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Regression

Given: {(xi , yi)}li=1 samples H ∋ f =? such that f (xi ) ≈ yi .

Typically: xi ∈ Rp, yi ∈ Rq.

Our interest: xi -s are distributions (∞-dimensional objects).
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Distribution regression: two-stage sampling difficulty

In practise:

xi -s are only observable via samples: xi ≈ {xi ,n}Nn=1 ⇒
an xi is represented as a bag:

image = set of patches,
document = bag of words,
video = collection of images,
different configurations of a molecule = bag of shapes.
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Example: supervised entropy learning

Entropy of x ∼ f : −
∫

f (u) log[f (u)]du.

Training: samples from distributions, entropy values.

Task: estimate the entropy of a new sample set.
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Example: hyperparameter selection

Training: samples from MOGs with component number labels.

Task:

given: samples from a new MOG distribution,
predict: the number of components.
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Example: Sudoku difficulty estimation

Sudoku: special constraint satisfaction problem.

Spiking neural networks (SNN)

can be used to solve such problems,
have stationary distribution under mild conditions.

Sudoku ↔ stationary distribution of the SNN.
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Example: age prediction from images

Training: (image, age) pairs; image = bag of features.

Goal: estimate the age of a person being on a new image.
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Example: toxic level estimation from tissues

Toxin alters the properties/causes mutations in cells.

Training data:

bag = tissue,
samples in the bag = cells described by some simple features,
output label = toxic level.

Task: predict the toxic level given a new tissue.
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Example: aerosol prediction using satellite images

Aerosol = floating particles in the air; climate research.

Multispectral satellite images: 1 pixel = 200× 200m2 ∈ bag.

Bag label: ground-based (expensive) sensor.

Task: satellite image → aerosol density.
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Towards problem formulation: kernel, RKHS

k : D×D → R kernel on D, if

∃ϕ : D → H(ilbert space) feature map,
k(a, b) = 〈ϕ(a), ϕ(b)〉H (∀a, b ∈ D).

Kernel examples: D = Rd (p > 0, θ > 0)

k(a, b) = (〈a, b〉+ θ)
p
: polynomial,

k(a, b) = e−‖a−b‖22/(2θ
2): Gaussian,

k(a, b) = e−θ‖a−b‖1 : Laplacian.

In the H = H(k) RKHS (∃!): ϕ(u) = k(·, u).
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Some example domains (D), where kernels exist

Euclidean spaces: D = Rd .

Strings, time series, graphs, dynamical systems.

Distributions.
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Distribution kernel: example (used in our work)

Given: (D, k); we saw that u → ϕ(u) = k(·, u) ∈ H(k).

Let x be a distribution on D (x ∈ M
+
1 (D)); the previous

construction can be extended:

µx =

∫

D

k(·, u)dx(u) ∈ H(k). (1)

If k is bounded: µx is well-defined for any distribution x .
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Mean embedding based distribution kernel

Simple estimation of µx =
∫

D
k(·, u)dx(u):

Empirical distribution: having samples {xn}Nn=1

x̂ =
1

N

N
∑

n=1

δxn . (2)

Mean embedding, inner product – empirically:

µx̂ =

∫

D

k(·, u)dx̂(u) = 1

N

N
∑

n=1

k(·, xn), (3)

K
(

µx̂i , µx̂j

)

=
〈

µx̂i , µx̂j

〉

H(k)
=

1

NiNj

Ni
∑

n=1

Nj
∑

m=1

k(xi ,n, xj ,m).
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Mini summary

Until now

If we are given a domain (D) with kernel k , then
one can easily define/estimate the similarity of distributions on
D.

Prototype example: D = Rd , k = Gaussian, K = lin. kernel.

The real conditions:

D: LCH + Polish. k : c0-universal.
K : Hölder continuous.
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Distribution regression problem: intuitive definition

z = {(xi , yi )}li=1: xi ∈ M+
1 (D), yi ∈ R.

ẑ =
{(

{xi ,n}Nn=1, yi
)}l

i=1
: xi ,1, . . . , xi ,N

i .i .d.∼ xi .

Goal: learn the relation between x and y based on ẑ.

Idea: embed the distributions (µ) + apply ridge regression

M+
1 (D)

µ−→ X (⊆ H = H(k))
f ∈H=H(K)−−−−−−−→ R.
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Objective function

fH ∈ H = H(K ): ideal/optimal in expected risk sense (E):

E [fH] = inf
f ∈H

E [f ] = inf
f ∈H

∫

X×R

[f (µa)− y ]2dρ(µa, y). (4)

One-stage difficulty (
∫

→ z):

f λz = argmin
f ∈H

(

1

l

l
∑

i=1

[f (µxi )− yi ]
2 + λ ‖f ‖2H

)

. (5)

Two-stage difficulty (z → ẑ):

f λẑ = argmin
f ∈H

(

1

l

l
∑

i=1

[f (µx̂i )− yi ]
2 + λ ‖f ‖2H

)

. (6)
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Algorithmically: ridge regression ⇒ simple solution

Given:

training sample: ẑ,
test distribution: t.

Prediction:

(f λẑ ◦ µ)(t) = [y1, . . . , yl ](K+ lλIl)
−1







K (µx̂1 , µt)
...

K (µx̂l , µt)






, (7)

K = [Kij ] = [K (µx̂i , µx̂j )] ∈ Rl×l . (8)

Zoltán Szabó Consistent, Two-Stage Sampled Distribution Regression



Consistency result

We studied

the excess error: E
[

f λ
ẑ

]

− E [fH], i.e,
the goodness compared to the best function from H.

Result: with probability → 1

E
[

f λẑ

]

− E [fH] → 0, (9)

if we appropriately choose the (l ,N, λ) triplet.
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Consistency result: P(b, c) class

Let the T : H → H operator be

T =

∫

X

K (·, µa)K
∗(·, µa)dρX (µa) =

∫

X

K (·, µa)δµadρX (µa)

with eigenvalues tn (n = 1, 2, . . .).

Let ρ ∈ P(b, c) be the set of distributions on X × R:

α ≤ nbtn ≤ β (∀n ≥ 1;α > 0, β > 0),

∃g ∈ H such that fH = T
c−1
2 g with ‖g‖2

H
≤ R (R > 0),

where b ∈ (1,∞), c ∈ [1, 2].
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Consistency result: convergence rates

High-level idea:

The excess error can be upper bounded on P(b, c) as:

g(l ,N, λ) = E
[

f λẑ

]

− E [fH] ≤
log(l)

Nλ3
+ λc +

1

l2λ
+

1

lλ
1
b

.

We choose
λ = λl,N → 0:

by matching two terms,
g(l ,N, λ) → 0; moreover, make the 2 equal terms dominant.

l = Na (a > 0).
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Convergence rate: results

1 = 2 : If λ =
[

log(N)
N

]
1

c+3
,

1
b
+c

c+3 ≤ a, then

g(N) = O

(

[

log(N)

N

]
c

c+3

)

→ 0. (10)
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Convergence rate: results

1 = 2 : If λ =
[

log(N)
N

]
1

c+3
,

1
b
+c

c+3 ≤ a, then

g(N) = O

(

[

log(N)

N

]
c

c+3

)

→ 0. (10)

1 = 3 : If λ = Na− 1
2 log

1
2 (N), 1

6 ≤ a < min

(

1
2 − 1

c+3 ,
1
2(

1
b
−1)

1
b
−2

)

,

g(N) = O

(

1

N3a− 1
2 log

1
2 (N)

)

→ 0. (11)

1 = 4 : If λ =
[

Na−1 log(N)
]

b
3b−1 , max( b−1

4b−2 ,
1
3b ) ≤ a < bc+1

3b+bc
,

g(N) = O

(

1

N
a+ a

3b−1
− 1

3b−1 log
1

3b−1 (N)

)

→ 0. (12)
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Convergence rate: results

2 = 3 : ∅ (the matched terms can not be made dominant).

2 = 4 : If λ = 1

N
ab

bc+1

, a < bc+1
3b+bc

, then

g(N) = O

(

1

N
abc
bc+1

)

→ 0. (13)

3 = 4 : If λ = 1

N
ab

b−1
, 2 < b, a < b−1

2(2b−1) , then

g(N) = O

(

1

N
2a− ab

b−1

)

→ 0. (14)
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Numerical illustration: supervised entropy learning

Problem: learn the entropy of Gaussians in a supervised
manner.

Formally:

A = [Ai ,j ] ∈ R2×2, Aij ∼ U[0, 1].
100 sample sets: {N(0,Σu)}100u=1, where

100 = 25(training) + 25(validation) + 50(testing).
one set = 500 i.i.d. 2D points,
Σu = R(βu)AA

TR(βu)
T ,

R(βu): 2d rotation,
angle βu ∼ U[0, π].
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Supervised entropy learning: goal, performance measure

Goal: learn the entropy of the first marginal

H =
1

2
ln
(

2πeσ2
)

, σ2 = M1,1, M = Σu ∈ R2×2. (15)

Baseline: kernel smoothing based distribution regression
(applying density estimation) =: DFDR.

Performance: RMSE boxplot over 25 random experiments.
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Supervised entropy learning: results
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Numerical illustration: aerosol prediction

Bags:

randomly selected pixels,
within a 20km radius around an AOD sensor.

800 bags, 100 instances/bag.

Instances: xi ,n ∈ R16.

Zoltán Szabó Consistent, Two-Stage Sampled Distribution Regression



Aerosol prediction - baseline

Baseline: state-of-the-art mixture model

EM optimization,
800 = 4× 160(training) + 160(test); 5-fold CV, 10 times.
Accuracy: 100× RMSE (± std) = 7.5− 8.5 (±0.1− 0.6).

Ridge regression:

800 = 3× 160(training) + 160(validation) + 160(test),
5-fold CV, 10 times,
validation: λ regularization, θ kernel parameter.

Zoltán Szabó Consistent, Two-Stage Sampled Distribution Regression



Aerosol prediction: kernel k

We picked 10 kernels (k): Gaussian, exponential, Cauchy,
generalized t-student, polynomial kernel of order 2 and 3
(p = 2 and 3), rational quadratic, inverse multiquadratic
kernel, Matérn kernel (with 3

2 and 5
2 smoothness parameters).

We also studied their ensembles.

Explored parameter domain:

(λ, θ) ∈
{

2−65, 2−64, . . . , 2−3
}

×
{

2−15, 2−14, . . . , 210
}

.

First, K was linear.

Zoltán Szabó Consistent, Two-Stage Sampled Distribution Regression



Aerosol prediction: kernel definitions

Kernel definitions (p = 2, 3):

kG (a, b) = e
−

‖a−b‖22
2θ2 , ke(a, b) = e

−
‖a−b‖2

2θ2 , (16)

kC (a, b) =
1

1 +
‖a−b‖22

θ2

, kt(a, b) =
1

1 + ‖a− b‖θ2
, (17)

kp(a, b) = (〈a, b〉+ θ)p , kr (a, b) = 1− ‖a − b‖22
‖a − b‖22 + θ

, (18)

ki (a, b) =
1

√

‖a − b‖22 + θ2
, (19)

kM, 3
2
(a, b) =

(

1 +

√
3 ‖a − b‖2

θ

)

e−
√

3‖a−b‖2
θ , (20)

kM, 5
2
(a, b) =

(

1 +

√
5 ‖a − b‖2

θ
+

5 ‖a − b‖22
3θ2

)

e−
√

5‖a−b‖2
θ . (21)
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Aerosol prediction: results (K : linear)

100 × RMSE (±std) [baseline: 7.5 − 8.5 (±0.1− 0.6)]:

kG ke kC kt
7.97 (±1.81) 8.25 (±1.92) 7.92 (±1.69) 8.73 (±2.18)

kp(p = 2) kp(p = 3) kr ki
12.5 (±2.63) 171.24 (±56.66) 9.66 (±2.68) 7.91 (±1.61)

kM, 32
kM, 52

ensemble

8.05 (±1.83) 7.98 (±1.75) 7.86 (±1.71)

Best combination in the ensemble: k = kG , kC , ki .
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Aerosol prediction: nonlinear K

We fed the mean embedding distance (‖µx − µy‖H(k)) to the
previous kernels.

Example (RBF on mean embeddings – valid kernel):

K (µa, µb) = e
−
‖µa−µb‖

2
H(k)

2θ2
K (µa, µb ∈ X ). (22)

We studied the efficiency of (i) single, (ii) ensembles of
kernels [(k ,K ) pairs].
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Aerosol prediction: nonlinear K , results

Baseline:

Mixture model (EM): 7.5− 8.5 (±0.1− 0.6),
Linear K (single): 7.91 (±1.61).
Linear K (ensemble): 7.86 (±1.71).

Nonlinear K :

Single: 7.90 (±1.63),
Ensemble:

Accuracy: 7.81 (±1.64),

(k ,K) = (ki , kt) ,
(

kM, 3
2
, kM, 3

2

)

, (kC , kG ).
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Summary

Problem: distribution regression.

Difficulty: two-stage sampling.

Examined solution: ridge regression (simple alg.)!

Contribution:

consistency; convergence rate.
submitted to ICML-2014; available on arXiv.
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Thank you for the attention!
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Open questions

+Applications.

K : linear → Hölder: solved.

(Y = R, 〈·, ·〉) → (Y, kY).

Quadratic loss (E): convex loss?

Mean embedding (µ): other distribution kernels.

Alternative consistency proofs (different assumptions).
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Topological space, open sets

Given: X 6= ∅ set.

τ ⊆ 2X is called a topology on X if:
1 ∅ ∈ τ , X ∈ τ .
2 Finite intersection: O1 ∈ τ , O2 ∈ τ ⇒ O1 ∩ O2 ∈ τ .
3 Arbitrary union: Oi ∈ τ (i ∈ I ) ⇒ ∪i∈IOi ∈ τ .

Then, (X, τ) is called a topological space; O ∈ τ : open sets.
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Topology: examples

τ = {∅,X}: indiscrete topology.

τ = 2X: discrete topology.

(X, d) metric space:

Open ball: Bǫ(x) = {y ∈ X : d(x , y) < ǫ}.
O ⊆ X is open if for ∀x ∈ O ∃ǫ > 0 such that Bǫ(x) ⊆ O.
τ := {O ⊆ X : O is an open subset of X}.
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Closed set, compact set, closure, subspace topology

Given: (X, τ). A ⊆ X is

closed if X\A ∈ τ (i.e., its complement is open),

compact if for any family (Oi )i∈I of open sets with
A ⊆ ∪i∈IOi , ∃i1, . . . , in ∈ I with A ⊆ ∪n

j=1Oij .

Closure of A ⊆ X:

Ā :=
⋂

A⊆C closed in X

C . (23)

For A ⊆ X the subspace topology on A: τA = {O ∩ A : O ∈ τ}.
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Hausdorff space

(X, τ) is a Hausdorff space, if

for any x 6= y ∈ X ∃U,V ∈ τ such that x ∈ U, y ∈ V ,
U ∩ V = ∅.
In other words, disjunct points have disjunct open
environments.

Example: metric spaces.
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Dense subset, separability, basis of a topology, Polish

A ⊆ X is dense if Ā = X.

(X, τ) is separable if ∃ countable, dense subset of X.
Counterexample: l∞/L∞.

τ1 ⊆ τ is a basis of τ if every open is union of sets in τ1.
Example: open balls in a metric space.

(X, τ) is Polish if τ has a countable basis and ∃ metric
defining τ. Example: complete separable metric spaces.

Zoltán Szabó Consistent, Two-Stage Sampled Distribution Regression



Environment, locally compact spaces

(X, τ):

V ⊆ X is a neighborhood of x ∈ X if ∃O ∈ τ such that
x ∈ O ⊆ V .

is called locally compact if for ∀x ∈ X ∃ compact
neighborhood of x . Example: Rd ; not compact.
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Examples: LCH, but not (necessarily) compact

Euclidean spaces: Rd , not compact.

Discrete spaces: LCH. Compact ⇔ |X| < ∞.

Open/closed subsets of an LCH: LC in subspace topology.
Example: unit ball (open/closed).
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Examples: Hausdorff, but not locally compact

(Q, topology inherited from R).

In other words, not every subset of an LCH is LC.

Infinite dimensional Hilbert spaces.

Example: complex L2([0, 1]); {fn(x) = e2πinx , n ∈ Z}: ONB.
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The discrete space

(

X, 2X
)

: complete metric space.

Discrete metric (inducing the discrete topology):

d(x , y) =

{

0, if x = y

1, if x 6= y

}

. (24)

Discrete space: separable ⇔ |X| is countable.
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