Characterizing the Representer Theorem

Yan-Liang Yu, Hao Cheng, Dale Schuurmans, Csaba Szepesvári (ICML-2013)

Zoltán Szabó

Gatsby Unit, Tea Talk
October 3, 2013

Motivation

- Kernel methods:
 - many exciting applications (SVMC, SVMR, KPCA, ...).
- Representer theorem:
 - ∞ \rightarrow finite-dimensional problem,
 - Q: Under what conditions does it hold?

• Chosen paper: equivalent characterization.

Reproducing kernel Hilbert space (RKHS)

- Given: $\mathcal{X} \neq \emptyset$ set (graphs, time series, distributions, ...).
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a *kernel* if $\exists \varphi: \mathcal{X} \to \mathcal{H}$ (ilbert) space such that

$$k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}} \quad (\forall x, y \in \mathcal{X}).$$
 (1)

• \mathcal{H} is not unique, but $\exists ! \mathcal{H} = \mathcal{H}(k)$ RKHS such that

$$k(\mathbf{x},\cdot) \in \mathcal{H}$$
 $(\forall \mathbf{x} \in \mathcal{X}),$ (2)

$$\langle f, k(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x})$$
 $(\forall \mathbf{x} \in \mathcal{X}, \forall f \in \mathcal{H}).$ (3)

Problem setup

Objective function (regularized empirical risk, λ > 0; R :=):

$$J(f) := L(f(x_1), \dots, f(x_n)) + \lambda \Omega(f) \to \min_{f \in \mathcal{H}}.$$
 (4)

Example (SVMR):

$$J(f) = \frac{1}{T} \sum_{i=1}^{H} |y_i - f(x_i)|_{\epsilon} + \lambda \|f\|_{\mathcal{H}(k)}^2 \to \min_{f \in \mathcal{H}(k)}.$$
 (5)

• Representer theorem [Kimeldorf & Wahba '71]: Solutions of (4) for $\mathcal{H} = \mathcal{H}(k)$ and $\Omega(f) = ||f||_{\mathcal{H}}^2$ take the form

$$f(\cdot) = \sum_{i=1}^{n} a_i k(x_i, \cdot) \quad (\mathbf{a} \in \mathbb{R}^n).$$
 (6)

Consequence $(\Omega(f) = ||f||_{\mathcal{H}(K)}^2)$

$$f(x_j) = \sum_{i=1}^n a_i k(x_i, x_j) = (\mathbf{Ka})_j, \quad \mathbf{K} = [k(x_i, x_j)] \in \mathbb{R}^{n \times n} \quad (7)$$

$$||f||_{\mathcal{H}(k)}^2 = \left\langle \sum_{i=1}^n a_i k(x_i, \cdot), \sum_{j=1}^n a_j k(x_j, \cdot) \right\rangle_{\mathcal{H}(k)}$$
(8)

$$= \sum_{i,j=1}^{n} a_i a_j \left\langle k(\mathbf{x}_i, \cdot), k(\mathbf{x}_j, \cdot) \right\rangle_{\mathfrak{H}(k)} = \sum_{i,j=1}^{n} a_i a_j k(\mathbf{x}_i, \mathbf{x}_j) \quad (9)$$
$$= \mathbf{a}^T \mathbf{K} \mathbf{a}. \quad (10)$$

Plugging the obtained formulas to the objective:

$$J(\mathbf{a}) = L((\mathbf{Ka})_1, \dots, (\mathbf{Ka})_n) + \lambda \mathbf{a}^T \mathbf{Ka} \to \min_{\mathbf{a} \in \mathbb{R}^n}.$$
 (11)

Schölkopf et al., '01: Sufficient condition (RKHS)

- Result:
 - Let $\Omega(f) = h(\|f\|_{\mathcal{H}}), h : \mathbb{R}^{\geq 0} \to \overline{\mathbb{R}}.$
 - If h is
 - monotonically increasing: then ∃,
 - ullet strictly monotonically increasing: then \forall

f minimizers admit the required form.

Necessary conditions?

Necessary conditions (Hilbert space)

If Ω is

- Gateaux differentiable (=directional) [Argyriou et al. '09], or
- lower semi-continuous [Dinuzzo & Schölkopf '12],

then the sufficient condition is also necessary.

Chosen paper: idea – interpolation

Let us consider the interpolation problem (*I* :=):

$$\min_{f \in \mathcal{H}: \langle f, f \rangle_{\mathcal{H}} = y_i, i = 1, \dots, n} \Omega(f). \tag{12}$$

- ullet $\Omega:\mathcal{H}
 ightarrowar{\mathbb{R}}$ is
 - admissible: if ∃,
 - strictly admissible: if ∀

f minimizers of task I take the form

$$f = \sum_{i=1}^{n} a_i f_i \quad (\mathbf{a} \in \mathbb{R}^n). \tag{13}$$

Chosen paper: continued – $R \Leftrightarrow I$

- If $f_i = k(x_i, \cdot)$, then $f(x_i) = y_i$ (RKHS).
- Advantage: loss *L* no longer appears in the formulation.
- Still: from representer theorem point of view
 - $I \Rightarrow R$,
 - R ← I: under mild conditions on L.
- Inner product constraints: Euclidean spaces.

Chosen paper: continued – contours

- Similarly to [Argyriou et al. '09]: Ω is
 - admissible iff:

$$\forall f, g \in \mathcal{H}, \langle f, g \rangle_{\mathcal{H}} = 0 \Rightarrow \Omega(f + g) \geq \Omega(f).$$
 (14)

strictly admissible iff:

$$\forall f, g \in \mathcal{H}, \langle f, g \rangle_{\mathcal{H}} = 0, g \neq 0 \Rightarrow \Omega(f + g) > \Omega(f).$$
 (15)

Intuitively, the contours of Ω are spheres.

Chosen paper: result

Ω is

admissible iff it is weakly-

$$\forall f, g \in \mathcal{H}, \|g\| > \|f\| \Rightarrow \Omega(g) \ge \Omega(f), \tag{16}$$

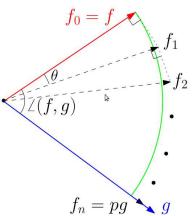
strictly admissible iff it is strictly increasing

$$\forall f, g \in \mathcal{H}, \|g\| > \|f\| \Rightarrow \Omega(g) > \Omega(f) \tag{17}$$

function of the norm of its argument.

Chosen paper: proof – intuition

- Admissibility $\Rightarrow \Omega$ is increasing along any ray $R_g = \{tg : t \geq 0, g \neq 0\}$ (\Leftarrow contour result 2x).
- If ||f|| < ||g||, then f can be subtly, on each segment perpendicularly rotated to pg (p < 1):



Conclusion

- From representer theorem point of view: $R \Leftrightarrow I$.
- Contributions:
 - differentiability/semi-continuous assumption: relaxed.
 - Hilbert → Euclidean space.
- (Strict) admissibility of Ω -s can be characterized.

Thank you for the attention!

Definitions: I.s.c., u.s.c.

$$f:\mathcal{H} oar{\mathbb{R}}$$
 is

- I.s.c., if
 - As $x \to x_0$, f(x) is either close to, or larger than $f(x_0)$. Formally,

$$f(x_0) \le \lim \inf_{x \to x_0} f(x) \quad (\forall x_0). \tag{18}$$

- $epi(f) := \{(x, t) \in \mathcal{H} \times \overline{\mathbb{R}} : f(x) \leq t\}$ is closed.
- $\{x \in \mathcal{H} : f(x) > \alpha\}$ open $(\forall \alpha \in \mathbb{R})$,
- $\{x \in \mathcal{H} : f(x) \leq \alpha\}$ closed $(\forall \alpha \in \mathbb{R})$.
- u.s.c, if -f is l.s.c. Continuous: l.s.c. and u.s.c.

Example: $f(x) = \lceil x \rceil (\lfloor x \rfloor)$ is l.s.c. (u.s.c.).

Fatou lemma

- $\mathcal{H} := L^+(\mathcal{X}, \mathcal{A}, \mu)$:
 - non-negative measureable functions,
 - topology: convergence in μ .
- Fatou lemma:
 - $\int : L^+(\mathfrak{X}, \mathcal{A}, \mu) \to \overline{\mathbb{R}}$ is l.s.c., i.e.,
 - $\int_{\mathcal{X}} \liminf_{n\to\infty} f_n d\mu \leq \liminf_{n\to\infty} \int_{\mathcal{X}} f_n d\mu$.

Gateaux differentiability

 $\Omega: \mathcal{H} \to \mathbb{R}$ is said to be Gateaux differentiable

• at $f \in \mathcal{H}$, if for $\forall h$ (direction) $\in \mathcal{H} \exists \Omega'_f(h) \in \mathbb{R}$ such that

$$\Omega(f + th) - \Omega(f) = t\Omega'_f(h) + o(t)$$
, as $t \to 0$. (19)

• if it is Gateaux differentiable at $\forall f \in \mathcal{H}$.