

Problem

- Distribution regression, with two-stage sampling [1]: • Input = distribution, output $\in \mathbb{R}$, or more generally separable Hilbert space.
- Challenge: we only have samples from the input distributions.
- Covered machine learning tasks include:
- multiple instance learning (MIL),
- point estimates of statistics (e.g., entropy or a hyperparameter).
- Existing methods: heuristics, or require density estimation (which typically scale poorly in dimension).

Contribution

- We study an alternative, simple method: embed the distributions to a RKHS (k), then apply ridge regression (K).
- Results:
- Consistency, convergence rate $\xrightarrow{\text{specially: } Y = \mathbb{R}, K: \text{ linear}}$
- Set kernels [2, 3] are consistent in regression (15-year-old open problem).

Introduction

Existing heuristics:

- parametric model fitting; kernelized Gaussian divergences; kernels on distributions; Kullback-Leibler-, Rényi-, Tsallis divergence; set (semi)metric.
- issues: parameterization may fail to hold; metric/kernel? consistent estimation? consistency in learning tasks?

Theoretically justified methods [1, 4]:

- require density estimation (often poor scaling).
- assume density, compact Euclidean domain.

Distribution Regression

- $D(\mathfrak{X})$ distributions on domain \mathfrak{X} .
- $\mathbf{z} = \{(x_i, y_i)\}_{i=1}^l \overset{i.i.d.}{\sim} \mathcal{M}: (x_i, y_i) \in D(\mathcal{X}) \times Y.$
- Given: $\hat{\mathbf{z}} = \{(\{x_{i,n}\}_{n=1}^N, y_i)\}_{i=1}^l$, where $x_{i,1}, \ldots, x_{i,N} \stackrel{i.i.d.}{\sim} x_i$.
- Goal: learn the relation between (x, y) given $\hat{\mathbf{z}}$.
- Idea:

$$D(\mathfrak{X}) \xrightarrow{\mu} X(\subseteq H) \xrightarrow{f \in \mathcal{H} = \mathcal{H}(K)} Y,$$

i.e., embed the distributions to a H = H(k) RKHS on \mathfrak{X} , then $X \to Y$ ridge regression.

• Notations: Y is a separable Hilbert space. k is a kernel on \mathfrak{X} , mean embedding $\mu_x = \int_{\Upsilon} k(\cdot, u) \mathrm{d}x(u) = \mathbb{E}_{u \sim x}[k(\cdot, u)], \qquad X = \mu\left(D(\mathfrak{X})\right).$

 $\rho(\mu_x, y) = \rho(y|\mu_x)\rho_X(\mu_x)$; regression function of ρ , $\|\cdot\|_{\rho}$:

$$f_{\rho}(\mu_{a}) = \int_{Y} y \mathrm{d}\rho(y|\mu_{a}), \quad \|f\|_{\rho}^{2} = \int_{X} \|f(\mu_{a})\|_{Y}^{2} \mathrm{d}\rho_{X}(\mu_{a})\|_{Y}^{2} \mathrm{d}\rho_{X}(\mu_{a$$

*Gatsby External Review, London, UK, 29 October 2014. The ordering of the second through fourth authors is alphabetical.

Two-Stage Sampled Distribution Regression on Separable Topological Domains*

Zoltán Szabó¹, Arthur Gretton¹, Barnabás Póczos², Bharath K. Sriperumbudur³

¹Gatsby Unit, University College London ²Machine Learning Department, Carnegie Mellon University ³Department of Statistics, Pennsylvania State University

 $\mathcal{H} = \mathcal{H}(K) = Y$ -valued RKHS of $X \to Y$ functions with kernel $K: X \times X \to \mathcal{L}(Y) = \{Y \to Y \text{ bounded linear operators}\}.$

Objective Function, Algorithm

• **Cost function** (of MERR):

$$f_{\hat{\mathbf{z}}}^{\lambda} = \underset{f \in \mathcal{H}}{\arg\min} \frac{1}{l} \sum_{i=1}^{l} \|f(\mu_{\hat{x}_{i}}) - y_{i}\|_{Y}^{2} + \lambda \|f\|_{\mathcal{H}}^{2} \quad (\lambda > 0),$$

where $\hat{x}_i = \frac{1}{N} \sum_{n=1}^N \delta_{x_{i,n}}$ is the *i*th empirical distribution. • Analytical **solution**: prediction on a new distribution t

$$f_{\hat{\mathbf{z}}}^{\lambda} \circ \mu)(t) = [y_1, \dots, y_l](\mathbf{K} + l\lambda \mathbf{I}_l \\ \mathbf{K} = [K(\mu_{\hat{x}_i}, \mu_{\hat{x}_j})] \in \mathcal{L}(Y) \\ \mathbf{k} = [K(\mu_{\hat{x}_1}, \mu_t); \dots; K(\mu_{\hat{x}_j})]$$

- Examples: • If $Y = \mathbb{R}$, then $\mathcal{L}(Y) = \mathbb{R}$.
- If $Y = \mathbb{R}^d$, then $\mathcal{L}(Y) = \mathbb{R}^{d \times d}$.

Intuitive Assumption

The regression function (f_{ρ}) is "sufficiently smooth" in $L^2_{\rho_{\mathbf{v}}}$.

Remarks $(Y = \mathbb{R})$

- For linear $K(\mu_a, \mu_b) = \langle \mu_a, \mu_b \rangle_H$, we get the set kernel: $K(\mu_{\hat{x}_i}, \mu_{\hat{x}_j}) = \frac{1}{N^2} \sum_{n=1}^{N} k(x_{i,n}, x_{j,m}).$
- On compact metric \mathfrak{X} and for "rich" H(k), the following K functions are Hölder continuous (h) kernels:

$$\frac{K_{G} \quad K_{e} \quad K_{C} \quad K_{t} \quad K_{i}}{e^{-\frac{\|\mu_{a}-\mu_{b}\|_{H}^{2}}{2\theta^{2}}}e^{-\frac{\|\mu_{a}-\mu_{b}\|_{H}^{2}}{2\theta^{2}}}\left(1+\|\mu_{a}-\mu_{b}\|_{H}^{2}/\theta^{2}\right)^{-1}\left(1+\|\mu_{a}-\mu_{b}\|_{H}^{\theta}\right)^{-1}\left(\|\mu_{a}-\mu_{b}\|_{H}^{2}+\theta^{2}\right)^{-\frac{1}{2}}}{h=1 \quad h=\frac{1}{2} \quad h=1 \quad h=\frac{\theta}{2} \ (\theta \leq 2) \quad h=1$$

Error Guarantee, Consistency

If l is "not too small" compared to λ $(\frac{1}{\lambda^2} \leq l)$, then with high probability $\left\| f_{\hat{\mathbf{z}}}^{\lambda} - f_{\rho} \right\|_{\rho} \le B(l, N, \lambda) + D_{\mathcal{H}},$

where $B(l, N, \lambda) = \frac{\log^{\frac{h}{2}(l)}}{N^{\frac{h}{2}} \lambda^{\frac{3}{2}}} + \frac{1}{\lambda \sqrt{l}}, D_{\mathcal{H}} = \inf_{q \in \mathcal{H}} \|f_{\rho} - q\|_{\rho}.$ Interpretation:

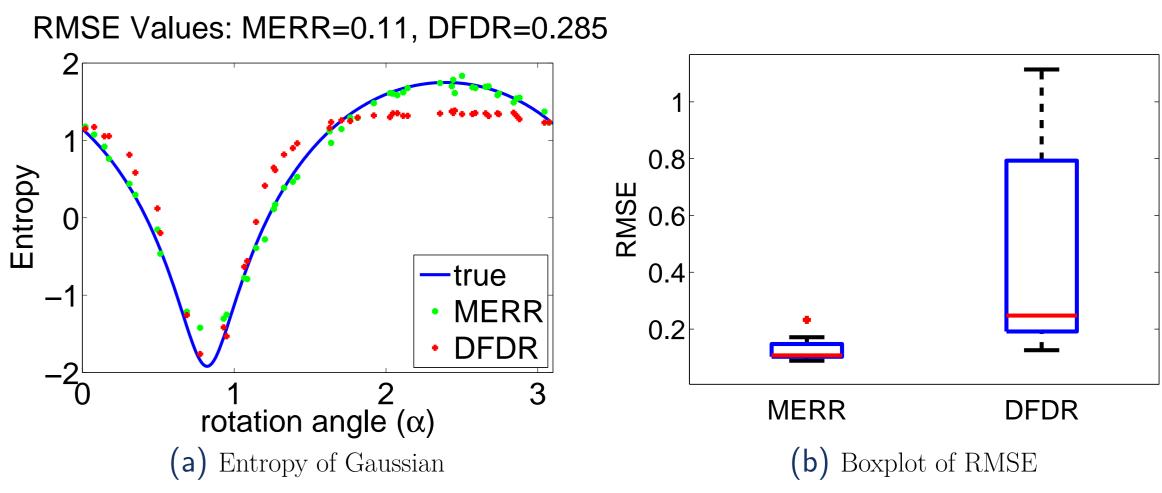
• $D_{\mathcal{H}}$: approximation error of f_{ρ} from \mathcal{H} ; if \mathcal{H} is dense in $L^2_{\rho_X}$, then $D_{\mathcal{H}} = 0$.

- For suitable (l, N, λ) choice $B(l, N, \lambda)$ converges to 0. Example: • (l, N) trade-off: let $l = N^a$ with $\frac{2}{3}h \le a < h$. • Regularization: $\lambda = l \left[\frac{\log(l)}{N}\right]^h \to 0.$
- In this case $B(l, N, \overline{\lambda}) = \frac{1}{N^{\frac{3a}{2}-h} \log^{h}(N)} \to 0.$

 $)^{-1}\mathbf{k},$ $\lambda l \times l$ $(\mu_{\hat{x}_l}, \mu_t)] \in \mathcal{L}(Y)^l.$

Supervised entropy learning:

- Label = entropy of the distribution represented by a bag.
- avoiding density estimation).



Aerosol prediction:

- Bag = multispectral satellite image over an area.
- Performance:

Method	$100 \times \text{RMSE}$	±std
Baseline [mixture model (EM)]	7.5 - 8.5	$\pm 0.1 - 0.6$
MERR: linear K , single	7.91	± 1.61
MERR: linear K , ensemble	7.86	± 1.71
MERR: nonlinear K , single	7.90	± 1.63
MERR: nonlinear K , ensemble	7.81	± 1.64

state-of-the art MIL techniques).

Code: in the ITE toolbox (https://bitbucket.org/szzoli/ite/).

Acknowledgements

This work was supported by the Gatsby Charitable Foundation, and by NSF grants IIS1247658 and IIS1250350. The work was carried out while Bharath K. Sriperumbudur was a research fellow in the Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge, UK.

- 2013.
- Multi-instance kernels. In *ICML*, pages 179–186, 2002.
- 2014.

Applications

• MERR is more precise than the only theoretically justified method [1] (DFDR; by

• Label = aerosol value (highly accurate, expensive ground-based instrument).

• MERR compares favourably to domain-specific, engineered methods (beating

References

[1] Barnabás Póczos, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman. Distribution-free distribution regression. AISTATS; JMLR W&CP, 31:507–515,

[2] David Haussler. Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz, 1999.

[3] Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, and Alexander Smola.

[4] Junier B. Oliva, Willie Neiswanger, Barnabás Póczos, Jeff Schneider, and Eric Xing. Fast distribution to real regression. AISTATS; JMLR W&CP, 33:706–714,