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Quick Summary

= Focus:

= measuring independence,

= on kernel-endowed domains.
« Dependency measure:

« Hilbert-Schmidt independence criterion (HSIC).
= Goal: To understand

« when HSIC is an independence measure,
= more generally when a tensor product kernel is 'characteristic’.

Independence, Kernels

'X:(Xm)%zl EDC: XM
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X,,: random variable.

« Task: measure the statistical dependence of X,,-s.
« Alternatively: If X ~ P, X,,, ~ P,

P=gM P,

« Assumption: X,,-s are kernel-enriched
= Examples: trees, graphs, strings, time series, hidden Markov models,

: Ca . spec. _
sets, fuzzy domains, distributions, groups —— permutations.

Distribution Representation

Mean embedding, maximum mean discrepancy, HSIC:
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Central: Characteristic Property

« Mean embedding, MMD, HSIC: numerous applications.
Review [4].

= MMD: £ is called
« characteristic: if MMDL(P,Q) =0 < P =Q.

= universal: injectivity on finite signed measures.
- HSIC: k = ®@M_,k,, is Z-characteristic if
HSICL(P) =0 = P =M P,

®%:1/~cm: universal =- characteristic = Z-characteristic.

« Wanted: Converse? Description in terms of k,,-s!

Existing Results: M =2

1, 2]; distance covariance [3, 5|:

k1&ks: universal = k1 ® ko: universal (= Z-char).

ki1&ks: characteristic < k; ® ko: Z-characteristic.

Our Results [7]

Visual summary:

Example
/

®%':1km : I-char —~ ” char <

/A\.

universal

~

Prop. (M=2)|| T~

Example (M>=3)

i
ﬂ

5
o

-

ﬂ [Sriperumbudur et al., 2011]
M i
(km)m—1 1 Char = i
[Sriperumbudur et al., 2011]

~ universal

Key: F-positive definiteness (e.g., F = {P — @'_ P,,})
|1 (F)ll5, > 0, VF € F\{0}.
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= Characteristic property:

. ®%:1km: characteristic = (km)%zl are characteristic.

" = [|:Xm| == 2, km(gj, .CE/) — 255[:,55'/ - ].]

» [-characteristic property:

» k1, ko: characteristic = k1 ® ko: Z-characteristic.
. < for VM > 2.
« k1, ko, k3: characteristic 2 ®73n:1km: Z-characteristic [Ex.].

- X,, = R% k. - continuous, shift-invariant, bounded:

o (km)M_: characteristic < ®%:1km: T-characteristic <

m=1-
®%:1km: characteristic.

= Universality:

@M k,,: universal < (k,,)2_;: universal.
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