# Supervised Descent Method and its Applications to Face Alignment

# Xuehan Xiong, Fernando De la Torre (CVPR-2013, extensions: submitted to TPAMI)

Zoltán Szabó

Gatsby Unit, Tea Talk

March 16, 2015

#### **Motivation**

- Computer vision: many tasks boil down to continuous nonlinear optimization.
- Our focus: facial feature detection/tracking.



#### Newton's method (and its variants)

- Task:  $\min_{\mathbf{x}} f(\mathbf{x}), f \in C^2$ .
- Newton's method: locally quadratic approximation,
  - **x**<sub>0</sub>: given.
  - Second order Taylor expansion (k = 0, 1, 2, ...) around  $\mathbf{x}_k$ :

$$f(\mathbf{x}_{k} + \Delta \mathbf{x}) \approx f(\mathbf{x}_{k}) + \mathbf{J}_{f}(\mathbf{x}_{k})^{T} (\Delta \mathbf{x}) + \frac{1}{2} (\Delta \mathbf{x})^{T} \mathbf{H}(\mathbf{x}_{k}) (\Delta \mathbf{x}) \Rightarrow$$
$$\Delta \mathbf{x}_{k+1} = -\mathbf{H}^{-1}(\mathbf{x}_{k}) \mathbf{J}_{f}(\mathbf{x}_{k}),$$
$$\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta \mathbf{x}_{k+1}.$$

#### Newton's method: pro & contra

Advantages:

• If it converges  $\Rightarrow$  quadratic rate (q = 2)

$$\lim_{k\to\infty}\frac{\|\mathbf{x}_k-\mathbf{x}_*\|}{\|\mathbf{x}_{k-1}-\mathbf{x}_*\|^q}=L>0.$$

- If  $\mathbf{x}_0$  is "close enough" to  $\mathbf{x}_* \Rightarrow$  convergence.
- Disadvantages (in CV):
  - *f*: non-differentiable (SIFT)  $\rightarrow$  numerical **J**<sub>*f*</sub>, **H**: slow.
  - Linear equation: expensive (quasi too).

# Optimization idea (z-axis: reversed)



Zoltán Szabó Supervised Descent Method

# Face alignment: $\mathbf{x}_0$ – initial estimation, $\mathbf{x}_*$ – manual labels



# Face alignment: formulation

• Image: **d**.

- Landmark locations (p):  $\mathbf{x} = [x_1; y_1; ...; x_p; y_p] \in \mathbb{R}^{2p}$ .
- Feature extraction function (SIFT): h.
- Features around the landmarks:  $h(\mathbf{x}; \mathbf{d}) \in \mathbb{R}^{128p}$ .
- Task: for given x<sub>0</sub>

$$egin{aligned} g(\Delta \mathbf{x}) &= f(\mathbf{x}_0 + \Delta \mathbf{x}) = \|\mathbf{h}(\mathbf{x}_0 + \Delta \mathbf{x}; \mathbf{d}) - \phi_*\|_2^2 & o \min_{\Delta \mathbf{x}}, \ \phi_* &= \mathbf{h}(\mathbf{x}_*; \mathbf{d}). \end{aligned}$$

#### Face alignment

• Task:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) = \|\mathbf{h}(\mathbf{x}_0 + \Delta \mathbf{x}; \mathbf{d}) - \phi_*\|_2^2 \to \min_{\Delta \mathbf{x}}.$$

• By the Newton trick (+chain rule):

$$\begin{split} \Delta \mathbf{x}_1 &= -\mathbf{H}^{-1}(\mathbf{x}_0) \mathbf{J}_f(\mathbf{x}_0) = -2\mathbf{H}^{-1}(\mathbf{x}_0) \mathbf{J}_{\mathbf{h}}^{\mathcal{T}}(\mathbf{x}_0) (\phi_0 - \phi_*), \\ \phi_0 &= \mathbf{h}(\mathbf{x}_0; \mathbf{d}), \\ \phi_* &= \mathbf{h}(\mathbf{x}_*; \mathbf{d}). \end{split}$$

#### Face alignment

• Task:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) = \|\mathbf{h}(\mathbf{x}_0 + \Delta \mathbf{x}; \mathbf{d}) - \phi_*\|_2^2 \to \min_{\Delta \mathbf{x}}.$$

• By the Newton trick (+chain rule):

$$\begin{split} \Delta \mathbf{x}_1 &= -\mathbf{H}^{-1}(\mathbf{x}_0) \mathbf{J}_f(\mathbf{x}_0) = -2\mathbf{H}^{-1}(\mathbf{x}_0) \mathbf{J}_{\mathbf{h}}^{\mathcal{T}}(\mathbf{x}_0)(\phi_0 - \phi_*), \\ \phi_0 &= \mathbf{h}(\mathbf{x}_0; \mathbf{d}), \\ \phi_* &= \mathbf{h}(\mathbf{x}_*; \mathbf{d}). \end{split}$$

• Idea [ $\mathbf{H} := \mathbf{H}(\mathbf{x}_0), J_h := J_h(\mathbf{x}_0)$ ]:

$$\Delta \mathbf{x}_1 = -2\mathbf{H}^{-1}\mathbf{J}_{\mathbf{h}}^T(\phi_0 - \phi_*) = \left[-2\mathbf{H}^{-1}\mathbf{J}_{\mathbf{h}}^T\right]\phi_0 + \left[2\mathbf{H}^{-1}\mathbf{J}_{\mathbf{h}}^T\phi_*\right]$$
$$= \mathbf{R}_0\phi_0 + \mathbf{b}_0 \Rightarrow \text{optimize for } (\mathbf{R}_0, \mathbf{b}_0) \text{ based on samples.}$$

- The algorithm is unlikely to converge in 1 iteration.
- Cascade of regressors:

 $\Delta \mathbf{x}_1 = \mathbf{R}_0 \phi_0 + \mathbf{b}_0,$ 

 $\Delta \mathbf{x}_k = \mathbf{R}_{k-1}\phi_{k-1} + \mathbf{b}_{k-1}$ , where  $\phi_{k-1} = \mathbf{h}(\mathbf{x}_{k-1}; \mathbf{d})$ : features at the previous landmarks.

# Face alignment: optimization (k = 0)

- Given:
  - set of images:  $\{\mathbf{d}^i\}_{i=1}^N$ ,
  - hand-labelled landmarks:  $\{\mathbf{x}_{i}^{i}\}_{i=1}^{N}$ , initial estimates:  $\{\mathbf{x}_{0}^{i}\}_{i=1}^{N} \Rightarrow$
- Optimal updates, extracted features:

$$\Delta \mathbf{x}_{*0}^i = \mathbf{x}_*^i - \mathbf{x}_0^i, \quad \phi_0^i = \mathbf{h}\left(\mathbf{x}_0^i; \mathbf{d}^i\right).$$

• Objective:

$$J(\mathbf{R}_0, \mathbf{b}_0) = \frac{1}{N} \sum_{i=1}^{N} \left\| \Delta \mathbf{x}_{*0}^i - \mathbf{R}_0 \phi_0^i - \mathbf{b}_0 \right\|_2^2 \to \min_{\mathbf{R}_0, \mathbf{b}_0}.$$

# Face alignment: optimization (general k)

• Update the landmark estimates (**x**<sub>k</sub>):

$$\Delta \mathbf{x}_{k}^{i} = \mathbf{R}_{k-1} \phi_{k-1}^{i} + \mathbf{b}_{k-1} \quad (i = 1, \dots, N).$$

● Compute optimal updates (∀*i*), extract features:

$$\Delta \mathbf{x}_{*k}^{i} = \mathbf{x}_{*}^{i} - \mathbf{x}_{k}^{i}, \quad \phi_{k}^{i} = \mathbf{h}\left(\mathbf{x}_{k}^{i}; \mathbf{d}^{i}\right).$$

• Objective:

$$J(\mathbf{R}_k, \mathbf{b}_k) = \frac{1}{N} \sum_{i=1}^{N} \left\| \Delta \mathbf{x}_{*k}^i - \mathbf{R}_k \phi_k^i - \mathbf{b}_k \right\|_2^2 \to \min_{\mathbf{R}_k, \mathbf{b}_k}.$$

Numerical experience: convergence in 4-5 steps.

# Face alignment: training, testing

- Training  $\Rightarrow$  {**R**<sub>k</sub>, **b**<sub>k</sub>}.
- Testing:
  - test image: **d**,
  - inital estimate: x<sub>0</sub>,
  - extract features:  $\phi_0 = \mathbf{h} \left( \mathbf{x}_0; \tilde{\mathbf{d}} \right)$ ,
  - iteratively compute  $\Delta \mathbf{x}_k$ , the features at  $\mathbf{x}_k$  (k = 1, ...):

$$\Delta \mathbf{x}_{k} = \mathbf{R}_{k-1}\phi_{k-1} + \mathbf{b}_{k-1},$$
  
$$\phi_{k} = \mathbf{h}\left(\mathbf{x}_{k}; \tilde{\mathbf{d}}\right).$$

# Facial feature detection: 2 "face in the wild" datasets



Last row: 10 worst cases.

# Facial feature detection: cumulative error distribution curves



# Facial feature tracking

- Initialization = landmark estimate from the previous frame.
- (a): average RMSE-s on 29 videos, (b): RMSE=5.03 demo.





(b)

- Focus: continuous nonlinear optimization.
- Newton's method: expensive.
- Idea:
  - supervised Newton method,
  - learn cascade of affine regressors based on samples.
- Application:
  - facial feature detecion,
  - face tracking.

#### Thank you for the attention!

