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Zoltán Szabó Distribution-to-Anything Regression



Outline

Intuitive problem definition, motivation.

Previous methods.

The problem.

Algorithm, consistency.
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Problem: regression from distributions

Given: {(xi , yi)}
l
i=1 samples H ∋ f =? such that f (xi ) ≈ yi .

Our interest:

xi -s are distributions, but (challenge!)
only samples are given from xi -s: {xi ,n}Nn=1.
yi : could be ’anything’ (scalar, vector, function, . . . ).
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Two-stage sampled setting = bag-of-features

Examples:

image = set of patches/visual descriptors,

document = bag of words/sentences/paragraphs,

molecule = different configurations/shapes,

group of people on a social network: bag of friendship graphs,

customer = his/her shopping records.
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Bag-of-feature representation: further examples

user = set of trial time-series,

tissue = collection of cells,

web page = its links,

hard-drive = attribute patterns (temperature, . . . ),

video = collection of images.
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Distribution regression: wider context

Several problems are covered in machine learning and statistics:

multi-instance learning,

point estimation tasks without analytical formula.
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Existing methods: parametric approaches

Idea:

1 compute similarity of distributions or bags of samples,

2 apply the estimated similarities in a learning algorithm.

First approach (parametric):

1 Fit a parametric model to bags.

2 Similarity of bags = that of the estimated parameters.
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Existing methods: parametric approaches-2

Typical examples with analytical similarities:

Gaussians,

finite mixtures of Gaussians,

certain members of the exponential family (known
log-normalizer, zero carrier measure).

Ref.:
[Jebara et al., 2004, Wang et al., 2009, Nielsen and Nock, 2012].
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Existing methods: kernelized Gaussian measures

Assumption: training distributions are Gaussians in a RKHS.

Algorithmically appealing:

often divergences = function(≤ 2-order moments) ⇒
easy to kernelize.

Ref.: [Jebara et al., 2004, Zhou and Chellappa, 2006].
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Existing methods: (positive definite) kernels

Include:

semigroup kernels [Cuturi et al., 2005],

nonextensive information theoretical kernel constructions
[Martins et al., 2009],

kernels based on special metrics of R≥0

[Hein and Bousquet, 2005].

Intuition (semigroup kernel):

sum of 2 measures: more concentrated if they overlap.

value of dispersion: entropy, inverse generalized variance.
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Existing methods: consistent divergence estimates

Several divergence measures (KL, Rényi, Tsallis, . . . ) can be
written in terms of

D(a, b) =

∫

pa(x)qb(x)dx . (1)

D(a, b) can be consistently estimated (using e.g. kNN-s)
[Póczos et al., 2011].

Not kernels.
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Existing methods: set metric based algorithms

Hausdorff metric [Edgar, 1995]:

dH(X ,Y ) = max

{

sup
x∈X

inf
y∈Y

d(x , y), sup
y∈Y

inf
x∈X

d(x , y)

}

. (2)

Metric on compact sets of metric spaces [(M , d); X ,Y ⊆ M ].
’Slight’ problem: highly sensitive to outliers.

Zoltán Szabó Distribution-to-Anything Regression



Existing methods: set metric based algorithms-2

Hausdorff metric variations:

ranked-
specially
−−−−−→ maximal-, minimal Hausdorff metrics

[Wang and Zucker, 2000, Wu et al., 2010],

average Hausdorff metric [Zhang and Zhou, 2009],

contextual Hausdorff dissimilarity [Chen and Wu, 2012].
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Mini summary of the existing methods

Dates back to [Haussler, 1999, Gärtner et al., 2002].

There are several multi-instance methods, applications.
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Mini summary of the existing methods

Dates back to [Haussler, 1999, Gärtner et al., 2002].

There are several multi-instance methods, applications.

One ’small’ open question:

Do any of these techniques make sense?
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Existing methods: ’exceptions’

APR (axis-parallel rectangles) and its variants, classification
[Auer, 1998, Long and Tan, 1998, Blum and Kalai, 1998,
Babenko et al., 2011, Zhang et al., 2013,
Sabato and Tishby, 2012]:

yi = max(IR(xi ,1), . . . , IR(xi ,N)) ∈ {0, 1}, (3)

where R = unknown rectangle.
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Existing methods: ’exceptions’

APR (axis-parallel rectangles) and its variants, classification
[Auer, 1998, Long and Tan, 1998, Blum and Kalai, 1998,
Babenko et al., 2011, Zhang et al., 2013,
Sabato and Tishby, 2012]:

yi = max(IR(xi ,1), . . . , IR(xi ,N)) ∈ {0, 1}, (3)

where R = unknown rectangle.

Density based approaches, regression
[Póczos et al., 2013, Oliva et al., 2014]:

densities live on compact Euclidean domain,
density estimation: nuisance step.
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Distribution regression: idea

z = {(xi , yi )}
l
i=1: xi ∈ M+

1 (D), yi ∈ Y .

ẑ =
{(

{xi ,n}
N
n=1, yi

)}l

i=1
: xi ,1, . . . , xi ,N

i .i .d.
∼ xi .

Goal: learn the relation between x and y based on ẑ.

Idea: embed the distributions (µ) + apply ridge regression

M+
1 (D)

µ
−→ X (⊆ H = H(k))

f ∈H=H(K)
−−−−−−−→ Y .
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Embedding step: M+
1 (D)

µ
−→ X ⊆ H(k)

Given: kernel k : D×D → R.

Mean embedding of a distribution x ∈ M
+
1 (D):

µx =

∫

D

k(·, u)dx(u) ∈ H(k). (4)

Mean embedding of the empirical distribution
x̂i =

1
N

∑N
n=1 δxi,n ∈ M

+
1 (D):

µx̂i =

∫

D

k(·, u)dx̂i (u) =
1

N

N
∑

n=1

k(·, xi ,n) ∈ H(k). (5)
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Ridge regression step

Goal: learn an X = µ
(

M
+
1 (D)

)

→ Y function.

If Y = R:

We take a K : X × X → R kernel.
Example: linear K gives rise to the set kernel

K
(

µx̂i , µx̂j

)

=
〈

µx̂i , µx̂j

〉

H(k)
=

1

N2

N
∑

n,m=1

k(xi ,n, xj,m). (6)
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Ridge regression step

Goal: learn an X = µ
(

M
+
1 (D)

)

→ Y function.

If Y = R:

We take a K : X × X → R kernel.
Example: linear K gives rise to the set kernel

K
(

µx̂i , µx̂j

)

=
〈

µx̂i , µx̂j

〉

H(k)
=

1

N2

N
∑

n,m=1

k(xi ,n, xj,m). (6)

If Y is separable Hilbert:

We consider a K : X × X → L(Y ) operator-valued kernel.
K uniquely determines an RKHS(K ).
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Vector-valued RKHS

Definition:

A H ⊆ Y X Hilbert space of functions is RKHS if

Aµx ,y : f 7→ 〈y , f (µx)〉Y (7)

is continuous for ∀µx ∈ X , y ∈ Y .

= The evaluation functional is continuous in every direction.

Riesz representation theorem ⇒

∃Kµt ∈ L(Y ,H):

K (µx , µt)(y) = (Kµt y)(µx), (∀µx , µt ∈ X ), or shortly

K (·, µt)(y) = Kµt y , (8)

H(K ) = span{Kµt y : µt ∈ X , y ∈ Y }. (9)
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Vector-valued RKHS – continued

Examples (Y = R
d ):

1 Ki : X × X → R kernels (i = 1, . . . , d). Diagonal kernel:

K (µa, µb) = diag(K1(µa, µb), . . . ,Kd (µa, µb)). (10)

2 Combination of Dj diagonal kernels [Dj(µa, µb) ∈ R
r×r ,

Aj ∈ R
r×d ]:

K (µa, µb) =

m
∑

j=1

A∗
j Dj(µa, µb)Aj . (11)
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Objective function

fH ∈ H = H(K ): ideal/optimal in expected risk sense (E):

E [fH] = inf
f ∈H

E [f ] = inf
f ∈H

∫

X×Y

‖f (µa)− y‖2Y dρ(µa, y). (12)

One-stage difficulty (
∫

→ z):

f λz = argmin
f ∈H

(

1

l

l
∑

i=1

‖f (µxi )− yi‖
2
Y + λ ‖f ‖2

H

)

. (13)

Two-stage difficulty (z → ẑ):

f λ
ẑ
= argmin

f ∈H

(

1

l

l
∑

i=1

‖f (µx̂i )− yi‖
2
Y + λ ‖f ‖2

H

)

. (14)
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Algorithmically: ridge regression ⇒ analytical solution

Given:

training sample: ẑ,
test distribution: t.

Prediction:

(f λ
ẑ
◦ µ)(t) = [y1, . . . , yl ](K+ lλIl)

−1
k, (15)

K = [Kij ] = [K (µx̂i , µx̂j )] ∈ L(Y )l×l , (16)

k =







K (µx̂1, µt)
...

K (µx̂l , µt)






∈ L(Y )l . (17)
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Consistency

We studied

the excess error: E
[

f λ
ẑ

]

− E [fH], i.e,
the goodness compared to the best function from H.

Result: if l ≥ λ− 1
b
−1, then with high probability

E
[

f λ
ẑ

]

− E [fH] -
logh(l)

Nhλ3
+ λc +

1

l2λ
+

1

lλ
1
b

. (18)

⇒ Consistency for suitable (l ,N, λ) choices.
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Assumptions-1

D: separable, topological.

Y : separable Hilbert.

k :

bounded: supu∈D k(u, u) ≤ Bk ∈ (0,∞),
continuous.

µ : (M+
1 (D), σ(weak)) → (H,B(H)) is measurable.
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Assumptions-2

K :
1 bounded:

‖Kµa
‖2HS = Tr

(

K ∗

µa
Kµa

)

≤ BK ∈ (0,∞), (∀µa ∈ X ). (19)

2 Hölder continuous: ∃L > 0, h ∈ (0, 1] such that

‖Kµa
− Kµb

‖
L(Y ,H) ≤ L ‖µa − µb‖

h

H , ∀(µa, µb) ∈ X × X .

y is bounded: ∃C < ∞ such that ‖y‖Y ≤ C almost surely.
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Assumptions-3

Let the T : H → H operator be

T =

∫

X

K (·, µa)K
∗(·, µa)dρX (µa)

with eigenvalues tn (n = 1, 2, . . .).

Assumption: ρ ∈ P(b, c) = set of distributions on X × Y

α ≤ nbtn ≤ β (∀n ≥ 1;α > 0, β > 0),

∃g ∈ H such that fH = T
c−1
2 g with ‖g‖2

H
≤ R (R > 0),

where b ∈ (1,∞), c ∈ [1, 2].
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Notes on the assumptions, examples

(*) := If D is compact metric, k is universal: µ continuous.

Y = R: the K requirements simplify to

K (µa, µa) ≤ BK .

‖K (·, µa)− K (·, µb)‖H(K) ≤ L ‖µa − µb‖
h

H(k).

Linear K : K (µa, µb) = 〈µa, µb〉H ⇒ L = 1, h = 1, BK = Bk .
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Notes on the assumptions, examples – continued

In case of (*) and Y = R: Hölder K -s

KG Ke KC

e−
‖µa−µb‖

2
H

2θ2 e−
‖µa−µb‖H

2θ2

(

1 + ‖µa − µb‖
2
H /θ2

)−1

h = 1 h = 1
2 h = 1

Kt Ki

(

1 + ‖µa − µb‖
θ
H

)−1 (

‖µa − µb‖
2
H + θ2

)− 1
2

h = θ
2 (θ ≤ 2) h = 1
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Numerical experiences (Y = R)

Supervised entropy learning:

more precise than the only theoretically justified method,
by avoiding density estimation.

Aerosol prediction from satellite images:

≈ domain-specific, engineered methods,
beating state-of-the art MI techniques.
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Dissemination (2014)

5 Mar.: Consistent distribution regression via mean
embedding. University of Hertfordshire.
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Dissemination (2014)

5 Mar.: Consistent distribution regression via mean
embedding. University of Hertfordshire.

27 Mar.: MERR code made publicly available in ITE (
https://bitbucket.org/szzoli/ite/).
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Dissemination (2014)

5 Mar.: Consistent distribution regression via mean
embedding. University of Hertfordshire.

27 Mar.: MERR code made publicly available in ITE (
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2 Apr.: Learning on distributions. Kernel methods for big data
workshop (Lille).
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Dissemination (2014)

5 Mar.: Consistent distribution regression via mean
embedding. University of Hertfordshire.

27 Mar.: MERR code made publicly available in ITE (
https://bitbucket.org/szzoli/ite/).

2 Apr.: Learning on distributions. Kernel methods for big data
workshop (Lille).

2 May: Distribution regression - the set kernel heuristic is
consistent. CSML Lunch Talk Series.

4-5 Sept.: Simple consistent distribution regression on
compact metric domains. SAHD, London, UK.
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Dissemination (2014) – continued

Submitted (NIPS): Two-stage Sampled Learning Theory on
Distributions.
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Dissemination (2014) – continued

Submitted (NIPS): Two-stage Sampled Learning Theory on
Distributions.

Submitted (UCL Workshop on the Theory of Big Data):
Consistent Vector-valued Distribution Regression.
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Dissemination (2014) – continued

Submitted (NIPS): Two-stage Sampled Learning Theory on
Distributions.

Submitted (UCL Workshop on the Theory of Big Data):
Consistent Vector-valued Distribution Regression.

Invited talk: Statistical Science Seminars, Oct 9.
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Dissemination (2014) – continued

Submitted (NIPS): Two-stage Sampled Learning Theory on
Distributions.

Submitted (UCL Workshop on the Theory of Big Data):
Consistent Vector-valued Distribution Regression.

Invited talk: Statistical Science Seminars, Oct 9.

In preparation (JMLR): Two-Stage Sampled Distribution
Regression on Separable Topological Domains: A Simple and
Consistent Approach.
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Summary

Problem: two-stage sampled distribution regression.

There exist a large number of heuristics.

Studied algorithm:

ridge regression,
simple, analytical solution.

Contribution:

consistency under mild conditions.
specially, set kernel is consistent in regr. (15-year-old open
question).

Zoltán Szabó Distribution-to-Anything Regression



Open questions

Theoretical perspective:

Hölder K constructions for Y 6= R.
equivalent/sufficient P(b, c) characterizations.
alternative priors (ρ), discrepancy criteria (E).

Algorithmic question:

dim(Y ) < ∞: large-scale solvers (Dino),
dim(Y ) = ∞: op-MKL?

Applications: functional outputs (H. Kadri).
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Thank you for the attention!
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Topological space, open sets

Given: D 6= ∅ set.

τ ⊆ 2D is called a topology on D if:
1 ∅ ∈ τ , D ∈ τ .
2 Finite intersection: O1 ∈ τ , O2 ∈ τ ⇒ O1 ∩ O2 ∈ τ .
3 Arbitrary union: Oi ∈ τ (i ∈ I ) ⇒ ∪i∈IOi ∈ τ .

Then, (D, τ) is called a topological space; O ∈ τ : open sets.
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Topology: examples

τ = {∅,D}: indiscrete topology.

τ = 2D: discrete topology.

(D, d) metric space:

Open ball: Bǫ(x) = {y ∈ D : d(x , y) < ǫ}.
O ⊆ D is open if for ∀x ∈ O ∃ǫ > 0 such that Bǫ(x) ⊆ O.
τ := {O ⊆ D : O is an open subset of D}.
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Closed-, compact set, closure, dense subset, separability

Given: (D, τ). A ⊆ D is

closed if D\A ∈ τ (i.e., its complement is open),

compact if for any family (Oi )i∈I of open sets with
A ⊆ ∪i∈IOi , ∃i1, . . . , in ∈ I with A ⊆ ∪n

j=1Oij .

Closure of A ⊆ D:

Ā :=
⋂

A⊆C closed in D

C . (20)

A ⊆ D is dense if Ā = D.

(D, τ) is separable if ∃ countable, dense subset of D.
Counterexample: l∞/L∞.
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The discrete space

(

D, 2D
)

: complete metric space.

Discrete metric (inducing the discrete topology):

d(x , y) =

{

0, if x = y
1, if x 6= y

}

. (21)

Discrete space: separable ⇔ |D| is countable.
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