Bayesian Manifold Learning: the Locally Linear Latent Variable Model (LL-LVM)
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Manifold Learning Variational EM lllustration 3: Mapping Climate Data

@ Learning in high-dim. space is hard and expensive. @ Maximising log marginal likelihood is intractable. Maximise lower bound F instead @ Goal: Recover 2D geographical relationships between weather stations.
@ Good news: intrinsic dimensionality is often low. C.x|G.6 @ y; = 12-dim. vector of monthly precipitation measurements at a weather station.
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@ Manifold learning: uncover the low-dim. manifold structure. o For computational tractability, assume ¢(C,x) = ¢(x)q(C). 45%.-
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Recover data manifold in a Bayesian probabilistic way, while ’ . °
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@ Fully probabilistic. Uncertainty estimates available. | - (a) 609 weather stations (c) LTSA
@ Principled way to evaluate manifold dimensionality. o M-step for learning 6 = {o, U, 7},
@ Learned model can handle unseen data points naturally. 0 = argmax F(q(C, x), 0). \ 23 ¢
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lllustration 1: Mitigating Short-Circuiting Problems . e et
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| | | o @ Define a mapping from latent X to data Y using GP.
Figure : (A) Two datapoints seem close to each other, (B) but actually far in 2D space. (C) Short-circuiting the For data Y — R1xdy and | X _ Rnxd,
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¢ Input: .nelgf.]bourhC?Od graPh G = [1;j] with binary adjacency indicator @ The lower bound F can be used to evaluate a hypothesised neighbourhood structure. p(Y[X) HN(y’f’O’ K+61),
ni;; = 1 if points 7, 7 are neighbours. k=1
e Find posterior distribution p(C, x|y, G) over the linear maps . . , .. where the 7, jth element of the covariance matrix is
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k=n/4 * digit 1 o No preservation of local neighbourhood properties
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1 —— =8 gi o Smoothness of manifold constrained by pre-chosen covariance function.
Joint distribution: =n/z " digit o Use auxiliary variable for variational inference. Restrict the choice of covariance function.
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query Relationship of LL-LVM and GP-LVM
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@ Prior on linear maps: matrix normal, 0o [ mi where W is a function in x and L and A is a function in x'x and L.

p(CIG.U) = MN(0,U.9).  where EICCT) o U, E[C7C] x G o

o Likelihood: penalise the approximation error, LLLVM ISOMAP GPLVM LLE

A new probabilistic approach to manifold learning preserving local geometries in data and

Cx. V.G =N 3 . | | . o , . | . )
p(Y’ y Xy Vo, ) (.Ufya y) Figure : (A): Variational lower bound with different k's (#neighbours). (B): Posterior mean of x by LL-LVM. equipped with straightforward variational inference.

1 L S (F): 1-NN classification error on test data using the inferred x. |
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1 o Classification with LL-LVM coordinates outperforms GP-LVM and LLE, and matches
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