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o Task & results.
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@ n-monotonicity: - (Vx).

@ (n — 1)-alternating monotonicity: for n > 2

(CLF0) - =0, 7 and fesivex] Vi < [0, n - 2].

Example: generator of a d-variate Archimedean copula is
(d — 2)-alternating monotone.



Other examples from economics, game theory

© Monotonicity w.r.t. partial ordering (u < v = f(u) < f(v)):

u < v iff
o ui <y (Vi; product ordering),
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@ Monotonicity w.r.t. partial ordering (u < v = f(u) < f(v)):

0= (7)< [d],vx),
0O <. <O ()
u < v iff

° U<V (Vi; product ordering),
° uj < 3 ierq v (Vi; unordered weak majorization).

ORTE (vi )< 1) vx)

ie. fluvv)+ f(uAv) > f(u)+ f(v) for all u,v € RY.

0 < Df(x) Wx. I

jeli]
@ Supermodularity:
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0< Df(x) |NKIEIK].
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@ restricted function classes: polynomials, or polynomial splines.
@ asymptotic guarantees.



Our high-level goal & challenge

o Given: {(xn,¥n)}nein) C RY x R samples.
@ Goal: find f € J{ such that

f(Xn) = Yn,
0< Df(x) NXEK.

Typical approaches:
@ soft constraints: finite many points.
@ constraint-specific parametrization: exponential /quadratic.
@ restricted function classes: polynomials, or polynomial splines.

@ asymptotic guarantees.

In our work
H: RKHS ; rich but tractable. Hard constraint & performance
guarantees.
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Motivation

[Extension of k(x,y) = xTy leads to kernels. - J

e Classification (SVM):

Input Space Feature Space

@ Representation of distributions:
P EXNPSO(X)v

divergence measures (MMD), independence measures (HSIC, KCCA,
KGV), hypothesis testing.
@ Gaussian processes (covariance function), Fourier analysis, . ..
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Classification motivation: non-linear separability

Idealized situation Real world
A B
o © & . ®
e0® 2
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[eNe] @
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Decision surface (left):
{x:(w,x) =0} =
classes:

{x:(w,x) >0} {x:(w,x) <0}.
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On the ellipse, outside, inside:
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With polynomial feature: _:

@ Decision surface: {x: (w, ¢(x)) = 0}.

o Classes: {x: (w,p(x)) >0}, {x: (w,¢(x)) < O0}.
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Still in R?:
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Still in R2:

QO(X) = (X12’ \/§X1X25X22) 3

X (x1)?
(o) = <{\/§] | [mxmxab

X2 (Xé)2
= X7 (x1)? + V2V2 x10(x1) (x5) + 5 (x5)?
2

- (Xlxi + szé)z
/ 2
- <{2] ’ [2]> = - = k(x,x).

(x,X)% = (p(x), o(X)): p(x) = d-order polynomial. =



Quadratic & polynomial features

Still in R2:
p(x) = <X12, \/§X1X2,X2> )

1

Xt (x1)?
R )

X2 (X§)2
= X7 (x1)% + V2V2 x10(x]) (%) + x5 (x3)?
2

= (xaxg + szé)z
=[] (] - e

(x,X)% = (p(x), o(X)): p(x) = d-order polynomial. = Explicit
computation would be heavy!
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@ Def-1 (feature space):
k(x,y) = (2 (x), o (¥ ))g -
@ Def-2 (reproducing kernel):

k(-,x) € H, f(x)=(f, k(-,x))g-

Constructively, Hyx = {> 71 aik(-, %)}
o Def-3 (Gram matrix): G = [k(x;, x;)]};_; = 0.
@ Def-4 (evaluation): dx(f) = f(x) is continuous for all x.



Kernel, RKHS

@ Def-1 (feature space):

k(XaY) = <90(X)7 ‘,0(}/)>j{ .

Def-2 (reproducing kernel):

k(- x) € %, FO)= (F, k(X)) g

Constructively, Hy = {>_7_; aik(-,x;)}.

Def-3 (Gram matrix): G = [k(Xi,Xj)]ijl = 0.

Def-4 (evaluation): 0x(f) = f(x) is continuous for all x.

All these definitions are [€quivalent, k oo

f(x) = (W, o(x))gm = Z¥:1 Wm@m(x): Fourier analysis,
splines, ...




ko(x,y) = ((x,y) + ¢)?



ko(x,y) = ({x,y) + ¢)?, ke(x,y) = eIk
ke(x,y) = eIyl ki(x,y) = e VIxvlh,
1

1+ x—yl3



Kernel examples on RY (y,0,v >0, ¢c >0, pc Z")

ko(x,y) = ({x,y) + c)P, ke(x,y) = eIy,

ke(x,y) = eIyl ki(x,y) = e Ix=ll:
1

kC(va) = ké‘(x’y) — e'Y("vY)‘

2
14 [lx =yl

Or the flexible Matérn family:
_ 2V (Vavx -yl V2vx —yl,
kM(X, y) - KV 9
r(v) o o

where

@ K,: modified Bessel function of the second kind of order v,

L lIx=yll
e Specific cases: For v = 1 one gets k(x,y) = e~ >

Gaussian kernel: v — oo.



Kernels on other domains (X)

@ Strings [Watkins, 1999, Lodhi et al., 2002, Leslie et al., 2002,
Kuang et al., 2004, Leslie and Kuang, 2004, Saigo et al., 2004,
Cuturi and Vert, 2005],

@ time series [Riiping, 2001, Cuturi et al., 2007, Cuturi, 2011,
Kirdly and Oberhauser, 2019],

e trees [Collins and Duffy, 2001, Kashima and Koyanagi, 2002],

@ groups and specifically rankings
[Cuturi et al., 2005, Jiao and Vert, 2016],

@ sets [Haussler, 1999, Gartner et al., 2002],

@ various [Jaakkola and Haussler, 1999,
Tsuda et al., 2002, Seeger, 2002, Jebara et al., 2004],

e fuzzy domains [Guevara et al., 2017], or

e graphs [Kondor and Lafferty, 2002, Gartner et al., 2003,
Kashima et al., 2003, Borgwardt and Kriegel, 2005,
Shervashidze et al., 2009, Vishwanathan et al., 2010,

Kondor and Pan, 2016, Bai et al., 2018].
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Properties of k control that of J, and its usefulness

@ k: bounded [sup, ,ex k(x,y) < C] = Vf € H is bounded:

CBS
[FO)] = <f,k(-,x)>%k’ < Fllge, 1kCsx)ge, -
—_———
k(x,x)

k: continuous = Hy: separable [¢(3(N)].

k: bounded and continuous = Vf € Hy is bounded &
continuous.

k € C = Vf € Hy is m-times continuously differentiable.
k: analytic = Vf € Hy is analytic.
k: universal < Hy is dense in Cp(X).

k: characteristic < P — [, o(x)dP(x) € H is injective.
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Is k a kernel? '

k(x,x) = {p(x), 0(x))g¢ = lp(x)[5 =0 (Gram with n = 1),
k(0,0) = k(1,1) = -1 (in our case).




Let
X ={0,1},
H /
k(x,x’):{ 1_’1 ifx 7 x }

if x=x'

Is k a kernel? '

k(x,x) = {p(x), 0(x))g¢ = lp(x)[5 =0 (Gram with n = 1),
k(0,0) = k(1,1) = -1 (in our case).

S o -« X < X R function to be
kernel.




Kernel factory

Let k, kmy kernels, o, a € RZ0. Then, the followings are also
kernels:

© Non-negative shift: k + a.

@ Cone: anﬂzl mkpm.

© Limit: k(x,x") := limpy_o0 km(x, x).

@ Pre-post multiplication: k: X xX - R, f: X - R

k(x,y) = F(x)k(x, y)f(y)-

© Product:

M
(@M_ k) (s xm) s (X oxy)) = H km (Xm, Xpm

).



Task & Results



Task-1: convoy localization, one vehicle (Q = 1)

@ Given: noisy time-location samples {(ts, xn)}nein) C [0, T] xR.
@ Goal: learn the (t,x) relation. T
e Constraint: lower bound on speed (Viin).



Task-1: convoy localization, one vehicle (Q = 1)

@ Given: noisy time-location samples {(ts, xn)}nein) C [0, T] xR.
@ Goal: learn the (t,x) relation. T
e Constraint: lower bound on speed (Viin).
@ Objective:
1

= > b= (b £(t)) I+ AIFII3,

min
beR,f e H neN]

s.t.
Vnin < f/(t), VteT.



Task-2: convoy localization, multiple vehicles (@ > 1)

e Data: {(tqm,xq,,,),,e[,\,q]} CT xR, qgelQ].
e Constraints: speed (Vimin), inter-vehicular distance (dmin)-
@ Objective:

Q Ng
. 1 ) )
Lmn 5> K ;IXC,, (b + f,(ta.n)) | ) +quﬂk]

bi,....bg €R qg=1
s.t.
Amin + bg+1 + fqr1(t) < bg + f4(t),Vg € [R — 1], t € T,
Vein < fo(8),  Vqe[Q], teT.



o Given: (74)qe[q] levels 7, {(Xn, ¥n) } ne[n) Samples.
e Estimate jointly the 74-quantiles of P(Y|X = x).



Task-2: joint quantile regression

o Given: (7¢)qe[q) levels /7, {(xn, ¥n)}nein) samples.
e Estimate jointly the 74-quantiles of P(Y|X = x): f; [Sangnier et al., 2016].
@ Objective:

Z D g (v = [fa(xa) + bal) + AolblI3 + A D IfI%,

qG[Q] ne[N] q€[@]
I:(e) = max(7e, (T — 1)e).



Task-2: joint quantile regression

Given: (7q)qeqq) levels 7 {(Xn, ¥n)}ne[n) Samples.
Estimate jointly the 74-quantiles of P(Y|X = x): f; [Sangnier et al., 2016].
Objective:

Z D g (v = [fa(xa) + bal) + AolblI3 + A D IfI%,

qG[Q] ne[N] q€[@]
I:(e) = max(7e, (T — 1)e).

Constraint (non-crossing): K := smallest rectangle containing {X,} e[

fq(x) + bg < fg1(x) + bg+1, Vg € [Q — 1], Vx € K.



(f,l_a) = argmin L(f, b),
f=(fq)qc(q) € ()9,

b=(bq)4¢[q) € B,
(Fb) e C



(f,b) = argmin L(f, b),
f=(fg)qerq) € ()9,

b=(bq)qciq) € B,
(fb)eC

L(f,b)=1L (b, {Xn, Yn, (fq(xn))qe[Q]}né[N]) +Q ((”fq||ﬂfk)qe[o]) )



(f,l_)) = argmin L(f, b),
f=(fg)gerq € ()9,

b=(bq)qciq) € B,
(fb)eC

£(F,8) = L (b, {xn, vo: (Fy(%n)gergrtncim ) + @ ((1fallzc)gerar) -
C = {(f, b) | (bo — Ub), < D,(Wf — fo),'(x), Vx € K;,Vi € [/]},



Task: general

(f, B) = argmin L(f, b),
f=(fg)qerq) € (F4)C,

b:(bq)qe[Q] € B,
(fb)eC

£(F,6) = L (b, {%n, Yo (fa(%n))qegartnetm) + 2 ((all36) geray)
C = {(f, b) | (bo — Ub), < D,‘(Wf — fo),'(x), Vx € K,',\V/I' S [/]},

(W)= > Wiqf,
q€[Q]



Task: general

(f,b) = argmin L(f, b),
f=(fq)qelq) € (i)Y,

b=(bq)qc[q) € B+
(fb)eC

£(F,8) = L (b, {x0: v (o (%)) gegartneim ) + 2 (Mfalloe)qerar)
C = {(f,b) | (bo — Ub); < Di(WFf — f)i(x), Vx € K,Viel[l]},

(W)= > Wiqf,
q<[Q]

HX1 £ (x)

Di= Y 70", |rij| < s, 7ij €R, 0F(x) = o
X1 Xd

J€lnij



Blanket assumptions

© Domain X C RY: open. Kernel k € C5(X x X).
@ K; C X: compact, Vi.

© Bias domain B C R?: convex.

@ Loss L restricted to B: strictly convex in b.

© Regularizer Q: strictly increasing in each of its argument.



ﬂ_ SOC-constrained formulation

(f777 bTI) = arg min E(fv b) ({‘PTI)
fe(H)? beB
s.t.
(bo — Ub); + ni[| (WF — fo)ills, ©)
< minmE[M’.] D,'(Wf — fo),' ()'E,"m), Vi e [/], n

where
° {’N‘i,m}me[M;]: a dj-net of Kjin |||,
® 1) = SUPp e (MLueB) . (0.1) | Dixk(Xim; ) = Dixk(Xim + diu, -)ls¢,-



o Minimal values: vgiic = value of (Py) with 'p =0, v = L (f, b),
vy = L (fy, by).
o Let fy = (fyq)qefq)-



o Minimal values: vgiic = value of (Py) with 'p =0, v = L (f, b),
vy = L (fy, by).

o Letf, = (fn,q)qe[Q]-
Then,

e (i) Tightening: any (f, b) satisfying (C,) also satisfies (C), hence

Vdise SV < V.



Theorem

e Minimal values: vgisc = value of () with ' p=0", v =L (f, I_J)
vy = L (fy, by).

o Letf, = (fmq)qe[Q]-
Then,

e (i) Tightening: any (f, b) satisfying (C;) also satisfies (C), hence
Vdise <V < vy,
o (ii) Representer theorem: For Vq € [Q], 33, 0., di,m,q> anq € R s.t.

fn.qzz di0,qfo,i + Z i m.qDixk (Xi.m,-)
iell me[M;]

+ Z an,qk(Xn, -).

ne[N]



o (iii) Performance guarantee: if L is (jf,, iup)-strongly convex
w.r.t. (fq,b) for any g € [Q], then

£ 2(V — Vdi ) T 2(V — Vi )
fng — fallse, < | =2, |by — bllp < | =L—5
Mo Ib



Theorem — continued

o (iii) Performance guarantee: if L is (uf,, pup)-strongly convex
w.r.t. (fg,b) for any q € [Q], then

3 2(‘/ — Vdi ) T 2(V — Vyi )
g — fallse, < 4] =2 ||by, — b|jp < | 2052
M 1b

If in addition U is surjective, B = ]BQ, and L(Ff,-) is
Lp—Lipschitz continuous on By (b, cf|[n]|ec) where

¢ = Vd||(uTu) " uT|

z 2Lpcr|n|| = 2Lper||n||
1fn.qg — fqllae, < 22 by — b2 < | /2
/”qu Kb

maX;e[/] H(Wf — fo),'Hj{k, then



Theorem — continued

o (iii) Performance guarantee: if L is (uf,, pup)-strongly convex
w.r.t. (fg,b) for any q € [Q], then

3 2(‘/ — Vdi ) T 2(V — Vyi )
g — fallse, < 4] =2 ||by, — b|jp < | 2052
M 1b

If in addition U is surjective, B = ]BQ, and L(Ff,-) is
Lp—Lipschitz continuous on By (b, cf|[n]|ec) where

¢ = Vd||(uTu) " uT|

z 2Lpcr|n|| = 2Lper||n||
1fn.qg — fqllae, < 22 by — b2 < | /2
/”qu Kb

1st bound: computable. 2nd: Larger M; = smaller §; = smaller 7;
= tighter bound. \

maX;e[/] H(Wf - fo),'Hj{k, then




Let s =0, / = 1. Recall constraint (C):
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Tightening idea
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Tightening idea

Let s =0, / = 1. Recall constraint (C):

{(£.b)] (bo — Ub) < (WF — f)(x), VxeK}ie

B é
N——
(&,k(x, ')):Hk

K| = (k(x.-) : x € K} EHIE| = (g € 3] 8 < (6,8)s,)

@ (Cy,) means: covering of ®(K) by balls with 7-radius centered
at the k (X, -) is in the halfspace H(;B; hence it is tightening.

@ 7 is obtained as the minimal radius.



Setting: ¢ = 6, dmin = 5m, Viin = 0.
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Pairwise distances: t +— fy(t) — fq41(t)
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Pairwise distances: t — fo(t) — fq11(t) Speed: t — fi(t)

t(s)




Pairwise distances: t — fo(t) — fq11(t) Speed: t — fi(t)

t(s) t(s)

Shape constraints: especially relevant in - situations. J




Demo: task-2 = joint quantile regression

‘Economics :

@ x: annual household income, y: food expenditure. d =1, N = 235.

o Engel's law = 7, concave.

@ Demo: 74 € {0.1,0.3,0.5,0.7,0.9}.

o Left: non-crossing, . Right: non-crossing, *, concave.

+ data points {(z,
+  virtual points {, 2

Income spent on food
Income spent on food

-1 -0.5 0 0.5 1 15 2 -1 -0.5 0 0.5 1 15 2
Total income Total income



Demo: task-2 = joint quantile regression

, ENAC:
e y: radar-measured altitude of aircrafts flying between two cities (Paris
& Toulouse); x: time. d =1, N = 15657.
e Demo: 74 € {0.1,0.3,0.5,0.7,0.9}.
@ Constraint: non-crossing, ~ (takeoff).

120

=
Q
=]
\

Altitude (100 ft)

0 20 40 60 80 100 120 140 160 180 200
Time (s)
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@ Joint quantile regression on 9 UCI benchmarks.
@ Shape constraints: applications areas.

o Partial ordering.



Joint quantile regression: 9 UCI testbeds

e PDCD = Primal-Dual Coordinate Descent [Sangnier et al., 2016].
@ 4-5th columns: mean =+ std of 100xvalue of the pinball loss; smaller

is better.

Dataset d N PDCD SOC

engel 1 235 484+ 8 B3+ 9
GAGurine 1 314 61+ 7 65% 6
geyser 1 299 105+ 7 108+ 3
mcycle 1 133 66+ 9 62+ 5
ftcollinssnow 1 93 154 4+16 148+13
CobarOre 2 38 159424 151 +17
topo 2 52 694+18 62+14
caution 2 100 88+17 98422
ufc 3 372 814+ 4 87+ 6
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Shape constraints in applications

@ Finance:
o European and American call option prices: _ in
the underlying stock price and . in volatility
[Ait-Sahalia and Duarte, 2003].
@ Statistics: quantile function . w.r.t. the quantile level.
@ RL and stochastic optimization: value functions are often [ConVex|
[Keshavarz et al., 2011, Shapiro et al., 2014].
e Biology ([Monotone| regression): identify genome interactions

[Luss et al., 2012], dose-response studies [Hu et al., 2005].
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Shape constraints in applications+

@ Economics:

o utility functions are . and [l€oncavel [Matzkin, 1991].

e demand functions of normal goods are
[Lewbel, 2010, Blundell et al., 2012],
e production functions are [€oncavel [Varian, 1984] or -

[Yagi et al., 2020].
e panel multinomial choice problems [Shi et al., 2018]:

‘cyclic monatonicity
e single index model: most link functions are
[Li and Racine, 2007, Chen and Samworth, 2016, Balabdaoui et al., 2019].
@ Supply chain models, stochastic multi-period inventory problems, pricing
models and game theory:
[Topkis, 1998, Simchi-Levi et al., 2014].



(X, <) is a partial ordering if
Q reflexity: a < aforVae X,
@ antisymmetry: a < band b < aimply a= b, and
© transitivity: ifa< band b<cimplya<c

hold.
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