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Manifold Learning

Our approach: LL-LVM

Relation to GP-LVM

@ Problems with high-dimensional data @ Key idea: there is a locally linear mapping between tangent spaces in low and high dimensional spaces Integrating out C from likelihood yields
o optimisation in high-d parameter space is computationally expensive and
hard to find a global optimum high-dimensional space low-dimension space p(ylx, G, 0) = /p<y,C7X7 G, 0)p(C|G, 0)dC,
@ Good news: in many cases, the intrinsic dimensionality is actually low ¢ 1 —exp {_lyT K- y_ |
o datapoints are sampled from a low-dimensional manifold embedded in a - X;) ZY 2 o i
high-dimensional space ‘ @ In contrast to GP-LVM, the precision matrix K;; depends on the Laplacian matrix.
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© €xample: swiss ro @ The functional form of precision is directly determined by the graph structure given the

observations.

® given a graph G of neighbours with adjadcingy indicator 7;; = 1 |.f J € N(1), flqd the dIStTI’Il%UtIOH czlver KLL — LoV Y- (WaV HA W eV,
the linear maps C = [Cy, - -, C,| € R%*"% and the latent variables x = [x;', -+ ,x,']' € R" | | .
that best describe the data where W is a function in X and L and A is a function in x'x and L.
log p(y|G) = 10%//]?(}’7 C, x[G)dxdC. lllustration
where Mitigating short-circuiti bl
e Mitigating short-circuiting problems
Adapted from Roweis & Saul, Science, 2000 p(y’ C’ X‘g) — p(Y|C) X7 g)p(C‘g)p<X|g) g g g p
A samples from swiss roll (3D) B 2D representation C Adjacency matrices
@ Manifold learning : attempts to uncover the manifold structure : - et ¥ _corectG  ©Bhortcreuiting)
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Non-probabilistic prior work @ prior on latents: assuming the neighbouring latent .‘5; S R SN
variables are similar . .~1. ot .o K
@ idea: preserve geometric properties of local neighbourhoods ; G . . & L : \ .28 v QL B 1375 & 1381
o limits: =5 > alballP+ > millxi = x)
e sensitive to noise due to lack of explicit model =1 j=1 Figure : Two datapoints seem close to each other (A) but actually far in 2D space (B). Short-circuiting
o heuristic methods to evaluate manifold dimensionality — p(x|G, o) = N(0,1I) the two datapoints lower the lower bound (C)
e no measure of uncertainties in the estimates where « controls the expected scale, Q7! = 2L ® I,
- - S 1 _ ~1 o . . . .
o out-of-sample extension requires extra approximations and 11" = alyg, + 827 @ Finding the optimal number of neighbours using variational lower bound
@ prior on linear maps: similarly A samples from 3D Gaussian B LLE C GP-LVM
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Gaussian process latent variable model (GP-LVM) p(C|G,U) = MN(0,U, Q), A PRI A
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| _ | | _ where E[CC'] o U. . o - 4B s 0 - % SR
o |[cliea2.] define a functional mapping from latent space to data space using GP o likelihood: penalising the approximation error yields ~,:f il :o“ .w“ . .{-:;..,;-t..,.j{-* : "‘.,,
— nxd _ nxd, Tx7—1 \/ | (). | | 0
o fordata ¥ = [y;,...,y4 | € R"% and latents X = [x;,..., x4 | € R"*%, S‘ S‘nw —yi) — Ci(x; —x)) 'V {(y; —yi) — Ci(x; — x,))
=1 =1 D posterior mean of C posterior mean of x variational Iqwer bound
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assuming V! =~ and ~ is a parameter. ¢ gt
where the 7, jth element of the covariance matrix is 4 o - % ﬁ’ s k=20
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i = | @ maximizing log marginal likelihood is intractable, instead maximise lower bound
where v.'s determine dimensionality of latent space ply, C,x|G, 0) Figure : A: 400 samples drawn from 3D Gaussian. B: LLE. C:GP-LVM. D (Left): The posterior mean of
o 4 y Pace; log p( ’G o) q(C,x) log P, ’ ZdxdC = F(q(C,x),0), C. D (Middle): posterior mean of x. D (Right): Normalized variational lower bound.
@ limits: q(C, x)
e no intuitive preservation of local neighbourhood properties o for computational tractability, assume ¢(C,x) = ¢(x)q(C). 4
> smoathness o manilold consirained by pre chosen covariance fuaction ° variational expectation maximization algorithm
o auxiliary variable for variational inference (also restricts choice of cov tation step ting ¢(C, x) b — | | _ —
func) ° ©Xpectation Step Tor computing ¢it, %) by A new probabilistic approach to manifold learning preserving local geometries in data and
q(x) X exp /q(C) log p(y, C, x|G, H)dC} = N (x| px, 2x), equipped with straightforward variational inference for learning the manifold.
uestion : J
0(©) x exp | [ at) gty ©.x1G B)ix| = Al ),
Can we learn a manifold in a probabilistic and possibly Bayesian way, while e maximization step for estimating 0, (L} N.D. Lawrence, GP-LVM NP5 2003
_ i tias of local neichbourhoods? A [2] M.K. Titsias, N.D. Lawrence, Bayesian GP-LVM AlStats, 2010
preserving geometric proper g | 0 — aro mae Flq(C,x),0).
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