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@ Intuitive problem definition, motivation.
@ Previous methods.
@ The problem.

@ Algorithm, consistency.
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Problem: regression from distributions

o Given: {(x;,y:)}\_; samples 3{ > f =7 such that f(x;) = y;.

@ Our interest:
@ x;-s are distributions, but (challenge!)
o only samples are given from x;-s: {x; ,}_;.
s y;: could be 'anything’ (scalar, vector, function, ...).
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Two-stage sampled setting = bag-of-features

Examples:
@ image = set of patches/visual descriptors,
document = bag of words/sentences/paragraphs,
molecule = different configurations/shapes,
group of people on a social network: bag of friendship graphs,

customer = his/her shopping records.
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Bag-of-feature representation: further examples
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user = set of trial time-series,

tissue = collection of cells,

web page = its links,

hard-drive = attribute patterns (temperature, ... ),

video = collection of images.



Distribution regression: wider context

Several problems are covered in machine learning and statistics:
@ multi-instance learning,

@ point estimation tasks without analytical formula.

Zoltdn Szabé Distribution-to-Anything Regression



Existing methods: parametric approaches

Idea:
© compute similarity of distributions or bags of samples,
© apply the estimated similarities in a learning algorithm.
First approach (parametric):
@ Fit a parametric model to bags.
© Similarity of bags = that of the estimated parameters.
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Existing methods: parametric approaches-2

Typical examples with analytical similarities:
@ Gaussians,
o finite mixtures of Gaussians,

@ certain members of the exponential family (known
log-normalizer, zero carrier measure).

Ref.:
[Jebara et al., 2004, Wang et al., 2009, Nielsen and Nock, 2012].
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Existing methods: kernelized Gaussian measures

@ Assumption: training distributions are Gaussians in a RKHS.
@ Algorithmically appealing:

@ often divergences = function(< 2-order moments) =

¢ easy to kernelize.

@ Ref.: [Jebara et al., 2004, Zhou and Chellappa, 2006].
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Existing methods: (positive definite) kernels

Include:
@ semigroup kernels [Cuturi et al., 2005],

@ nonextensive information theoretical kernel constructions
[Martins et al., 2009],

@ kernels based on special metrics of R=°
[Hein and Bousquet, 2005].

Intuition (semigroup kernel):
@ sum of 2 measures: more concentrated if they overlap.

@ value of dispersion: entropy, inverse generalized variance.
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Existing methods: consistent divergence estimates

@ Several divergence measures (KL, Rényi, Tsallis, ...) can be
written in terms of

D(a.b) = [ ()" (). (1
@ D(a, b) can be consistently estimated (using e.g. kNN-s)

[Péczos et al., 2011].

o Not kernels.
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Existing methods: set metric based algorithms

@ Hausdorff metric [Edgar, 1995]:

du(X,Y) = max{sup inf d(x,y), sup inf d(x, y)} (2)
xeXYEY yey xeX

sup inf dx,y)
) eV :

TEX WS

sup mf dlx, y)
yey o

@ Metric on compact sets of metric spaces [(M, d); X,Y C M].
@ 'Slight’ problem: highly sensitive to outliers.
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Existing methods: set metric based algorithms-2

Hausdorff metric variations:

speciall . .. .
@ ranked- =27, maximal-, minimal Hausdorff metrics

[Wang and Zucker, 2000, Wu et al., 2010],
@ average Hausdorff metric [Zhang and Zhou, 2009],
@ contextual Hausdorff dissimilarity [Chen and Wu, 2012].
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Mini summary of the existing methods

@ Dates back to [Haussler, 1999, Gartner et al., 2002].

@ There are several multi-instance methods, applications.
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Mini summary of the existing methods

@ Dates back to [Haussler, 1999, Gartner et al., 2002].

@ There are several multi-instance methods, applications.

@ One 'small’ open question:

Do any of these techniques make sense?
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Existing methods: 'exceptions’

@ APR (axis-parallel rectangles) and its variants, classification
[Auer, 1998, Long and Tan, 1998, Blum and Kalai, 1998,
Babenko et al., 2011, Zhang et al., 2013,

Sabato and Tishby, 2012]:

Yi= max(HR(x,-,l), o ,]IR(X,'J\/)) S {0, 1}, (3)

where R = unknown rectangle.
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Existing methods: 'exceptions’

@ APR (axis-parallel rectangles) and its variants, classification
[Auer, 1998, Long and Tan, 1998, Blum and Kalai, 1998,
Babenko et al., 2011, Zhang et al., 2013,

Sabato and Tishby, 2012]:

Yi= max(HR(x,-,l), o ,]IR(X,'J\/)) S {0, 1}, (3)

where R = unknown rectangle.

@ Density based approaches, regression
[Péczos et al., 2013, Oliva et al., 2014]:

@ densities live on compact Euclidean domain,
@ density estimation: nuisance step.
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Distribution regression: idea

9 z= {(Xiayi)}le: Xj € M]_.F ('D), vieyY.
z ! j.i.d.
¢ z= {({Xi7"}nN:17yi)}i:1: Xily-«- s Xi,N LS X;.
@ Goal: learn the relation between x and y based on 2.

@ Idea: embed the distributions () + apply ridge regression

FEH=F(K) v

MiF (D) £ X(C H = H(k))
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Embedding step: M (D) & X C H(k)

@ Given: kernel k: D x D — R.
@ Mean embedding of a distribution x € M{ (D):

P :/ k(-, u)dx(u) € H(k). (4)
D
@ Mean embedding of the empirical distribution

% = 5 Y1 0., € ME(D):

s = [ uase) = kaweH) 5)
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Ridge regression step

@ Goal: learn an X = p (M{ (D)) — Y function.
o If Y=R:

o We takea K : X x X — R kernel.

o Example: linear K gives rise to the set kernel

N
1
K (s 1) = (Bso 15 gy = 73 > k(X Xim).  (6)

n,m=1
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Ridge regression step

@ Goal: learn an X = p (M{ (D)) — Y function.
o If Y=R:

o We takea K : X x X — R kernel.

o Example: linear K gives rise to the set kernel

N
1
K (,qu,,ufg) = <,U>A<;a,u5<j>H(k) = N2 Z k(Xi,mXLm)' (6)

n,m=1

@ If Y is separable Hilbert:
@ We consider a K : X x X — L(Y) operator-valued kernel.
@ K uniquely determines an RKHS(K).
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Vector-valued RKHS

Definition:
@ A 3 C YX Hilbert space of functions is RKHS if

Ay - Ty Fix))y (7)

is continuous for YV, € X,y € Y.
@ = The evaluation functional is continuous in every direction.
Riesz representation theorem =-
e 3K, € L(Y,H):

K(px, 1) (v) = (Kuey)(iix), - (Yiixs e € X), or shortly
K('mut)(y) = Kury’ (8)
H(K) =3span{K,.y : pt € X,y € Y}. (9)
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Vector-valued RKHS — continued

Examples (Y = RY):
Q Ki: X x X —Rkermels (i=1,...,d). Diagonal kernel:

K(pa, pp) = diag(Ki(pa, pin), - - -, Ka(pta, b)) (10)

@ Combination of D; diagonal kernels [Dj(j1a, p1p) € R™*",
A; € R™4]:

K(pari5) = 3 A D112, 16) A (11)
j=1

Zoltdn Szabé Distribution-to-Anything Regression



Objective function

o fyc € H = H(K): ideal/optimal in expected risk sense (£):
el = juf €l = jof [ 1F(ua) =y I dolan ). (12)
X

@ One-stage difficulty ([ — z):

fz)‘ = arg mm < Z | (12x;) }/i||§/ + A ||f||:2}c) : (13)

o Two-stage difficulty (z — 2):

f; —argmm( lef 1is;) yinerAHfll_ri)- (14)
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Algorithmically: ridge regression = analytical solution

o Given:
e training sample: 2,
o test distribution: t.

@ Prediction:

(£ o p)(t) = [y, -, vl (K + IA1) Tk, (15)

K = [Ky] = [K (s, p5,)] € £(Y)", (16)
K(/ifm,ut)

k= : e L(Y). (17)
K(,qua,ut)
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o We studied
o the excess error: € [£| — & [fac], ie,
o the goodness compared to the best function from .

@ Result: if [ > )\_%_1, then with high probability
log" (/) 1 1

5[ } EBI S g + X px T (18)

@ = Consistency for suitable (/, N, \) choices.
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@ D: separable, topological.

@ Y': separable Hilbert.
o k:

o bounded: sup,cq k(u, u) < By € (0,00),
@ continuous.

o 1 (M (D), o(weak)) — (H,B(H)) is measurable.
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o K:
© bounded:

1K, llfs = Tr (K, Ku,) < Bi € (0,00),  (Vua € X). (19)
© Halder continuous: 3L > 0, h € (0, 1] such that
h
1Ky, — KubHL(ch) < Llpa—polly,  V(pa, mp) € X x X,

@ y is bounded: 3C < oo such that [|y|l,, < C almost surely.
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o Let the T : H — H operator be
T | KCnaK Condpx(n)

with eigenvalues t, (n=1,2,...).
@ Assumption: p € P(b, c) = set of distributions on X x Y
s a<nt,<B (Yn>1,a>0,8>0),
o 3g € K such that fir = T g with ||g||3, < R (R > 0),
where b € (1,00), c € [1,2].
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Notes on the assumptions, examples

@ (*) := If D is compact metric, k is universal: p continuous.
@ Y = R: the K requirements simplify to

o K(fta, 11a) < Bk.

o 1K pa) = KCo ) gy < Lllta — sl -
o Linear K: K(fta, tb) = (pta, o)y = L=1, h=1, Bx = Bx.
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Notes on the assumptions, examples — continued

In case of (*) and Y = R: Holder K-s

Ke Ke Kc
[l 2a—rp|? [l ea—rp| -1
e 202 " e 202 8 (1 + ||,Ua - ,UbHiI /92>
h=1 h=3 h=1
K: Ki
P -1 2 2 _%
(14 = msllfy) (o = ol + 0°)
h=2% (<2 h=1
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Numerical experiences (Y = R)

@ Supervised entropy learning:

@ more precise than the only theoretically justified method,
@ by avoiding density estimation.

@ Aerosol prediction from satellite images:

o ~ domain-specific, engineered methods,
o beating state-of-the art MI techniques.
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Dissemination (2014)

@ 5 Mar.: Consistent distribution regression via mean
embedding. University of Hertfordshire.
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Dissemination (2014)

@ 5 Mar.: Consistent distribution regression via mean
embedding. University of Hertfordshire.

@ 27 Mar.: MERR code made publicly available in ITE (
https://bitbucket.org/szzoli/ite/).
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Dissemination (2014)

@ 5 Mar.: Consistent distribution regression via mean
embedding. University of Hertfordshire.

@ 27 Mar.: MERR code made publicly available in ITE (
https://bitbucket.org/szzoli/ite/).

@ 2 Apr.: Learning on distributions. Kernel methods for big data
workshop (Lille).
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Dissemination (2014)

@ 5 Mar.: Consistent distribution regression via mean
embedding. University of Hertfordshire.

@ 27 Mar.: MERR code made publicly available in ITE (
https://bitbucket.org/szzoli/ite/).

@ 2 Apr.: Learning on distributions. Kernel methods for big data
workshop (Lille).

@ 2 May: Distribution regression - the set kernel heuristic is
consistent. CSML Lunch Talk Series.
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Dissemination (2014)

@ 5 Mar.: Consistent distribution regression via mean
embedding. University of Hertfordshire.

@ 27 Mar.: MERR code made publicly available in ITE (
https://bitbucket.org/szzoli/ite/).

@ 2 Apr.: Learning on distributions. Kernel methods for big data
workshop (Lille).

@ 2 May: Distribution regression - the set kernel heuristic is
consistent. CSML Lunch Talk Series.

@ 4-5 Sept.: Simple consistent distribution regression on
compact metric domains. SAHD, London, UK.
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Dissemination (2014) — continued

@ Submitted (NIPS): Two-stage Sampled Learning Theory on
Distributions.
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Dissemination (2014) — continued

@ Submitted (NIPS): Two-stage Sampled Learning Theory on
Distributions.

@ Submitted (UCL Workshop on the Theory of Big Data):
Consistent Vector-valued Distribution Regression.
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Dissemination (2014) — continued

@ Submitted (NIPS): Two-stage Sampled Learning Theory on
Distributions.

@ Submitted (UCL Workshop on the Theory of Big Data):
Consistent Vector-valued Distribution Regression.

@ Invited talk: Statistical Science Seminars, Oct 9.
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Dissemination (2014) — continued

@ Submitted (NIPS): Two-stage Sampled Learning Theory on
Distributions.

@ Submitted (UCL Workshop on the Theory of Big Data):
Consistent Vector-valued Distribution Regression.

@ Invited talk: Statistical Science Seminars, Oct 9.

@ In preparation (JMLR): Two-Stage Sampled Distribution
Regression on Separable Topological Domains: A Simple and
Consistent Approach.
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@ Problem: two-stage sampled distribution regression.
@ There exist a large number of heuristics.

@ Studied algorithm:

o ridge regression,

@ simple, analytical solution.
@ Contribution:

@ consistency under mild conditions.
o specially, set kernel is consistent in regr. (15-year-old open
question).
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Open questions

@ Theoretical perspective:

o Holder K constructions for Y # R.
o equivalent/sufficient P(b, c) characterizations.
o alternative priors (p), discrepancy criteria (£).

@ Algorithmic question:

s dim(Y) < oo: large-scale solvers (Dino),
s dim(Y) = oo: op-MKL?

@ Applications: functional outputs (H. Kadri).
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Thank you for the attention!
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Topological space, open sets

o Given: D # () set.
o 7 C 2P is called a topology on D if:

Qlber, Der.
@ Finite intersection: O1 €7, O €7 = 01N, € T.
© Arbitrary union: O; € 7 (i € 1) = Ui, O; € 7.

Then, (D, 7) is called a topological space; O € T: open sets.
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Topology: examples

o 7= {),D}: indiscrete topology.

o 7 =27 discrete topology.

o (D, d) metric space:
s Open ball: B.(x) ={y € D:d(x,y) < €}.
@ O C D is open if for Vx € O Je > 0 such that B.(x) C O.
@ 7:={0 C D: O is an open subset of D}.
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Closed-, compact set, closure, dense subset, separability

Given: (D,7). ACDis
@ closed if D\A € 7 (i.e., its complement is open),

@ compact if for any family (O;);c; of open sets with
A CUjgsO;, dir, ..., in € I with A C U}’:lo,'j.

Closure of A C D:
A= N C. (20)

ACC closed in D
@ ACDis denseif A=D.

@ (D, ) is separable if 3 countable, dense subset of D.
Counterexample: [°°/L*°.
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The discrete space

° (D,2®): complete metric space.

@ Discrete metric (inducing the discrete topology):
0, ifx=y
dn={Y ) (21)

@ Discrete space: separable < |D| is countable.
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