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location where it fails.
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Goodness-of-fit Testing

Given:
1 Sample {x;}7 ; ek q (unknown) on R¢,

2 Unnormalized density p (known model).
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Goodness-of-fit Testing

Given:
1 Sample {x;}7 ; ek q (unknown) on R¢,

2 Unnormalized density p (known model).

q (unknown) p (model)

Hoy:p=gq * 5
Hi:p#q f\J /\/\

X1,X92,...,Xp,

Want a test ...

1 Nonparametric.

2 Linear-time. Runtime is O(n). Fast.

3 Interpretable. Model criticism by finding *
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

Observe X = {X1,...,Xp} ~ ¢

Observe Y = {y1,..., Yot~ D
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

Gaussian kernel on x;

Gaussian kernel on y;
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r—ﬂq(v) = EXquV(X)

pp(v) = By pky(y)
(mean embedding of p)
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

MMD(q, p) = ||witness||
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

witness®(v) = (ug(v) — pp(v))?

{
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Maximum Mean Discrepancy (MMD) Witness Function (Gretton et al., 2012)

witness®(v) = (ug(v) — pp(v))?

o ®oe — — A%

m witness?(v) can be used to find a good test location v* = * .
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Model Criticism by the MMD Witness

m Find a location v at which ¢ and p differ most (ME test)
[Jitkrittum et al., 2016].

5/23



Model Criticism by the MMD Witness
m Find a location v at which ¢ and p differ most (ME test)
[Jitkrittum et al., 2016].

witness(v) = Exwq| Av(x) | —Eyop[  k(y) |

5/23



Model Criticism by the MMD Witness
m Find a location v at which ¢ and p differ most (ME test)
[Jitkrittum et al., 2016].

witness(v) = Exegl  k(x) 1= Byl k(y) ]
_ witness*(v) witness?(v)

score(v) = noise(v) VVallo ()] + Vg [y ()]

5/23



Model Criticism by the MMD Witness
m Find a location v at which ¢ and p differ most (ME test)
[Jitkrittum et al.. 20161.

witness(v) = Exegl  k(x) 1= Byl k(y) ]
_ witness*(v) witness?(v)

score(v) = noise(V) | /Vouqglky (x)] + Vyuplke(y)]

5/23



Model Criticism by the MMD Witness
m Find a location v at which ¢ and p differ most (ME test)
[Jitkrittum et al.. 20161.

score: (0.008

witness(v) = Exegl  k(x) 1= Byl k(y) ]
_ witness*(v) witness?(v)

score(v) = noise(V) | [Vouglky (x)] + Vyup ke (y)]

5/23



Model Criticism by the MMD Witness
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Model Criticism by the MMD Witness
m Find a location v at which ¢ and p differ most (ME test)
[Jitkrittum et al.. 20161.

score: 25

witness(v) = ]E,qu[ zk\,(x) ] — Eyw[h kvﬁ(}’) ]
score(v) — WltLSS(V) — No sample from p. x

noise(v) Difficult to generate. )] .
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate E.p[k.(y)].
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate E.p[k.(y)].
(Stein) witness(v) = Exwq] Tpkv(x) ]

Idea: Define T, such that E,.,(Tpk.)(y) =0, for any v.

Proposal: Good v should have high

.t 2
score(v) = witness®(v)

noise(v)

signal-to-noise
ratio

m score(v) can be estimated in linear-time.
Goodness-of-fit test:

1 Find v* = arg max, score(v).
2 Reject Hp if witness?(v*) > threshold.
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Proposal: Model Criticism with the Stein Witness
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Theory

What is Tpky?
Test statistic
Distributions of the test statistic, test threshold.

What does v* = arg max,, score(v) do theoretically?
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1 d N lizer
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[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

o0

By [(Tok))) = [ (Tyk ()] p(y)dy
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1 d Normalizer
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Proof:

Byor (k)0 = [ |2 I 0p)]] P dy
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1 d Normalizer
T = .
(Tok)(y) = iy gy )P )] omcels
Then, Eyp(Tpky)(y) = 0.

[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

= [k (¥)p(¥)="0

~—

(assume limjy| ;o0 kv (¥)P(y)
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(2) Proposal: The Finite Set Stein Discrepancy (FSSD)

m Recall Stein witness: g(v) := Ex~q [ﬁd%{[kv(x)p(x)]].
0,

— plx)
— g(x)
— glx)
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(2) Proposal: The Finite Set Stein Discrepancy (FSSD)

m Recall Stein witness: g(v) := Ex~q [ﬁd%{[kv(x)p(x)]].

— plx)
— qg(x)
— glx)

m FSSD statistic: Evaluate g2 at J test locations V = {vy,..., v }.
m Population FSSD

J
1
FSSD? = — > [lg(v;)ll3-
aJ =

m Unbiased estimator FSSD2 computable in O(d?Jn) time. (d = input
dimension)
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(2) FSSD is a Discrepancy Measure

= FSSD2= L 70 [lg(vy)I3

Theorem 1 (FSSD is a discrepancy measure).
Main conditions:

1 (Nice kernel) Kernel k is Cy-unwversal, and real analytic e.g.,
Gaussian kernel.

2 (Vanishing boundary) lim 0 2(x)kv(x) = 0.
3 (Avoid “blind spots”) Locations vi,...,vy ~n which has a density.

Then, for any J > 1, n-almost surely,

FSSD? =0 < p=q. I

Summary: Evaluating the witness at random locations is sufficient to
detect the discrepancy between p, g.
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(2) What Are “Blind Spots”?

Recall g(v) : = Exyq p(lx)jx[kv(x)p(x)] .
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Consider p = N(0,1) and ¢ = N(0,07). Use unit-width Gaussian kernel.

v exp (——§ig%g) (02 -1)
g(v) = 373
(1402)
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(2) What Are “Blind Spots”?

Recall g(v) : = Fxeog L)(lx)ozc[kv(x)p(x)] .

Consider p = N(0,1) and ¢ = N(0,07). Use unit-width Gaussian kernel.

2
vexp (— 55 ) (03— 1)
g(v) = 373
(1 + 03)

m If v = 0, then FSSD? = g?(v) = 0 regardless of o'2.

m If g #0, and k is real analytic, R = {v | g(v) = 0} (blind spots) has 0
Lebesgue measure.

m So, if v ~ a distribution with a density, then v ¢ R.

12/23



(3) Asymptotic Distributions of \,, := nEFSSD?
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(3) Asymptotic Distributions of A, := nFSSD?

— PH{)(S‘H)

— T,

—\,

0 20 40 60 80
)\n
B Under Hy: p = q, asymptotically

aJ
An = nFSSD2 4 S7(2? - 1w,
=1
m {w;}#/, are non-negative, computable quantities.
Zl; SR 245 LE\.’d. N(O7 1)
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— P Ho(j‘n)

—_— Ta

— P H1(5‘n)
0 50 40 60 S0

5\”
B Under Hy: p = q, asymptotically
R Y
An :=nFSSD? 5 ) (27 - 1)wi,
=1
m {w;}#/, are non-negative, computable quantities.
Zl; SR 245 LE\.’d. N(O7 1)
B Under H; : p # g, asymptotically \/E(F?SBQ — FSsD?) & N(0,0%,).

witness?( V) ) noise( V) -/

13/23



(4) What Does arg max, score(v) Do?

Proposition 1 (Asymptotic test power).
For large n, the test power P(reject Hy | Hy true) =

—_— _— PHH(;\”)
Py, (nFSSD2 > T,) T
FSSD? T, Py (A
~ q, _ a . H.( n)
(\/ﬁ OH, \/ﬁo’fﬁ) ’
0 20 40 60 80
where & = CDF of N(0,1). A,
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(4) What Does arg max, score(v) Do?

Proposition 1 (Asymptotic test power).
For large n, the test power P(reject Hy | Hy true) =

—_— _— PHH(;\”)
Py, (nFSSD? > T,) T
FSSD2 T, P (A
~ @ — i H|( n)
(\/ﬁ O H, \/ﬁo’fﬁ) ,
0 20 40 60 80
where & = CDF of N(0,1). A,
m For large n, the 2% term dominates.
—— FSSD?
arg max Py, (nFSSD2 > T,) ~ argmax | ———— = score( V,0%)
Vo2 Vo2 OHy

Maximize score(V,02) <= Maximize test power

m In practice, split {x;}}; into independent training/test sets. Optimize
on tr. Goodness-of-fit test on te.
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Kernel Stein Discrepancy (KSD) [Liu et al, 2016, Chwialkowski et al., 2016]

m Recall Stein witness:

g(v) := Ex~q [

_1_d
p(x) dx

[k (x)p(x)]].

— plx)
— q(x)
— glx)
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Kernel Stein Discrepancy (KSD) [Liu et al, 2016, Chwialkowski et al., 2016]

m Recall Stein witness: — plx)
— qx)
&(v) = Exng | o [oe (x)p ()] —

KSD

— witness

\'

KSD? = ||g|l3kus (RKHS norm).

Good when the difference between
P, q is spatially diffuse.
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Kernel Stein Discrepancy (KSD) [Liu et al, 2016, Chwialkowski et al., 2016]

m Recall Stein witness: — plx)
— qx)
&(v) = Exng | o [oe (x)p ()] —

KSD
— witness l
\% x v
KSD? = ||g|ldkus (RKHS norm). FSSD? = 45 271 lle(vi)l3.

Good when the difference between Good when the difference between
D, q is spatially diffuse. P, q is local.

16/23



Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: [Liu et al., 2016, Chwialkowski et al., 2016]

double sums

—
KSD? = ”ngz:tKHS = ExvqEyn~g hp(x,y)
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Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: [Liu et al., 2016, Chwialkowski et al., 2016]

double sums
2 2 ‘ N
KSD* = ||g||lgkus = Ex~glEyng hp(x:}’)
where
hy(%,y) 1= [Ox log p(x)] k(x, ) [0y log p(¥)]
+ [0y log p(y)] Oxk(x,y)
+ [0x log p(x)] Oy k(x,y)
+ 5%z55rk(><,)f)

and k is a kernel.

m X The “double sums” make it O(d?n?). Slow.
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Linear-Time Kernel Stein Discrepancy (LKS)

m [Liu et al., 2016] also proposed a linear version of KSD.
m For {x;}I"; ~ q, KSD test statistic is

‘1‘2345678

2
mth(xi,Xj).

1<J

o| ~| o o & w| N =

m LKS test statistic is a “running average”

1]

@
IS
o
o
~
)

9 n/2
= hp(x2i-1,%2i).
nia

| ~| o o & w| v R~

m Both unbiased. LKS has O(d?n) runtime. Same as proposed FSSD.
m X LKS has high variance. Poor test power.
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Simulation Settings

m Gaussian kernel k(x,v) = exp <_|XV|§>

2
203,

Method Description

1 FSSD-opt Proposed. With optimization. J = 5.

2 FSSD-rand Proposed. Random test locations.
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Simulation Settings

m Gaussian kernel k(x,v) = exp <_|X"|§>

20'%
Method Description
1 FSSD-opt Proposed. With optimization. J = 5.
2 FSSD-rand Proposed. Random test locations.
3 KSD Quadratic-time kernel Stein discrepancy
[Liu et al., 2016, Chwialkowski et al., 2016]
4 LKS Linear-time running average version of KSD.
5  MMD-opt Ml\/.ID'two.—sample test [Gretton et al., 2012]. With
optimization.
6  ME-test Mean Embeddings two-sample test

[Jitkrittum et al., 2016]. With optimization.

m Two-sample tests need to draw sample from p.

m Tests with optimization use 20% of the data.

m Significance level a = 0.05.
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Gaussian Vs. Laplace

m p = Gaussian. ¢ = Laplace. Same mean and variance. High-order

moments differ.

m Sample size n = 1000.

<] —
=
s
=
2
SR e
0.0 :'.-_'_—_u--—‘——-—u- <
1 5 10 15
dimension d '

m Optimization increases the power.

m Two-sample tests can perform well in this case (p, g clearly differ).

FSSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt

20/23



Gaussian-Bernoulli Restricted Boltzmann Machine (RBM)

m p(x) is the marginal of

p(x,h) = % exp (xTBh +b'x+c'x— ;||x||2) ,
where x € R%0, h € {£1}*° is latent. Randomly pick B, b, c.
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Gaussian-Bernoulli Restricted Boltzmann Machine (RBM)

m p(x) is the marginal of

1
p(x,h) = — XP (xTBh +b'x+c'x— ||x||2) ,

where x € R%0, h € {£1}*° is latent. Randomly pick B, b, c.
m g(x) = p(x) with i.i.d. N(0, oper) noise added to all entries of B.

m Sample size n = 1000.

=
o

Rejection rate
)
ot

o
o

“0.00  0.02 004 0.06
Perturbation SD o,

KSD (O(n?)), FSSD-opt (O(n)) comparable. LKS has low power.

FSSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt
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Interpretable Test Locations: Chicago Crime
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Interpretable Test Locations: Chicago Crime

Lt
.i. R -.;. ; . m n = 11957 robbery events
l:’,; TR PERE in Chicago in 2016.
T * lat/long coordinates =
,.-a. A sample from gq.
r__f j':;' ¥ e m Model spatial density with
2 — Th,o : . .
| R X X -
n .f‘}'j"- ; - Gaussian mixtures.
. .‘ ‘e’ :
g
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Interpretable Test Locations: Chicago Crime
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Interpretable Test Locations: Chicago Crime
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Interpretable Test Locations: Chicago Crime
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[7- Ay~ NG
‘ 3 5 FACHITALA
oﬁ"
Ayl . ’,
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Interpretable Test Locations: Chicago Crime

% = optimized v.
No robbery in Lake Michigan.
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Interpretable Test Locations: Chicago Crime

A T
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A Model p = 10-component Gaus-
- sian mixture.
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Interpretable Test Locations: Chicago Crime

Capture the right tail better.
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Interpretable Test Locations: Chicago Crime

Still, does not capture the left
tail.
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Interpretable Test Locations: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are in-
terpretable.
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Conclusion

m Proposed The Finite Set Stein Discrepancy (FSSD).
B Goodness-of-fit test based on FSSD is

1 nonparametric,

2 linear-time,

3 tunable (parameters automatically tuned).

4 interpretable.

A Linear-Time Kernel Goodness-of-Fit Test
Wittawat Jitkrittum, Wenkai Xu, Zoltan Szabé, Kenji Fukumizu, Arthur Gretton

NIPS 2017 (best paper award)

m Paper: http://papers.nips.cc/paper/
6630-a-linear-time-kernel-goodness-of-fit-test

m Python code: https://github.com/wittawatj/kgof
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http://papers.nips.cc/paper/6630-a-linear-time-kernel-goodness-of-fit-test
http://papers.nips.cc/paper/6630-a-linear-time-kernel-goodness-of-fit-test
https://github.com/wittawatj/kgof

Questions?

Thank you
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[Mustration: Score Surface

m Consider J =1 location.
2
m score(v) = %)ﬁ (gray), p in wireframe, {x;}? ; ~ ¢ in purple, * =
1
best v.

=

ol 8) (o5 2))

FSSD?/677,

0.14
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0.10
0.08
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0.02
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[Mustration: Score Surface

m Consider J =1 location

FSSD

m score(v) = (gray) p in wireframe, {x;}? , ~ q in purple, X =

best v.

p =N (0,1I) vs. ¢ = Laplace with same mean & variance.

0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

FSSD2/73,
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FSSD and KSD in 1D Gaussian Case

Consider p = N(0,1) and g = N (ug,07).
m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth = o).
_ (v=rq)?

pagp? 088 T ((0R 4 1) pe v (07 — 1))
(02 +02)°

2

0.2
mIfpg#0,02#1, and v = —((’fj%‘q, then FSSD? =0 !
Uq*

This is why v should be drawn from a distribution with a density.
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FSSD and KSD in 1D Gaussian Case

Consider p = N(0,1) and g = N (ug,07).
m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth = o).
_ (v=rq)?

pagp? 088 T ((0R 4 1) pe v (07 — 1))
(02 +02)°

2

0.2
mIfpg#0,02#1, and v = —((’fj%‘q, then FSSD? =0 !
Uq*

This is why v should be drawn from a distribution with a density.
m For KSD, Gaussian kernel (bandwidth = «2).

) (2 +20) + (3 -1)*

(2 +202) /5 41

S
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F'SSD is a Discrepancy Measure

Theorem 2.

Let V ={vy,...,vs} C R? be drawn i.i.d. from a distribution n which
has a density. Let X be a connected open set in R?. Assume

1 (Nice RKHS) Kernel k: X x X — R s Cy-unwversal, and real
analytic.

2 (Stein witness not too rough) ||g||% < oo.

3 (Finite Fisher divergence) Ex.q||Vxlog (x) I? < oo .

4 (Vanishing boundary) lim|jy e P(X)g(x) = 0.
Then, for any J > 1, n-almost surely

FSSD? = 0 if and only if p = q. I

m Gaussian kernel k(x,Vv) = exp <—|XV|§> works.

2
20

m In practice, J =1or J =5.
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Asymptotic Distributions of FSSD?
m Recall £(x,V) := —1:0x[k(x, v)p(x)] € R%

p(x) =%
m 7(x) := vertically stack £(x,v1),...£&(x,vs) € R¥. Feature vector of x.
m Mean feature: p := Ex.q[7(x)].

B 2, 1= CoVynr[T(X)] € R¥* for r € {p, q}
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Simulation cost independent of n.
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1 Under Hy: p = q, asymptotically nFSSD? 4% S 2 — 1w,.
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Simulation cost independent of n.
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0%, :=4p' Sep. Implies P(reject Hy) — 1 as n — oo.
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Asymptotic Distributions of FSSD?

m Recall {(x,V) := ﬁ@x[k(x, v)p(x)] € R
m 7(x) := vertically stack £(x,v1),...£&(x,vs) € R¥. Feature vector of x.
m Mean feature: p := Ex.q[7(x)].

B 2, = coVyer[T(X)] € RY* for r € {p, ¢}

Proposition 2 (Asymptotic distributions).

Let Zy,..., 2,5 e N(0,1), and {w;}¥/, be the eigenvalues of .
1 Under Hy: p = q, asymptotically nFSSD? 4% S 2 — 1w,.

Easy to simulate to get p-value.
Simulation cost independent of n.

2 Under H; : p # q, we have \/E(FESBZ — FSSD?) 4 N(0,0%,) where
0%, :=4p' Sep. Implies P(reject Hy) — 1 as n — oo.

But, how to estimate ¥,7 No sample from p!

m Theorem: Using 33, (computed with {x;}7_; ~ ¢) still leads to a
consistent test.
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Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of nFSSD? is
c(FSSD) .= FSSD? /ws,

where wy is the mazimum eigenvalue of By, 1= covxp[T(X)].
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Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of nFSSD? is
c(FSSD) .= FSSD? /ws,
where wy is the mazimum eigenvalue of By, 1= covxp[T(X)].

Theorem 4.
The Bahadur slope of the linear-time kernel Stein (LKS) statistic
VnS? is
o(LKS) _ }[thp(x: X')]Z
2 E, [hg(x, XI)] 7

where h, 1s the U-statistic kernel of the KSD statistic.
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope = rate of p-value — 0 under H; as n — 0.
m Measure a test’s sensitivity to the departure from Hj.
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope = rate of p-value — 0 under H; as n — 0.
m Measure a test’s sensitivity to the departure from Hj.

H029:0,
H1:97é0.
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope = rate of p-value — 0 under H; as n — 0.
m Measure a test’s sensitivity to the departure from Hj.

HQIHZO,
H119750.

m Typically pval, ~ exp (—%C(G)n) where c¢(6) > 0 under Hj, and
¢(0) = 0 [Bahadur, 1960].

m c(f) higher = more sensitive. Good.

1.0

—— p-value of Tysm

——— p-value of T,52>

p-value
o
(@2}

0.0

0 50 100
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope = rate of p-value — 0 under H; as n — 0.
m Measure a test’s sensitivity to the departure from Hj.

HO:H:O,
H119750.

m Typically pval, ~ exp (—%c(G)n) where c¢(6) > 0 under Hj, and
¢(0) = 0 [Bahadur, 1960].
m c(f) higher = more sensitive. Good.

1.017

p-value
o
(@2}

0.0

p-value of Y

——— p-value of T,(,2>

Bahadur slope

c(f) := —2 plim log (1 = (7))

n— oo n

where F'(t) = CDF of T}, under Hp.

m Bahadur efficiency = ratio of slopes
of two tests.

30/23



Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N(pq, 1).
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N(pq, 1).

e

m Assume J = 1 location for nFSSD2. Gaussian kernel (bandwidth = o)

v2 (v=rq)?®
)3 2 ag+2 a}f+1

2
PSSP (g, v, 07) = —= R .
&+ 1(0f +1) (of +4og + (v* +5) 0f +2)
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N(pq, 1).

e,

m Assume J = 1 location for nFSSD2. Gaussian kernel (bandwidth = o)

v2 (v=rq)?®
)3 2 ag+2 a}f+1

2
PSSP (g, v, 07) = —= PR 2
&+ 1(0f +1) (of +4og + (v* +5) 0f +2)

m For LKS, Gaussian kernel (bandwidth = x2).

(52)°% (52 +4)°%

(
¢ 2 (K2 + 2) (K® + 8KO + 214 + 202 + 12)°

LKS) (,Uq, K’z) =
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N(pq, 1).

e,

m Assume J = 1 location for nFSSD2. Gaussian kernel (bandwidth = o)

2 (v=rd)?

3 ST
2 2 2,07 +2 oZ41
Uk(ak%—Z) pge’r k

2

k

C(FSSD)(

KgyV,08) = - ; . .
&+ 1(0f +1) (of +4og + (v* +5) 0f +2)

m For LKS, Gaussian kernel (bandwidth = «2).

() (2 + )" 4
2(k? +2) (k® + 8k6 + 21Kk%* + 20K2 + 12)

(LKS)(/J’Q, ) =

Theorem 5 (FSSD is at least two times more efficient).

Fiz 0']c 1 for nFSSD2 Then, Vuq #0, dJv € R, Vk? > 0, we have

Bahadur efficiency
cFSSD) (g, v, 03)

) (g, %)

> 2.
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Harder RBM Problem

m Perturb only one entry of B € R%*4? (in the RBM).

u B11<_Bll+N( ) per_o']'z)'

Rejection rate

<
o
S

e
~
ot

=
ot
S

e
[\
t

2000 4000
Sample size n

F'SSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt

m Two-sample tests fail. Samples from p, ¢ look roughly the same.

m FSSD-opt is comparable to KSD at low n. One order of magnitude

faster.
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Harder RBM Problem

m Perturb only one entry of B € R%*4? (in the RBM).
| Bll (—Bll-l-N( ), pe,—0.12).

300
—=—  ['SSD-opt

22001 --a--  FSSD-rand
qg) 100, —e— KSD
- —e- LKS

(b —<— MDMD-opt

1000 2000 3000 4000

Sample size n ¢ ME-opt

m Two-sample tests fail. Samples from p, ¢ look roughly the same.

m FSSD-opt is comparable to KSD at low n. One order of magnitude
faster.
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