Consistent, Two-Stage Sampled Distribution Regression

Zoltán Szabó

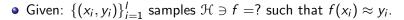
Joint work with Arthur Gretton, Barnabás Póczos (CMU), Bharath K. Sriperumbudur (University of Cambridge)

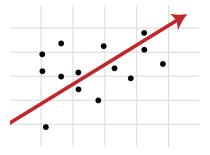
Gatsby Unit, Research Talk March 10, 2014

Zoltán Szabó Consistent, Two-Stage Sampled Distribution Regression

- Motivation.
- Problem formulation.
- Algorithm, consistency result.
- Numerical illustration.

Regression





- Typically: $x_i \in \mathbb{R}^p$, $y_i \in \mathbb{R}^q$.
- Our interest: x_i -s are distributions (∞ -dimensional objects).

In practise:

- x_i -s are only observable via samples: $x_i \approx \{x_{i,n}\}_{n=1}^N \Rightarrow$
- an x_i is represented as a bag:
 - image = set of patches,
 - document = bag of words,
 - video = collection of images,
 - different configurations of a molecule = bag of shapes.

Example: supervised entropy learning

- Entropy of $x \sim f$: $-\int f(u) \log[f(u)] du$.
- Training: samples from distributions, entropy values.
- Task: estimate the entropy of a new sample set.

- Training: samples from MOGs with component number labels.
- Task:
 - given: samples from a new MOG distribution,
 - predict: the number of components.

Example: Sudoku difficulty estimation

- Sudoku: special constraint satisfaction problem.
- Spiking neural networks (SNN)
 - can be used to solve such problems,
 - have stationary distribution under mild conditions.
- Sudoku \leftrightarrow stationary distribution of the SNN.

- Training: (image, age) pairs; image = bag of features.
- Goal: estimate the age of a person being on a new image.

Example: toxic level estimation from tissues

- Toxin alters the properties/causes mutations in cells.
- Training data:
 - bag = tissue,
 - samples in the bag = cells described by some simple features,
 - output label = toxic level.
- Task: predict the toxic level given a new tissue.

Example: aerosol prediction using satellite images

- Aerosol = floating particles in the air; climate research.
- Multispectral satellite images: 1 pixel = $200 \times 200m^2 \in bag$.
- Bag label: ground-based (expensive) sensor.
- Task: satellite image \rightarrow aerosol density.

Towards problem formulation: kernel, RKHS

k: D × D → ℝ kernel on D, if
∃φ: D → H(ilbert space) feature map,
k(a, b) = ⟨φ(a), φ(b)⟩_H (∀a, b ∈ D).
Kernel examples: D = ℝ^d (p > 0, θ > 0)
k(a, b) = (⟨a, b⟩ + θ)^p: polynomial,
k(a, b) = e^{-||a-b||²/(2θ²)}: Gaussian,
k(a, b) = e^{-θ||a-b||}: Laplacian.

• In the H = H(k) RKHS (\exists !): $\varphi(u) = k(\cdot, u)$.

Some example domains (\mathcal{D}) , where kernels exist

- Euclidean spaces: $\mathcal{D} = \mathbb{R}^d$.
- Strings, time series, graphs, dynamical systems.

Distributions.

- Given: (\mathfrak{D}, k) ; we saw that $u \to \varphi(u) = k(\cdot, u) \in H(k)$.
- Let x be a distribution on D (x ∈ M⁺₁(D)); the previous construction can be extended:

$$\mu_{x} = \int_{\mathcal{D}} k(\cdot, u) \mathrm{d}x(u) \in H(k).$$
 (1)

• If k is bounded: μ_x is well-defined for any distribution x.

Mean embedding based distribution kernel

Simple estimation of $\mu_x = \int_{\mathcal{D}} k(\cdot, u) dx(u)$:

• Empirical distribution: having samples $\{x_n\}_{n=1}^N$

$$\hat{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \delta_{\mathbf{x}_n}.$$
(2)

• Mean embedding, inner product – empirically:

$$\mu_{\hat{x}} = \int_{\mathcal{D}} k(\cdot, u) d\hat{x}(u) = \frac{1}{N} \sum_{n=1}^{N} k(\cdot, x_n),$$
(3)
$$\mathcal{K} \left(\mu_{\hat{x}_i}, \mu_{\hat{x}_j} \right) = \left\langle \mu_{\hat{x}_i}, \mu_{\hat{x}_j} \right\rangle_{\mathcal{H}(k)} = \frac{1}{N_i N_j} \sum_{n=1}^{N_i} \sum_{m=1}^{N_j} k(x_{i,n}, x_{j,m}).$$

- Until now
 - If we are given a domain (\mathcal{D}) with kernel k, then
 - $\bullet\,$ one can easily define/estimate the similarity of distributions on $\mathcal{D}.$
- Prototype example: $\mathcal{D} = \mathbb{R}^d$, k = Gaussian, K = lin. kernel.
- The real conditions:
 - \mathcal{D} : LCH + Polish. k: c_0 -universal.
 - K: Hölder continuous.

Distribution regression problem: intuitive definition

•
$$\mathbf{z} = \{(x_i, y_i)\}_{i=1}^l$$
: $x_i \in M_1^+(\mathcal{D}), y_i \in \mathbb{R}$.
• $\hat{\mathbf{z}} = \{(\{x_{i,n}\}_{n=1}^N, y_i)\}_{i=1}^l$: $x_{i,1}, \dots, x_{i,N} \stackrel{i.i.d.}{\sim} x_i$.

- Goal: learn the relation between x and y based on ẑ.
- Idea: embed the distributions (μ) + apply ridge regression

$$M_1^+(\mathcal{D}) \xrightarrow{\mu} X(\subseteq H = H(k)) \xrightarrow{f \in \mathcal{H} = \mathcal{H}(K)} \mathbb{R}.$$

Objective function

• $f_{\mathcal{H}} \in \mathcal{H} = \mathcal{H}(K)$: ideal/optimal in expected risk sense (\mathcal{E}):

$$\mathcal{E}[f_{\mathcal{H}}] = \inf_{f \in \mathcal{H}} \mathcal{E}[f] = \inf_{f \in \mathcal{H}} \int_{X \times \mathbb{R}} [f(\mu_a) - y]^2 \mathrm{d}\rho(\mu_a, y).$$
(4)

• One-stage difficulty $(\int \rightarrow z)$:

$$f_{\mathsf{z}}^{\lambda} = \operatorname*{arg\,min}_{f \in \mathcal{H}} \left(\frac{1}{I} \sum_{i=1}^{I} \left[f(\mu_{x_i}) - y_i \right]^2 + \lambda \left\| f \right\|_{\mathcal{H}}^2 \right).$$
(5)

 \bullet Two-stage difficulty (z \rightarrow 2):

$$f_{\hat{\mathbf{z}}}^{\lambda} = \operatorname*{arg\,min}_{f \in \mathcal{H}} \left(\frac{1}{I} \sum_{i=1}^{I} \left[f(\mu_{\hat{x}_i}) - y_i \right]^2 + \lambda \left\| f \right\|_{\mathcal{H}}^2 \right).$$
(6)

• Given:

- training sample: \hat{z} ,
- test distribution: t.

• Prediction:

$$(f_{\hat{\mathbf{z}}}^{\lambda} \circ \mu)(t) = [y_1, \dots, y_l] (\mathbf{K} + l\lambda \mathbf{I}_l)^{-1} \begin{bmatrix} \mathcal{K}(\mu_{\hat{x}_1}, \mu_t) \\ \vdots \\ \mathcal{K}(\mu_{\hat{x}_l}, \mu_t) \end{bmatrix}, \quad (7)$$
$$\mathbf{K} = [\mathcal{K}_{ij}] = [\mathcal{K}(\mu_{\hat{x}_i}, \mu_{\hat{x}_j})] \in \mathbb{R}^{l \times l}. \quad (8)$$

We studied

- the excess error: $\mathcal{E}\left[f_{\hat{z}}^{\lambda}\right] \mathcal{E}\left[f_{\mathcal{H}}\right]$, i.e,
- \bullet the goodness compared to the best function from ${\mathcal H}.$
- Result: with probability $\rightarrow 1$

$$\mathcal{E}\left[f_{\hat{\mathbf{z}}}^{\lambda}\right] - \mathcal{E}\left[f_{\mathcal{H}}\right] \to 0,\tag{9}$$

if we appropriately choose the (I, N, λ) triplet.

• Let the $T : \mathcal{H} \to \mathcal{H}$ operator be

$$T = \int_{X} K(\cdot, \mu_{a}) K^{*}(\cdot, \mu_{a}) \mathrm{d}\rho_{X}(\mu_{a}) = \int_{X} K(\cdot, \mu_{a}) \delta_{\mu_{a}} \mathrm{d}\rho_{X}(\mu_{a})$$

with eigenvalues t_n (n = 1, 2, ...).

• Let $\rho \in \mathcal{P}(b, c)$ be the set of distributions on $X \times \mathbb{R}$:

•
$$\alpha \leq n^b t_n \leq \beta$$
 ($\forall n \geq 1; \alpha > 0, \beta > 0$),

• $\exists g \in \mathcal{H}$ such that $f_{\mathcal{H}} = T^{\frac{c-1}{2}}g$ with $\|g\|_{\mathcal{H}}^2 \leq R$ (R > 0),

where $b \in (1,\infty)$, $c \in [1,2]$.

High-level idea:

• The excess error can be upper bounded on $\mathcal{P}(b, c)$ as:

$$g(I, N, \lambda) = \mathcal{E}\left[f_{\hat{z}}^{\lambda}\right] - \mathcal{E}\left[f_{\mathcal{H}}\right] \leq \frac{\log(I)}{N\lambda^{3}} + \lambda^{c} + \frac{1}{I^{2}\lambda} + \frac{1}{I\lambda^{\frac{1}{b}}}.$$

- We choose
 - $\lambda = \lambda_{I,N} \rightarrow 0$:
 - by matching two terms,
 - $g(I, N, \lambda) \rightarrow 0$; moreover, make the 2 equal terms dominant.

•
$$l = N^a (a > 0).$$

Convergence rate: results

• 1 = 2: If
$$\lambda = \left[\frac{\log(N)}{N}\right]^{\frac{1}{c+3}}$$
, $\frac{\frac{1}{b}+c}{c+3} \leq a$, then
 $g(N) = \mathcal{O}\left(\left[\frac{\log(N)}{N}\right]^{\frac{c}{c+3}}\right) \to 0.$ (10)

Convergence rate: results

• 1 = 2: If
$$\lambda = \left[\frac{\log(N)}{N}\right]^{\frac{1}{c+3}}$$
, $\frac{\frac{1}{b}+c}{c+3} \leq a$, then
 $g(N) = \mathcal{O}\left(\left[\frac{\log(N)}{N}\right]^{\frac{c}{c+3}}\right) \to 0.$ (10)

• 1 = 3: If
$$\lambda = N^{a-\frac{1}{2}} \log^{\frac{1}{2}}(N)$$
, $\frac{1}{6} \le a < \min\left(\frac{1}{2} - \frac{1}{c+3}, \frac{\frac{1}{2}(\frac{1}{b}-1)}{\frac{1}{b}-2}\right)$,

$$g(N) = \mathcal{O}\left(\frac{1}{N^{3a-\frac{1}{2}}\log^{\frac{1}{2}}(N)}\right) \to 0.$$
 (11)

• 1 = 4: If
$$\lambda = [N^{a-1}\log(N)]^{\frac{b}{3b-1}}$$
, $\max(\frac{b-1}{4b-2}, \frac{1}{3b}) \le a < \frac{bc+1}{3b+bc}$,
 $g(N) = \mathcal{O}\left(\frac{1}{N^{a+\frac{a}{3b-1}-\frac{1}{3b-1}}\log^{\frac{1}{3b-1}}(N)}\right) \to 0.$ (12)

•
$$2 = 3$$
: Ø (the matched terms can not be made dominant).
• $2 = 4$: If $\lambda = \frac{1}{N^{\frac{ab}{bc+1}}}$, $a < \frac{bc+1}{3b+bc}$, then
 $g(N) = O\left(\frac{1}{N^{\frac{abc}{bc+1}}}\right) \rightarrow 0.$ (13)
• $3 = 4$: If $\lambda = \frac{1}{N^{\frac{ab}{b-1}}}$, $2 < b$, $a < \frac{b-1}{2(2b-1)}$, then
 $g(N) = O\left(\frac{1}{N^{2a-\frac{ab}{b-1}}}\right) \rightarrow 0.$ (14)

- Problem: learn the entropy of Gaussians in a supervised manner.
- Formally:

•
$$A = [A_{i,j}] \in \mathbb{R}^{2 \times 2}, A_{ij} \sim U[0,1].$$

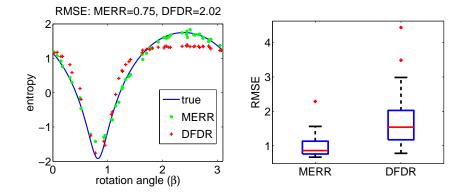
- 100 sample sets: $\{N(0, \Sigma_u)\}_{u=1}^{100}$, where
 - 100 = 25(training) + 25(validation) + 50(testing).
 - one set = 500 i.i.d. 2D points,
 - $\Sigma_u = R(\beta_u)AA^T R(\beta_u)^T$,
 - $R(\beta_u)$: 2d rotation,
 - angle $\beta_u \sim U[0, \pi]$.

• Goal: learn the entropy of the first marginal

$$H = \frac{1}{2} \ln \left(2\pi e \sigma^2 \right), \quad \sigma^2 = M_{1,1}, \quad M = \Sigma_u \in \mathbb{R}^{2 \times 2}.$$
 (15)

- Baseline: kernel smoothing based distribution regression (applying density estimation) =: DFDR.
- Performance: RMSE boxplot over 25 random experiments.

Supervised entropy learning: results



Numerical illustration: aerosol prediction

Bags:

- randomly selected pixels,
- within a 20km radius around an AOD sensor.
- 800 bags, 100 instances/bag.
- Instances: $x_{i,n} \in \mathbb{R}^{16}$.

• Baseline: state-of-the-art mixture model

- EM optimization,
- $800 = 4 \times 160(\text{training}) + 160(\text{test})$; 5-fold CV, 10 times.
- Accuracy: $100 \times RMSE(\pm \text{ std}) = 7.5 8.5 \ (\pm 0.1 0.6)$.
- Ridge regression:
 - $800 = 3 \times 160(\text{training}) + 160(\text{validation}) + 160(\text{test})$,
 - 5-fold CV, 10 times,
 - validation: λ regularization, θ kernel parameter.

Aerosol prediction: kernel k

- We picked 10 kernels (k): Gaussian, exponential, Cauchy, generalized t-student, polynomial kernel of order 2 and 3 (p = 2 and 3), rational quadratic, inverse multiquadratic kernel, Matérn kernel (with ³/₂ and ⁵/₂ smoothness parameters).
- We also studied their ensembles.
- Explored parameter domain:

$$(\lambda, \theta) \in \left\{2^{-65}, 2^{-64}, \dots, 2^{-3}\right\} \times \left\{2^{-15}, 2^{-14}, \dots, 2^{10}\right\}.$$

First, K was linear.

Aerosol prediction: kernel definitions

~

Kernel definitions (p = 2, 3):

$$k_G(a,b) = e^{-\frac{\|a-b\|_2^2}{2\theta^2}}, \qquad k_e(a,b) = e^{-\frac{\|a-b\|_2}{2\theta^2}},$$
 (16)

$$k_{C}(a,b) = \frac{1}{1 + \frac{\|a - b\|_{2}^{2}}{\theta^{2}}}, \quad k_{t}(a,b) = \frac{1}{1 + \|a - b\|_{2}^{\theta}}, \tag{17}$$

$$k_p(a,b) = (\langle a,b \rangle + \theta)^p, \ k_r(a,b) = 1 - \frac{\|a-b\|_2^2}{\|a-b\|_2^2 + \theta},$$
 (18)

$$k_{i}(a,b) = \frac{1}{\sqrt{\|a-b\|_{2}^{2} + \theta^{2}}},$$

$$k_{M,\frac{3}{2}}(a,b) = \left(1 + \frac{\sqrt{3}\|a-b\|_{2}}{\theta}\right)e^{-\frac{\sqrt{3}\|a-b\|_{2}}{\theta}},$$

$$k_{M,\frac{5}{2}}(a,b) = \left(1 + \frac{\sqrt{5}\|a-b\|_{2}}{\theta} + \frac{5\|a-b\|_{2}^{2}}{3\theta^{2}}\right)e^{-\frac{\sqrt{5}\|a-b\|_{2}}{\theta}}.$$
(19)
(19)
(19)

Zoltán Szabó Consistent, Two-Stage Sampled Distribution Regression

Aerosol prediction: results (K: linear)

 $100 \times RMSE(\pm std)$ [baseline: 7.5 - 8.5 (±0.1 - 0.6)]:

k _G	k _e	<i>k_C</i>	k _t
7.97 (±1.81)	8.25 (±1.92)	7.92 (±1.69)	8.73 (±2.18)
$k_p(p=2)$	$k_p(p=3)$	k _r	<i>ki</i>
12.5 (±2.63)	171.24 (±56.66)	9.66 (±2.68)	7.91 (±1.61)
$rac{k_{M,rac{3}{2}}}{8.05~(\pm 1.83)}$	$k_{M,rac{5}{2}}$ 7.98 (±1.75)	ensemble 7.86 (± 1.71)	

Best combination in the ensemble: $k = k_G, k_C, k_i$.

- We fed the mean embedding distance (||μ_x μ_y||_{H(k)}) to the previous kernels.
- Example (RBF on mean embeddings valid kernel):

$$K(\mu_{a},\mu_{b}) = e^{-\frac{\|\mu_{a}-\mu_{b}\|_{H(k)}^{2}}{2\theta_{K}^{2}}} \quad (\mu_{a},\mu_{b}\in X).$$
(22)

 We studied the efficiency of (i) single, (ii) ensembles of kernels [(k, K) pairs].

Aerosol prediction: nonlinear K, results

Baseline:

- Mixture model (EM): $7.5 8.5 \ (\pm 0.1 0.6)$,
- Linear K (single): 7.91 (±1.61).
- Linear K (ensemble): **7.86** (±**1.71**).
- Nonlinear K:
 - Single: 7.90 (±1.63),
 - Ensemble:
 - Accuracy: 7.81 (±1.64),

•
$$(k, K) = (k_i, k_t), (k_{M,\frac{3}{2}}, k_{M,\frac{3}{2}}), (k_C, k_G).$$

- Problem: distribution regression.
- Difficulty: two-stage sampling.
- Examined solution: ridge regression (simple alg.)!
- Contribution:
 - consistency; convergence rate.
 - submitted to ICML-2014; available on arXiv.

Thank you for the attention!

• +Applications.

- K: linear \rightarrow Hölder: solved.
- $(\mathcal{Y} = \mathbb{R}, \langle \cdot, \cdot \rangle) \to (\mathcal{Y}, k_{\mathcal{Y}}).$
- Quadratic loss (*E*): convex loss?
- Mean embedding (μ) : other distribution kernels.
- Alternative consistency proofs (different assumptions).

Then, (\mathfrak{X}, τ) is called a *topological space*; $O \in \tau$: open sets.

- $\tau = \{ \emptyset, \mathfrak{X} \}$: indiscrete topology.
- $\tau = 2^{\chi}$: discrete topology.
- (X, d) metric space:
 - Open ball: $B_{\epsilon}(x) = \{y \in \mathfrak{X} : d(x, y) < \epsilon\}.$
 - $O \subseteq \mathfrak{X}$ is open if for $\forall x \in O \ \exists \epsilon > 0$ such that $B_{\epsilon}(x) \subseteq O$.
 - $\tau := \{ O \subseteq \mathfrak{X} : O \text{ is an open subset of } \mathfrak{X} \}.$

Given: (\mathfrak{X}, τ) . $A \subseteq \mathfrak{X}$ is

• closed if $\mathfrak{X} \setminus A \in \tau$ (i.e., its complement is open),

• compact if for any family $(O_i)_{i \in I}$ of open sets with $A \subseteq \bigcup_{i \in I} O_i$, $\exists i_1, \ldots, i_n \in I$ with $A \subseteq \bigcup_{j=1}^n O_{i_j}$.

Closure of $A \subseteq \mathfrak{X}$:

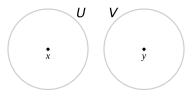
$$\bar{A} := \bigcap_{A \subseteq C \text{ closed in } \mathcal{X}} C.$$
(23)

For $A \subseteq \mathfrak{X}$ the subspace topology on A: $\tau_A = \{O \cap A : O \in \tau\}$.

Hausdorff space

(\mathfrak{X}, τ) is a Hausdorff space, if

- for any $x \neq y \in \mathfrak{X} \exists U, V \in \tau$ such that $x \in U, y \in V$, $U \cap V = \emptyset$.
- In other words, disjunct points have disjunct open environments.
- Example: metric spaces.



- $A \subseteq \mathfrak{X}$ is *dense* if $\overline{A} = \mathfrak{X}$.
- (X, τ) is separable if ∃ countable, dense subset of X.
 Counterexample: I[∞]/L[∞].
- τ₁ ⊆ τ is a *basis* of τ if every open is union of sets in τ₁.
 Example: open balls in a metric space.
- (X, τ) is Polish if τ has a countable basis and ∃ metric defining τ. Example: complete separable metric spaces.

(\mathfrak{X}, τ) :

- $V \subseteq \mathfrak{X}$ is a *neighborhood* of $x \in \mathfrak{X}$ if $\exists O \in \tau$ such that $x \in O \subseteq V$.
- is called *locally compact* if for ∀x ∈ X ∃ compact neighborhood of x. Example: ℝ^d; not compact.

- Euclidean spaces: \mathbb{R}^d , not compact.
- Discrete spaces: LCH. Compact $\Leftrightarrow |\mathfrak{X}| < \infty$.
- Open/closed subsets of an LCH: LC in subspace topology. Example: unit ball (open/closed).

Examples: Hausdorff, but not locally compact

- (\mathbb{Q} , topology inherited from \mathbb{R}).
 - In other words, not every subset of an LCH is LC.
- Infinite dimensional Hilbert spaces.
 - Example: complex $L^2([0,1])$; $\{f_n(x) = e^{2\pi i n x}, n \in \mathbb{Z}\}$: ONB.

- $(\mathfrak{X}, 2^{\mathfrak{X}})$: complete metric space.
- Discrete metric (inducing the discrete topology):

$$d(x,y) = \begin{cases} 0, \text{ if } x = y \\ 1, \text{ if } x \neq y \end{cases}.$$
 (24)

• Discrete space: separable $\Leftrightarrow |\mathcal{X}|$ is countable.