD is at least two times more efficient).

Fix $\sigma_k^2 = 1$ for $n \widehat{\text{FSSD}}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2 > 0$, we have Bahadur efficiency

$$rac{c^{(\mathrm{FSSD})}(\mu_q, v, \sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_q, \kappa^2)} > 2.$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J = 1 location for $n \widetilde{\text{FSSD}^2}$. Gaussian kernel (bandwidth $= \sigma_k^2$)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}}$$

For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_q,\kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}$$

Theorem 5 (FSSD is at least two times more efficient).

Fix $\sigma_k^2 = 1$ for $n \widehat{\text{FSSD}}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2 > 0$, we have Bahadur efficiency

$$rac{c^{(\mathrm{FSSD})}(\mu_q, v, \sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_q, \kappa^2)} > 2.$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J = 1 location for $n \widetilde{\text{FSSD}^2}$. Gaussian kernel (bandwidth $= \sigma_k^2$)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}}$$

For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\mathrm{LKS})}(\mu_q,\kappa^2) = rac{\left(\kappa^2
ight)^{5/2}\left(\kappa^2+4
ight)^{5/2}\mu_q^4}{2\left(\kappa^2+2
ight)\left(\kappa^8+8\kappa^6+21\kappa^4+20\kappa^2+12
ight)}.$$

Theorem 5 (FSSD is at least two times more efficient).

Fix $\sigma_k^2 = 1$ for $n \widehat{\text{FSSD}^2}$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2 > 0$, we have Bahadur efficiency

$$rac{c^{(\mathrm{FSSD})}(\mu_q, v, \sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_q, \kappa^2)} > 2.$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J = 1 location for $n FSSD^2$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}}$$

For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\mathrm{LKS})}(\mu_q,\kappa^2) = rac{\left(\kappa^2
ight)^{5/2}\left(\kappa^2+4
ight)^{5/2}\mu_q^4}{2\left(\kappa^2+2
ight)\left(\kappa^8+8\kappa^6+21\kappa^4+20\kappa^2+12
ight)}.$$

Theorem 5 (FSSD is at least two times more efficient).

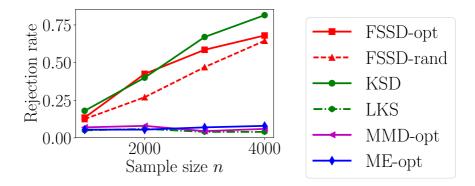
Fix $\sigma_k^2 = 1$ for $n \widehat{\text{FSSD}}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2 > 0$, we have Bahadur efficiency

$$rac{c^{(\mathrm{FSSD})}(\mu_q,v,\sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_q,\kappa^2)}>2.$$

Harder RBM Problem

Perturb only one entry of $\mathbf{B} \in \mathbb{R}^{50 \times 40}$ (in the RBM).

 $B_{1,1} \leftarrow B_{1,1} + \mathcal{N}(0, \sigma_{per}^2 = 0.1^2).$



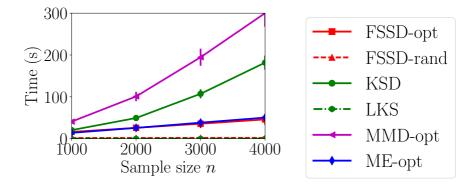
Two-sample tests fail. Samples from p, q look roughly the same.

FSSD-opt is comparable to KSD at low n. One order of magnitude faster.

Harder RBM Problem

Perturb only one entry of $\mathbf{B} \in \mathbb{R}^{50 \times 40}$ (in the RBM).

 $\blacksquare B_{1,1} \leftarrow B_{1,1} + \mathcal{N}(0, \sigma_{per}^2 = 0.1^2).$



Two-sample tests fail. Samples from p, q look roughly the same.

FSSD-opt is comparable to KSD at low n. One order of magnitude faster.

References I

Bahadur, R. R. (1960).
 Stochastic comparison of tests.
 The Annals of Mathematical Statistics, 31(2):276-295.

Chwialkowski, K., Strathmann, H., and Gretton, A. (2016).
 A kernel test of goodness of fit.
 In *ICML*, pages 2606-2615.

 Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012).
 A Kernel Two-Sample Test. JMLR, 13:723-773.

 Jitkrittum, W., Szabó, Z., Chwialkowski, K. P., and Gretton, A. (2016). Interpretable Distribution Features with Maximum Testing Power. In *NIPS*, pages 181–189.

Liu, Q., Lee, J., and Jordan, M. (2016). A Kernelized Stein Discrepancy for Goodness-of-fit Tests. In ICML, pages 276-284.