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Shape constraints

Pattern

0 ≤ Df (x) ∀x.

Examples:
1 non-negativity: 0 ≤ f (x) ,

2 monotonicity (↗): 0 ≤ f ′(x) ,

3 convexity: 0 ≤ f ′′(x) ,

4 n-monotonicity: 0 ≤ f (n)(x) ,
5 (n − 1)-alternating monotonicity: for n ≥ 2

(−1)j f (j) : ≥ 0 , ↗ and convex ∀j ∈ [[0, n − 2]].

Example: generator of a d-variate Archimedean copula is
(d − 2)-alternating monotone.
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Examples continued

6 Monotonicity w.r.t. partial ordering (u ≼ v ⇒ f (u) ≤ f (v)):

0 ≤ ∂ej f (x) , (∀j ∈ [d ], ∀x),

0 ≤ ∂ed f (x) ≤ . . . ≤ ∂e1f (x) (∀x).

u ≼ v iff
ui ≤ vi (∀i ; product ordering),∑

j∈[i] uj ≤
∑

j∈[i] vj (∀i ; unordered weak majorization).

7 Supermodularity:

0 ≤ ∂2f (x)
∂xi ∂xj

(∀i ̸= j ∈ [d ], ∀x),

i.e.

f (u ∨ v) + f (u ∧ v) ≥ f (u) + f (v) for all u, v ∈ Rd .
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Shape constraints are omnipresent
[Johnson and Jiang, 2018, Guntuboyina and Sen, 2018,
Chetverikov et al., 2018]

Economics:
utility functions are ↗ and concave [Matzkin, 1991].

demand functions of normal goods are downward sloping
[Lewbel, 2010, Blundell et al., 2012],
production functions are concave [Varian, 1984].

Statistics: quantile function ↗ w.r.t. the quantile level, pdfs are
non-negative and often log-concave .
Finance:

European and American call option prices: convex & monotone in the
underlying stock price and ↗ in volatility [Äıt-Sahalia and Duarte, 2003].

RL and stochastic optimization: value functions are often convex
[Keshavarz et al., 2011, Shapiro et al., 2014].
Supply chain models, game theory: supermodularity
[Topkis, 1998, Simchi-Levi et al., 2014].
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Focus

Find f ∈ H such that f (xn) ≈ yn, 0 ≤ Df (x) ∀x ∈ K .

Various exciting approaches with asymptotic guarantees
[Han and Wellner, 2016, Chen and Samworth, 2016,
Freyberger and Reeves, 2018, Lim, 2020, Deng and Zhang, 2020,
Kur et al., 2020], but

1 they are often ’soft’: restriction at finite many points,

2 use simplistic function classes: polynomials, polynomial splines,
3 apply hard-wired parameterizations: exponential, quadratic, or
4 only work for (a few) fixed Ds.

Today: optimization framework
rich H, hard (∀x ∈ K ) shape constraints, modularity in D.

Towards flexible H-s . . .
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Kernel

, RKHS

Def-1 (feature space): k : X × X → R kernel if

k(x , y) = ⟨φ(x), φ(y)⟩H .

Def-2 (reproducing kernel):

k(·, x) :=
[
x ′ 7→ k(x ′, x)

]
∈ H, f (x)= ⟨f , k(·, x)⟩H.

Constructively, Hk = {
∑n

i=1 αik(·, xi) : αi ∈ R, xi ∈ X, n ∈ N∗}.

Examples (γ > 0, c ≥ 0, p ∈ Z+):

kp(x, y) = (⟨x, y⟩ + c)p, kG(x, y) = e−γ∥x−y∥2
2 ,

kL(x, y) = e−γ∥x−y∥1 , ke(x, y) = eγ⟨x,y⟩.
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Task-1: joint quantile regression (JQR)
Given: (τq)q∈[Q] ⊂ (0, 1) levels ↗, {(xn, yn)}n∈[N] samples.
Estimate jointly the τq-quantiles of P(Y |X = x).

[Sangnier et al., 2016].
Objective:

L (f, b) = 1
N

∑
q∈[Q]

∑
n∈[N]

lτq (yn − [fq(xn) + bq])

︸ ︷︷ ︸
quantile property

+ λb∥b∥2
2 + λf

∑
q∈[Q]

∥fq∥2
k︸ ︷︷ ︸

regularization

,

lτ (e) = max(τe, (τ − 1)e).

Constraint (non-crossing): K := smallest rectangle containing {xn}n∈[N],

fq(x) + bq ≤ fq+1(x) + bq+1, ∀q ∈ [Q − 1], ∀x ∈ K .

Constraints
function values (fq) with interaction (fq+1 − fq), bias terms (bq)
with interaction (bq − bq+1).
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Task-2: convoy localization, one vehicle (Q = 1)

Given: noisy time-location samples {(tn, xn)}n∈[N] ⊂ [0, T ]︸ ︷︷ ︸
=:T

×R.
Goal: learn the (t, x) relation.
Constraint: lower bound on speed (vmin).

Objective:

min
b ∈ R, f ∈ Hk

 1
N

∑
n∈[N]

|xn − [b + f (tn)]|2 + λ ∥f ∥2
Hk


s.t.

vmin ≤ f ′(t), ∀t ∈ T .
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Task-2b: convoy localization, multiple vehicles (Q ≥ 1)

Data:
{

(tq,n, xq,n)n∈[Nq]
}

q∈[Q]
⊆ T × R.

Constraints: speed (vmin), inter-vehicular distance (dmin).
Objective:

min
f1,...,fQ ∈Hk ,
b1,...,bQ ∈R

1
Q

Q∑
q=1

 1
Nq

Nq∑
n=1

|xq,n − (bq + fq(tq,n))|2
 + λ∥fq∥2

Hk


s.t.

dmin + bq+1 + fq+1(t) ≤ bq + fq(t), ∀q ∈ [Q − 1], t ∈ T ,

vmin ≤ f ′
q(t), ∀q ∈ [Q], t ∈ T .

Constraints
function values (fq) and derivatives (f ′

q) with interaction
(fq − fq+1), bias terms (bq) with interaction (bq+1 − bq).
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Task-3: safety-critical control
Trajectory of an underwater vehicle:

t ∈ T := [0, 1] 7→ [x(t); z(t)] ∈ R2.

Simplifying assumption: x(0) = 0, ẋ(t) = 1 ∀t ∈ T ⇒ x(t) = t.
Requirement: stay between the floor and the ceiling of the cavern

z(t) ∈ [zlow(t), zup(t)] ∀t ∈ T .

Initial condition: z(0) = 0 and ż(0) = 0.
Control task (LQ = linear dynamics & quadratic cost):

min
u∈L2(T ,R)

∫
T

|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,

z̈(t) = −ż(t) + u(t), ∀t ∈ T ,

zlow(t)≤ z(t) ≤ zup(t), ∀ t ∈ T .
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Requirement: stay between the floor and the ceiling of the cavern

z(t) ∈ [zlow(t), zup(t)] ∀t ∈ T .

Initial condition: z(0) = 0 and ż(0) = 0.
Control task (LQ = linear dynamics & quadratic cost):

min
u∈L2(T ,R)

∫
T

|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,

z̈(t) = −ż(t) + u(t), ∀t ∈ T ,

zlow(t)≤ z(t) ≤ zup(t), ∀ t ∈ T .
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Task-3: safety-critical control – continued
With full state f(t) := [z(t); ż(t)] ∈ R2

ḟ(t) = Af(t) + Bu(t), f(0) = 0, A =
[
0 1
0 −1

]
∈ R2×2, B =

[
0
1

]
∈ R2

The controlled trajectories f belong to a R2-valued RKHS with kernel

k(s, t) :=
∫ min(s,t)

0
e(s−τ)ABB⊤e(t−τ)A⊤dτ, s, t ∈ T ,

and the task is

min
f=[f1;f2]∈Hk

∥f∥2
Hk

s.t.
zlow(t) ≤ f1(t) ≤ zup(t), ∀ t ∈ T .
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Task-3: safety-critical control – finished

Assume for simplicity: zlow and zup are piece-wise constant.
Task:

min
f=[f1;f2]∈Hk

∥f∥2
Hk

s.t.
zlow,m ≤ f1(t) ≤ zup,m, ∀ t ∈ Tm, ∀m ∈ [M].

Constraints
linear transformation of functions (f1), with matrix-valued kernel.
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Our task

(
f̄, b̄

)
= arg min

f=(fq)q∈[Q] ∈ (Hk)Q ,

b=(bq)q∈[Q] ∈B,

(f,b) ∈ C

L(f, b),

L(f, b) = L
(

b,
(
xn, yn, (fq(xn))q∈[Q]

)
n∈[N]

)
+ Ω

(
(∥fq∥Hk )q∈[Q]

)
,

C = {(f, b) | (b0 − Ub)i ≤ Di(Wf − f0)i(x), ∀x ∈ Ki , ∀i ∈ [I]} ,

(Wf)i =
∑

q∈[Q]
Wi ,qfq,

Di =
∑

j∈[ni,j ]
γi ,j∂

ri,j , |ri ,j | ≤ s, γi ,j ∈ R, ∂rf (x) = ∂|r|f (x)
∂r1x1 · · · ∂rdxd

.
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Blanket assumptions

1 Domain X ⊆ Rd : open. Kernel k ∈ Cs(X × X).
2 Ki ⊂ X: compact, ∀i .
3 f0,i ∈ Hk for ∀i .
4 Bias domain B ⊆ RQ: convex.
5 Loss L restricted to B: strictly convex in b.
6 Regularizer Ω: strictly increasing in each of its argument.



Our strenghtened SOC-constrained formulation

(fη, bη) = arg min
f ∈ (Hk)Q , b ∈B

L(f, b) (Pη)

s.t.
(b0 − Ub)i + ηi∥(Wf − f0)i∥Hk

≤ minm∈[Mi ] Di(Wf − f0)i (x̃i ,m) , ∀i ∈ [I], (Cη)

where
{x̃i ,m}m∈[Mi ]: a δi -net of Ki in ∥·∥X,
ηi = supm ∈ [Mi ],u ∈B∥·∥X (0,1) ∥Di ,xk(x̃i ,m, ·) − Di ,xk(x̃i ,m + δiu, ·)∥Hk ,
Di ,xk(x0, ·) := y 7→ Di(x 7→ k(x, y))(x0).



Tightening idea

Let s = 0, I = 1. Recall constraint (C):{
(f, b) | b0 − Ub︸ ︷︷ ︸

β

≤ (Wf − f0)︸ ︷︷ ︸
ϕ

(x)

︸ ︷︷ ︸
⟨ϕ,k(x,·)⟩Hk

, ∀x ∈ K
}

, i.e.

Φ(K ) := {k(x, ·) : x ∈ K} ⊆ H+
ϕ,β :=

{
g ∈ Hk | β ≤ ⟨ϕ, g⟩Hk

}

(Cη) means: covering of Φ(K ) by balls with η-radius centered
at the k (x̃m, ·) is in the halfspace H+

ϕ,β; hence it is tightening.
η is obtained as the minimal radius.
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Theorem

Minimal values: vdisc = value of (Pη) with ’η = 0’, v̄ = L
(
f̄, b̄

)
,

vη = L (fη, bη).
Let fη = (fη,q)q∈[Q].

Then,

(i) Tightening: any (f, b) satisfying (Cη) also satisfies (C), hence

vdisc ≤ v̄ ≤ vη.

(ii) Representer theorem: For ∀q ∈ [Q], ∃ãi ,0,q, ãi ,m,q, an,q ∈ R s.t.

fη,q =
∑
i∈[I]

ãi ,0,qf0,i +
∑

m∈[Mi ]
ãi ,m,qDi ,xk (x̃i ,m, ·)


+

∑
n∈[N]

an,qk(xn, ·).
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Theorem – continued
(iii) Performance guarantee: if L is (µfq , µb)-strongly convex
w.r.t. (fq, b) for any q ∈ [Q], then

∥fη,q − f̄q∥Hk ≤
√

2(vη − vdisc)
µfq

, ∥bη − b̄∥2 ≤
√

2(vη − vdisc)
µb

.

If in addition U is surjective, B = RQ, and L(f̄, ·) is
Lb−Lipschitz continuous on B∥·∥2

(
b̄, cf ∥η∥∞

)
where

cf =
√

d
∥∥∥∥(

U⊤U
)−1

U⊤
∥∥∥∥ maxi∈[I]

∥∥∥(Wf̄ − f0)i
∥∥∥
Hk

, then

∥fη,q − f̄q∥Hk ≤
√

2Lbcf ∥η∥∞
µfq

, ∥bη − b̄∥2 ≤
√

2Lbcf ∥η∥∞
µb

.

1st bound: computable. 2nd: Larger Mi ⇒ smaller δi ⇒ smaller ηi
⇒ tighter bound.
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Demo (task-1): convoy localization with traffic jam

Setting: Q = 6, dmin = 5m, vmin = 0.
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Demo (task-1): continued

Pairwise distances: t 7→ fq(t) − fq+1(t)

Speed: t 7→ f ′
q(t)
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Shape constraints: especially relevant in noisy situations.
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Demo (task-2): joint quantile regression
Analysis of aircraft trajectories , ENAC [Nicol, 2013]

y : radar-measured altitude of aircrafts flying between two cities (Paris
& Toulouse); x : time. d = 1, N = 15657.
Demo: τq ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Constraint: non-crossing, ↗ (takeoff).
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Demo (task-3): control of underwater vehicle
Vs discretization-based approach (which might crash):
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Summary

Focus: hard affine shape constraints on derivatives & RKHS.
Proposed framework: SOC-based tightening.
Applications:

convoy localization,
joint quantile regression: aircraft trajectories,
safety-critical control.
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https://github.com/PCAubin/Hard-Shape-Constraints-for-Kernels


References

Transportation systems [Aubin-Frankowski et al., 2020].
Control aspect [Aubin-Frankowski, 2021].
Method:

dim(y) = 1: [Aubin-Frankowski and Szabó, 2020]. Code @
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Demo (task-2): joint quantile regression

Economics :
x : annual household income, y : food expenditure. d = 1, N = 235.
Engel’s law ⇒ ↗, concave.
Demo: τq ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Left: non-crossing, ↗. Right: non-crossing, ↗, concave.

-1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
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