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Goal

• Impose shape constraints
• for rich function classes (RKHS),
• in a hard fashion (e.g. all points of an interval),
• with modularity in the shape constraints (D below),
• with theoretical guarantees (not discussed here).

Shape constraints

0 ≤ Df (x) ∀x.

• Examples:
• non-negativity: 0 ≤ f (x), monotonicity: 0 ≤ f ′(x), convexity:

0 ≤ f ′′(x),
•monotonicity w.r.t. partial orderings:

0 ≤ ∂ejf (x), (∀j ∈ [d]), 0 ≤ ∂edf (x) ≤ . . . ≤ ∂e1f (x),

• supermodularity: 0 ≤ ∂2f (x)
∂xi∂xj

(∀i ̸= j ∈ [d]).

•Applications: economics (utility function, demand function,
production function), statistics (quantile function, pdf),
finance (option pricing), RL (value function), supply chain
models and game theory.

Rich function class: kernel, RKHS

k : X× X→ R is a kernel if
k(x, y) = ⟨φ(x), φ(y)⟩F .

Examples:
kp(x, y) = (⟨x, y⟩ + c)p, kG(x, y) = e−γ∥x−y∥2

2,

kL(x, y) = e−γ∥x−y∥1, ke(x, y) = eγ⟨x,y⟩.

RKHS: Fk = span {k(·, x) : x ∈ X} 1:1←→ k.
Included (Fk): Fourier analysis, polynomials, splines, . . .

Idea

SOC-tightening [1, 2]:
0 ≤ Df (x), ∀x ∈ K

ηm∥f∥Fk
≤ Df (x̃m), ∀m ∈ [M ]

with suitable ηm > 0 and {x̃m}m∈[M ] ⊂ K covering.
Intuition of ηm:
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Convoy localization with traffic jam

•D: no overtaking, min speed & inter-vehicular distance.
• Setting: Q = 6, dmin = 5m, vmin = 0.
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Convoy localization – continued

Pairwise distances: t 7→ fq(t)− fq+1(t) Speed: t 7→ f ′q(t)
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Safety-critical control

•D: avoid bumping into the ceiling & floor of the cave.
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Further examples [1, 2]: quantile regression, shape optimiza-
tion, econometrics, robotics.
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