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Abstract

Independent component analysis (ICA)�the theory of mixed, independent,
non-Gaussian sources�has a central role in signal processing, computer vi-
sion and pattern recognition. One of the most fundamental conjectures of
this research �eld is that independent subspace analysis (ISA)�the exten-
sion of the ICA problem, where groups of sources are independent�can be
solved by traditional ICA followed by grouping the ICA components. The
conjecture, called ISA separation principle, (i) has been rigorously proven
for some distribution types recently, (ii) forms the basis of the state-of-the-
art ISA solvers, (iii) enables one to estimate the unknown number and the
dimensions of the sources e�ciently, and (iv) can be extended to generaliza-
tions of the ISA task, such as di�erent linear-, controlled-, post nonlinear-,
complex valued-, partially observed problems, as well as to problems dealing
with nonparametric source dynamics. Here, we shall review the advances on
this �eld.
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1. Introduction

Independent component analysis (ICA) [1, 2, 3] has received consider-
able attention in signal processing, computer vision and pattern recognition,
e.g., in face representation and recognition [4, 5], information theoretical im-
age matching [6], fMRI analysis [7], feature extraction of natural images [8],
texture segmentation [9], artifact separation in MEG recordings, and the ex-
ploration of hidden factors in �nancial data [10]. One may consider ICA as
a cocktail party problem: we have some speakers (sources) and some micro-
phones (sensors), which measure the mixed signals emitted by the sources.
The task is to recover the original sources from the mixed observations. For
a recent review about ICA, see [11, 12, 13].

Traditional ICA algorithms are one-dimensional in the sense that all
sources are assumed to be independent real valued random variables.
Nonetheless, applications in which only certain groups of the hidden sources
are independent may be highly relevant in practice, because one cannot ex-
pect that all source components are statistically independent. In this case,
the independent sources can be multidimensional. For instance, consider the
generalization of the cocktail-party problem where independent groups of mu-
sicians are playing at the party. The separation task requires an extension of
ICA, which is called multidimensional ICA [14], independent subspace anal-
ysis (ISA) [15], independent feature subspace analysis [16], subspace ICA
[17], or group ICA [18] in the literature. We will use the ISA abbreviation
throughout this paper. The several successful applications and the large
number of di�erent ISA algorithms�the authors are aware of more than 30
�di�erent� ISA approaches (in terms of the applied cost function and the
optimization technique)�show the importance of this �eld. Below, we list a
few successful applications of ISA in signal processing, computer vision, and
pattern recognition.

ECG analysis: An important task of ECG signal processing is to esti-
mate fetal ECG signals from ECG recordings measured on the mother's
skin (cutaneous recordings) [19, 14, 20, 18, 17]. The cardiac waveform of
the fetal ECG can provide useful information for detecting certain diseases.
Potential measurements on the mother's skin are the results of numerous
bioelectric phenomena, such as maternal and fetal heart activity, respira-
tion, stomach activity, and some other noise terms. The electric activity
of the fetal and maternal hearts can be considered as independent mul-
tidimensional sources, and the ECG measurements on the mother's skin
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are the mixture of these bioelectric and noise signals, where the transfer
from the bioelectric sources to the electrodes on the body surface can be
approximated by an unknown linear mixing. Our goal is to estimate this
unknown linear mixing and the fetal heart activity.

fMRI and MEG data processing: In fMRI data processing, our goal
is to detect and extract task-related signal components, artifacts, and noise
terms from voxel activities. The main principles that allow us to perform
these tasks are localization and connectism, which state that di�erent brain
parts are responsible for di�erent cognitive tasks and these areas are spa-
tially distributed. According to these principles, one may assume that the
time series (a.k.a. time courses) of the voxels are linear mixtures of in-
dependent components [7], and it is of great importance to recover these
independent signals (component maps) from the voxels. The component
maps show the brain areas related to the independent components. Re-
cently, [21] has shown that the assumption that all of these components
are independent might be too strong in practice, and hence the application
of ISA instead of ICA can give physiologically more meaningful results in
certain cases.

Similarly, one might assume that there are hidden independent sources
belonging to MEG measurements. [22] has also shown that the full in-
dependence assumption might be too restrictive in this case as well, and
better results can be achieved if we allow dependent sources too by using
ISA instead of ICA.

Natural image analysis, texture classi�cation: It has been demon-
strated several times that ICA on natural images leads to image �lters
that resemble to the simple cells in the V1 visual cortical area of the
brain: They are localized, oriented, and selective only to certain frequen-
cies (bandpass �lters) [23]. If we use ISA instead of ICA on natural images,
i.e, if we allow dependencies between some of the components, then ISA
will provide independent subspaces that show phase- and shift-invariant
properties [15, 24, 25]. ISA is naturally able to group similar components
(with respect to frequency and orientation) into the same subspace. By
exploiting this invariance property and selecting only one element from
each subspace, [26] showed that one can get results similar to other state-
of-the-art methods in the texture classi�cation task using much smaller
�lter bank.
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Action recognition: Another successful ISA application is action recog-
nition in movies [27]. Here the key idea was the observation that ISA on
spatiotemporal datasets provides subspaces that contain velocity selective
invariant features. This ISA based approach outperformed several state-of-
the-art methods using hand-crafted features (Harris3D, Cuboids, Hessian,
HOG/HOF, HOG3D, extended SURF, etc).

Learning of face view-subspaces:
Multi-view face detection and recognition are very challenging problems.
ICA, ISA and topographic ICA [28]�a generalization of ISA�can be used
to learn view-speci�c feature representation [29]. In turn, ICA on multi-
view face data sets leads to view-speci�c feature components, and ISA can
organize these feature vectors into facial view-speci�c groups (subspaces).
In addition to this, topographic ICA is able to arrange these subspaces in
a topographically consistent way as well.

Single-channel source separation: An important problem in audio
scene analysis is single-channel source separation. In this setting there are
several independent sound sources and a microphone records the mixture
of these sounds. The goal is to estimate the original signals from the mi-
crophone recording. [30] proposed an approach in which they applied ISA
on the Fourier transformed windowed observations (spectogram). Using
this approach on a Beethoven string quartet, they found that this method
was able to separate the independent instruments into di�erent subspaces.

Motion segmentation: Multibody motion segmentation is an important
problem in computer vision. By observing the trajectories of certain points
of a few objects, our goal is to decide which points belong to which objects.
Assuming that we have a linear camera model, the multibody motion seg-
mentation reduces to an ISA problem, where each subspace belongs to a
single object [31].

Gene expression analysis: Gene clustering is a valuable tool for de-
scribing the characteristic patterns of cells and understanding properties
of unknown genes. Linear latent variable models seem to outperform stan-
dard clustering approaches in this area. In this framework it is assumed
that the gene expression pro�les are the results of several biological pro-
cesses, where each process a�ects few genes only. Since there are indepen-
dent and highly inter-connected processes as well, [32] proposed to use ISA
for processing gene expression data. Their approach lead to biologically
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valuable and gene ontologically interpretable results.

One of the most exciting and fundamental hypotheses of the ICA research
is due to Cardoso [14], who conjectured that the ISA task can be solved by
ICA preprocessing and then clustering of the ICA elements into statistically
independent groups. While the extent of this conjecture, the ISA separation
principle, is still an open issue, it has recently been rigorously proven for some
distribution types [33], and for this reason we call it ISA Separation Theorem.
This principle (i) forms the basis of many state-of-the-art ISA algorithms, (ii)
can be used to design algorithms that scale well and e�ciently estimate the
dimensions of the hidden sources and (iii) can be extended to di�erent linear-,
controlled-, post nonlinear-, complex valued-, partially observed systems, as
well as to systems with nonparametric source dynamics. Here, we review
such consequences of the theorem.

Beyond ISA, there exist numerous other exciting directions that relax
the traditional assumptions of ICA (one-dimensional sources, i.i.d. sources
in time, instantaneous mixture, complete observation). Below we list a few
of these directions. We will see in the subsequent sections that the ISA
separation technique can be extended to these models.

Linear systems: One may relax the ICA assumptions by assuming
sources that have linear dynamics (e.g., autoregressive ones [34]), or echoes
(moving average dynamics) may also be present leading to the blind source
deconvolution (BSD) problem [35].

Post nonlinear models: The linear mixing restriction of ICA can be
relaxed by assuming that there is an unknown component-wise nonlinear
function superimposed on the linear mixture. This ICA generalization also
has many successful applications, e.g., in sensor array processing, data
processing in biological systems, and satellite communications. For an
excellent review, see [36].

Complex valued sources and complex mixing: In the complex ICA
problem, the sources and the mixing are both realized in the complex
domain. Complex values naturally emerge in fMRI data processing, where
in addition to the magnitude, the phase information can also be important.
The complex-valued computations have been present from the �birth� of
ICA [2, 3] and show nice potentials in the analysis of biomedical signals
(EEG, fMRI), see e.g., [37, 38, 39].
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Incomplete observations: In this setting certain parts (coordi-
nates/time instants) of the mixture are not available for observation
[40, 41].

Nonparametric dynamics: The general case of sources with unknown,
nonparametric dynamics is quite challenging, and very few works focused
on this direction [18, 42].

The paper is structured as follows: We de�ne the ISA model in Section 2.
We discuss the ISA Separation Theorem and its known su�cient conditions
in Section 3. Section 4 is about the extensions of the ISA separation prin-
ciple. Corollaries of the separation principles are summarized in Section 5.
Numerical illustrations about these corollaries are presented in Section 6.
Conclusions are drawn in Section 7. For the sake of convenience, we listed
the abbreviations of the paper in the Appendix (Table A.1).

2. The Independent Subspace Analysis (ISA) Model

Here we review the basics of the ISA model and the related ISA cost
function (Section 2.1). We elaborate on the ambiguities of the ISA task in
Section 2.2 and present an ISA performance measure that can be applied to
general sources of di�erent dimensions.

2.1. The ISA Equations and Cost Function

We de�ne the independent subspace analysis (ISA) model. Assume that
we have an observation (x ∈ RDx), which is instantaneous linear mixture (A)
of the hidden source (e), that is,

xt = Aet, (1)

where (i) the unknown mixing matrix A ∈ RDx×De has full column rank,
(ii) source et =

[
e1

t ; . . . ; e
M
t

]
∈ RDe is a vector concatenated (using Matlab

notation �;�) of components em
t ∈ Rdm (De =

∑M
m=1 dm), subject to the

following conditions:

1. et is assumed to be i.i.d. (independent and identically distributed) in
time t,

2. there is at most one Gaussian variable among ems; this assumption will
be referred to as the �non-Gaussian� assumption,
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3. ems are independent, that is I(e1, . . . , eM) = 0, where I stands for
mutual information [43]. Mutual information of {em}M

m=1 is non-negative
and is zero, if and only if the {em}M

m=1 random variables are (jointly)
independent.

The goal of the ISA problem is to eliminate the e�ect of the mixing (A) with
a suitable W ∈ RDe×Dx demixing matrix and estimate the original source
components ems by using observations {xt}T

t=1 only (ê = Wx). If all the em

source components are one-dimensional (dm = 1, ∀m), then the ICA task is
recovered. For Dx > De the problem is called undercomplete, while the case
of Dx = De is regarded as complete.1

In ISA, it can be assumed without any loss of generality�applying zero
mean normalization and principal component analysis [46]�that (i) x and e
are white, i.e., their expectation value is zero, and their covariance matrix is
the identity matrix (I), (ii) mixing matrix A is orthogonal, that is ATA = I,
where superscript T stands for transposition, and (iii) the task is complete
(D = Dx = De). In what follows, this assumption will be referred to as
�whiteness�.

The estimation of the demixing matrix W = A−1 is equivalent to the
minimization of the mutual information between the estimated components,
or equivalently to the minimization of the sum of the entropies of the esti-
mated source components [47]:

JI(W) := I
(
y1, . . . ,yM

)
, JH(W) :=

M∑
m=1

H (ym) , (2)

where y = Wx, y =
[
y1; . . . ;yM

]
, ym ∈ Rdm and H denotes the Shannon's

multidimensional di�erential entropy [43]. One can easily prove that due
to the whiteness assumption, the optimization of the cost functions can be
restricted to the orthogonal group (W ∈ OD). In the rest of the paper
we will consider the JH ISA cost function. In the special case when every
hidden source component em is of one-dimensional (dm = 1, ∀m), the ICA
problem/cost function is recovered [48]. Other equivalent entropy and mutual
information based forms of the ISA cost function are given in [33].

1We shall not treat the overcomplete case (Dx < De), but some e�orts have been
devoted to this area [44] extending the topographic ICA model [28] to subspaces with the
quasi-orthogonal prior construction of [45].
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2.2. The ISA Ambiguities and an ISA Performance Measure

Below, we list the ISA ambiguities that one can use to de�ne a general
performance measure for the ISA task.

Identi�cation of the ISA model is ambiguous. However, the ambiguities of
the model are simple: hidden components can be determined up to permuta-
tion of the subspaces and up to invertible linear transformations2 within the
subspaces [49, 50]. Therefore, in the ideal case, the product of the estimated
ISA demixing matrix ŴISA and the ISA mixing matrix A, i.e., matrix

G = ŴISAA (3)

is a block-permutation matrix (also called block-scaling matrix [18]). This
property can be measured for source components with di�erent dimensions
by a simple extension of the Amari-index [51]. Namely, assume that we
have a weight matrix V ∈ RM×M made of positive matrix elements. Loosely
speaking, we shrink the di × dj sized blocks of matrix G according to the
weights of matrix V and apply the traditional Amari-index for the resulting
matrix. Formally, (i) assume without loss of generality that the component
dimensions and their estimations are ordered in increasing order (d1 ≤ . . . ≤
dM , d̂1 ≤ . . . ≤ d̂M), (ii) decompose G into di × dj sized blocks (G =
[Gij]i,j=1,...,M ) and de�ne gij as the sum of the absolute values of the elements
of the matrix Gij ∈ Rdi×dj , weighted with Vij:

gij = Vij

di∑
k=1

dj∑
l=1

|
(
Gij
)

k,l
|. (4)

Then the Amari-index with parameters V can be adapted to the ISA task
of possibly di�erent component dimensions as follows

rV(G) :=
1

2M(M − 1)

[
M∑
i=1

(∑M
j=1 gij

maxj gij
− 1

)
+

M∑
j=1

(∑M
i=1 gij

maxi gij
− 1

)]
. (5)

One can see that 0 ≤ rV(G) ≤ 1 for any matrix G, and rV(G) = 0 if and only
if G is block-permutation matrix with di×dj sized blocks. rV(G) = 1 is in the

2The condition of invertible linear transformations simpli�es to orthogonal transforma-
tions for the �white� case.
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worst case, i.e, when all the gij elements are equal. Note that this measure (5)
is invariant to multiplication with a positive constant: rcV = rV (∀c > 0).
Weight matrix V can be uniform (Vij = 1) [52], or one can use weighing
according to the size of the subspaces: Vij = 1/(didj).

3. The ISA Separation Theorem

This section is about the ISA Separation Theorem that targets one of the
most relevant open conjectures of ICA research that dates back to 1998 [14].
The conjecture is the cornerstone of many state-of-the-art ISA solvers and has
a number of implications. We show in Section 4 how to extend the conjecture
to more general models, such as non-i.i.d. linear-, controlled-, post nonlinear-
, complex valued-, partially observed systems, as well as for problems with
nonparametric source dynamics. Corollaries of these extensions are discussed
in Section 5.

According to the ISA Separation Theorem, the solution of the ISA task,
i.e., the global optimum of the ISA cost function can be found by prop-
erly grouping the ICA elements, that is, �ISA=ICA followed by permutation
search�. In other words, one may think of the ISA problem (see JH , Eq. (2))
as an ICA task with dm = 1 (∀m). In this case, cost function JH is the sum of
entropies of one-dimensional variables, which�given their one-dimensional
nature�can be estimated e�ciently [48]. Then, if the ISA Separation Theo-
rem holds, it is su�cient to permute the ICA elements (i.e., cluster them into
statistically independent groups) to �nd the global solution of the ISA prob-
lem. One can provide su�cient conditions for the ISA Separation Theorem
by using cost function JH of the ISA task:

Theorem 1 (ISA Separation Theorem [33]) Let y = [y1; . . . ; yD] =
Wx ∈ RD, where W ∈ OD, x ∈ RD is the whitened observation of the ISA
model, and D =

∑M
m=1 dm. Let Sdm

R denote the surface of the dm-dimensional

unit sphere, that is Sdm
R := {w ∈ Rdm :

∑dm

i=1 w2
i = 1}. Presume that the

v := em ∈ Rdm sources (m = 1, . . . , M) of the ISA model satisfy condition

H

(
dm∑
i=1

wivi

)
≥

dm∑
i=1

w2
i H (vi) ,∀w ∈ Sdm

R , (6)

and that the ICA cost function JICA(W) =
∑D

i=1 H(yi) has minimum over
the orthogonal matrices in WICA. Then it is su�cient to search for the
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solution to the ISA task as a permutation of the solution to the ICA task.
Using the concept of demixing matrices, it is su�cient to explore forms

WISA = PWICA, (7)

where P ∈ RD×D is a permutation matrix to be determined and WISA is the
ISA demixing matrix.

The general question whether a certain source satis�es the ISA Separation
Theorem is now partially answered, since Eq. (6) provides a su�cient condi-
tion. Equation (6) holds, e.g., for variables (v := em) satisfying the so-called
w-EPI condition

e2H(
Pdm

i=1 wivi) ≥
dm∑
i=1

e2H(wivi),∀w ∈ Sdm
R , (8)

where EPI is a three letter acronym for the entropy power inequality [43].
The w-EPI condition is ful�lled, e.g., by spherical variables [53], whose

distributions are invariant to orthogonal transformations. One can show that
in the 2-dimensional case (dm = 2) invariance to 90◦ rotation, a condition
weaker than invariance to spherical transformation, is su�cient. A special
case of this requirement is invariance to permutation and sign changes, which
also includes distributions having constant density over the spheres of the Lp-
space, the so-called Lp-spherical variables [54]. The case p = 2 corresponds
to spherical variables. For an illustration of distributions with 90◦ rotation
and sign change invariance, see Fig. A.1.

Takano has shown [55] that the w-EPI condition is satis�ed by certain
weakly dependent variables subject to the dimensionality constraint that
dm = 2.

These su�cient conditions of the ISA Separation Theorem, i.e. conditions
ensuring that the global optimum can be found by ICA followed by clustering
of the ICA elements, are summarized schematically in Fig. A.2.

It is intriguing that if (6) is satis�ed, then this simple separation principle
provides the global minimum of the ISA cost function. About joint block
diagonalization (JBD), Meraim and Belouchrani [56] has put forth a similar
conjecture recently: the JBD of a �nite matrix set can be obtained by the
joint diagonalization of the set up to permutation. JBD based ISA solvers
[18, 57, 50, 58] make e�cient use of this conjecture in practice. We also note
that this principle was justi�ed for local minimum points in [50].
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4. Extensions of the ISA Separation Principle

Below we review the extensions of the ISA separation principle. The
principle is extended to di�erent linear (Section 4.1), post nonlinear- (Sec-
tion 4.2), complex valued- (Section 4.3), controlled-, partially observed mod-
els, as well as for nonparametric source dynamics (Section 4.4). These di�er-
ent methods, however, can be used in combinations, too. It is important to
note that the separation principle is valid for all of these models, and thus (i)
the dimension of the source components (dm) can be di�erent and unknown
in all of these models (see also the clustering algorithms in Section 5), and
(ii) the Amari-index detailed in Section 2.2 can be applied as performance
measure to all of them. Traditionally, the ISA problem considers the in-
stantaneous linear mixture of independent and identically distributed (i.i.d.)
hidden sources (see Section 2.1). These constraints will be alleviated below.
The corresponding general problem family will be referred to as independent
process analysis (IPA). The relationships of the di�erent generalizations and
separation principles are illustrated in Fig. A.4(a) and (b).

4.1. Linear Systems

In this section we focus on linear models: Section 4.1.1 is about autore-
gressive models, and Section 4.1.2 treats moving average (convolutive) based
models.

4.1.1. The AR-IPA Model

In the AR-IPA (autoregressive-IPA) task [59], the traditional i.i.d. as-
sumption for the sources is generalized to AR time series: the hidden
sources (sm ∈ Rdm) are not necessarily independent, only their driving noises
(em ∈ Rdm) are. The observation (x ∈ RD, D =

∑M
m=1 dm) is an instanta-

neous linear mixture (A) of the source s:

xt = Ast, st =
Ls∑
i=1

Fist−i + et, (9)

where Ls is the order of the AR process, st = [s1
t ; . . . ; s

M
t ] and et =

[e1
t ; . . . ; e

M
t ] ∈ RD denote the hidden sources and the hidden driving

noises, respectively. (9) can be rewritten in the following concise form:
x = As, and F[z]s = e using the polynomial of the time-shift operator
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F[z] := I −
∑Ls

i=1 Fiz
i ∈ R[z]D×D [60]. We assume that (i) polynomial ma-

trix F[z] is stable, that is det(F[z]) 6= 0, for all z ∈ C, |z| ≤ 1, (ii) mixing
matrix A ∈ RD×D is invertible, and (iii) e satis�es the ISA assumptions
(see Section 2.1). The aim of the AR-IPA task is to estimate hidden sources
sm, dynamics F[z], driving noises em and mixing matrix A or its W inverse
given observations {xt}T

t=1. For the special case of Ls = 0, the ISA task is
obtained.

Making use of the basis transformation rule of AR processes, it can be
shown that the observation process x is also AR

xt =
Ls∑
i=1

(
AFiA

−1
)
xt−i + nt, (10)

with innovation nt = Aet, whose marginals are approximately Gaussian
according to the d-dependent central limit theorem [61]. Using this form and
that sources em are independent according to our assumptions, the AR-IPA
estimation can be carried out by (i) applying AR �t to observation x, (ii)
followed by ISA on n̂t, the estimated innovation of x. AR identi�cation can
be performed, e.g., by the methods detailed in [62, 63]. The pseudocode of
this AR-IPA solution can be found in Table A.2. The presented approach
extends [34] to multidimensional (dm ≥ 1) sources. We note that in the one-
dimensional case (dm = 1), simple temporal di�erentiating might be su�cient
for the reduction step [64].

4.1.2. The MA-IPA Model and its Extensions

In this section the assumption on instantaneous linear mixture of the ISA
model is weakened to convolutions. This problem is called moving average
independent process analysis (MA-IPA, also known as blind subspace decon-
volution) [33]. We describe this task for the undercomplete case. Assume
that the convolutive mixture of hidden sources em ∈ Rdm is available for
observation (x ∈ RDx)

xt =
Le∑
l=0

Hlet−l, (11)
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where (i) Dx > De (undercomplete, De =
∑M

m=1 dm), (ii) the polynomial
matrix H[z] =

∑Le

l=0 Hlz
l ∈ R[z]Dx×De has a (polynomial matrix) left inverse3

and (iii) source e = [e1; . . . ; eM ] ∈ RDe satis�es the conditions of ISA. The
goal of this undercomplete MA-IPA problem (uMA-IPA problem, where �u�
stands for undercomplete) is to estimate the original em sources by using
observations {xt}T

t=1 only. The case Le = 0 corresponds to the ISA task, and
in the blind source deconvolution problem [35] dm = 1 (∀m), and Le is a
non-negative integer. We note that in the ISA task the full column rank of
matrix H0 was presumed, which is equivalent to the assumption that matrix
H0 has left inverse. This left inverse assumption is extended in the uMA-IPA
model for the polynomial matrix H[z].

The separation principle below claims that by applying temporal concate-
nation (TCC) on the observation, one can reduce the uMA-IPA estimation
problem to ISA.

Theorem 2 (uMA-IPA via TCC [33]) Let L′ be such that DxL
′ ≥

De(Le +L′) is ful�lled. Then we end up with an Xt = AEt ISA task with an
A ∈ RDxL′×De(Le+L′) (H[z] dependent) Toeplitz matrix upon applying tempo-
ral concatenation of depth Le+L′ and L′ on the sources and the observations,
respectively.

Choosing the minimal value for L′, the dimension of the obtained ISA task

is Dmin = De(Le +L′) = De

(
Le +

⌈
DeLe

Dx−De

⌉)
. Unfortunately Dmin can easily

become too large. This dimensionality problem can be alleviated by the
linear prediction approximation (LPA) approach, which is formulated in the
following theorem.

Theorem 3 (uMA-IPA via LPA [66]) In the uMA-IPA task, observa-
tion process xt is autoregressive (�nite but of unknown order), and its in-
novation x̃t := xt − E[xt|xt−1,xt−2, . . .] is H0et, where E[·|·] denotes the
conditional expectation value. Consequently, there is a polynomial matrix
WLPA

AR [z] ∈ R[z]Dx×Dx such that WLPA
AR [z]x = H0e, and thus the solution

becomes an AR-IPA task.

In the undercomplete case, one can extend the LPA approach to the
solution of the more general ARIMA-IPA (integrated autoregressive moving

3One can show for Dx > De that under mild conditions H[z] has a left inverse with
probability 1 [65]; e.g., when the matrix [H0, . . . ,HLe ] is drawn from a continuous distri-
bution.
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average IPA) [67] as well as to the complete MA-IPA [68] problems in an
asymptotically consistent way. The ARIMA-IPA problem allows both AR
and MA terms in the evolution of st hidden sources, and it also de�nes a
non-stationary process by means of rth order temporal di�erence.

In the one-dimensional (dm = 1) case, it has been shown that the uMA-
IPA problem can be solved by means of spatio-temporal decorrelation [69],
and by the TCC technique [70]. Furthermore, the uMA-IPA and uARMA-
IPA problems can be reduced to ICA by LPA [71, 72].

4.2. Post Nonlinear Models

Below the linear mixing assumption of the ISA model is alleviated by
presenting the post nonlinear ISA (PNL-ISA) problem [73]. Assume that the
observations (x ∈ RD) are post nonlinear mixtures (f(A·)) of multidimen-
sional independent sources (e ∈ RD):

xt = f(Aet), (12)

where the (i) unknown function f : RD → RD is a component-wise transfor-
mation, i.e, f(v) = [f1(v1); . . . ; fD(vD)] and f is invertible, and (ii) mixing
matrix A ∈ RD×D and hidden source e satisfy the ISA assumptions of Sec-
tion 2.1. The PNL-ISA problem is to estimate the hidden source components
em knowing only the observations {xt}T

t=1. For dm = 1, we get back the PNL-
ICA problem [74] (for a review see [36]), whereas �f=identity� leads to the
ISA task.

Under certain technical conditions, one can carry out the estimation of the
hidden source e on the basis of the mirror structure of the PNL-ISA system
(12). Formally, we use the ê = [ê1; . . . ; êM ] = Wg(x) = Wg(f(Ae)) equa-
tion, where we need to estimate W and g. In the ideal case the component-
wise acting g transformation and matrix W inverts function f and matrix
A, respectively. Independence of the estimated êms implies the recovery of
sources em up to permutation and invertible a�ne transformations within
each subspace. According to the d-dependent central limit theorem [61],
marginals of Ae can be considered as approximately Gaussian variables.
Therefore, the nonlinearity g can be optimized to make the distribution of ob-
servation x the most similar to a Gaussian distribution. This is called �gaus-
sianization (transformation)� [75, 76]. In these works the one-dimensional
(dm = 1) PNL-ICA special case was treated; however, the ideas can be gen-
eralized to PNL-ISA as well in the following way [73]: After gaussianization,
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the next step is to estimate W by means of linear ISA. This second step
transforms the result of the gaussianization transformation [g(x)] into the
opposite direction, i.e., to the most non-Gaussian direction.

4.3. Complex Valued Models

We summarize a few basic concepts for complex variables. An excellent
review on this topic can be found in [77]. De�ne the ϕv : CL 7→ R2L,
ϕM : CL1×L2 7→ R2L1×2L2 mappings as

ϕv(v) = v ⊗
[
<(·)
=(·)

]
, ϕM(M) = M ⊗

[
<(·) −=(·)
=(·) <(·)

]
, (13)

where ⊗ is the Kronecker product, < stands for the real part, = for the
imaginary part. Subscript v and M denote vector and matrix, respectively.
Independence of complex random variables vm ∈ Cdm (m = 1, . . . , M) is
de�ned as the independence of variables ϕv(vm). The entropy of a complex
independent variable v ∈ Cd is H(v)=H(ϕv(v)).

By the de�nition of independence for complex random variables, the com-
plex valued ISA (C-ISA) task [78, 79] can be de�ned similarly to the real case
(Section 2.1) as x = Ae.

We review two approaches to solve the complex ISA problem. First,
suppose that the �non-Gaussian� assumption is made in the C-ISA model for
variables ϕv(e

m) ∈ R2dm . Now, applying ϕv to the complex ISA equation
(Eq. (1)), one gets

ϕv(x) = ϕM(A)ϕv(e). (14)

Given that (i) the independence of em ∈ Cdm is equivalent to that of ϕv(e
m) ∈

R2d, and (ii) the existence of the inverse of ϕM(A) is inherited from A, we
end up with a real valued ISA task with observation ϕv(x) and M pieces
of 2dm-dimensional hidden components ϕv(e

m). The consideration can be
extended to the complex variants of the linear models of Section 4.1 including
the ARIMA-IPA model, too.

Another possible solution is to use the ISA Separation Theorem, which
remains valid even for complex variables [33] when the following condition
holds for the v = em ∈ Cdm hidden sources:

H

(
dm∑
i=1

wivi

)
≥

dm∑
i=1

|wi|2H(vi) ∀w ∈ Sdm
C . (15)
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Sources v = em ∈ Cdm that satisfy the complex w-EPI property�which is
similar to (8), but �2H� needs to be replaced by �H� and �Sdm

R � by �Sdm
C ��

also satisfy the su�cient condition (15). Complex spherical variables [80],
whose distribution are invariant to unitary transformations, make one of the
examples. The relation of these su�cient conditions is illustrated in Fig. A.3.

4.4. Controlled, Partially Observed Models, and Nonparametric Source Dy-
namics

In what follows we brie�y review the generalization of the IPA problem
to controlled (ARX-IPA, �X� stands for exogenous input) and partially ob-
served problems (mAR-IPA, �m� denotes missing observations), as well as
to problems with nonparametric source dynamics (fAR-IPA, �f� means func-
tional). All of these three problems can be solved with the tricks used for
solving the AR-IPA problem (Section 4.1.1). Formally, the ARX-IPA [81],
mAR-IPA [82], and fAR-IPA [52] problems are de�ned as follows:

xt = Ast st =
Ls∑
i=1

Fist−i +
Lu∑
j=1

Bjut+1−j + et, (16)

yt = Mt(xt) xt = Ast, st =
Ls∑
i=1

Fist−i + et, (17)

xt = Ast, st = f(st−1, . . . , st−Ls) + et, (18)

where the notation will be explained below.
In the ARX-IPA problem (Eq. (16)) the AR-IPA assumption holds

(Eq. (9)), but the time evolution of the hidden source s can be in�uenced
via control variable ut ∈ RDu through matrices Bj ∈ RD×Du . The goal is
to estimate the hidden source s, the driving noise e, the parameters of the
dynamics and control matrices (Fi and Bj), as well as the mixing matrix A
or its inverse W by using observations {xt}T

t=1. In the special case of Lu = 0,
the ARX-IPA task reduces to AR-IPA.

In the mAR-IPA problem (Eq. (17)), the AR-IPA assumptions (Eq. (9))
are relaxed by allowing a few coordinates of the mixed AR sources xt ∈ RD

to be missing at certain time instants. Formally, we observe yt ∈ RD instead
of xt, where �mask mappings� Mt : RD 7→ RD represent the coordinates and
the time indices of the non-missing observations. Our task is the estimation
of the hidden source s, its driving noise e, parameters of the dynamics F[z],
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mixing matrix A (or its inverse W) from observation {yt}T
t=1. The special

case of �Mt = identity� corresponds to the AR-IPA task.
In the fAR-IPA problem, the parametric assumption for the dynamics of

the hidden sources is circumvented by fAR sources ((18)). The goal is the
same as before; we are to estimate hidden sources sm ∈ Rdm including their
dynamics f and their driving innovations em ∈ Rdm as well as mixing matrix
A (or its inverse W) given observations {xt}T

t=1. If we knew the parametric
form of f and if it were linear, then the problem would be AR-IPA.

By exploiting the facts that the linear invertible transformations (A) of
fAR, ARX, and AR (see Eq. (10)) processes also belong to the family of
fAR, ARX, and AR processes with nt = Aet innovation,4 we can see that a
reasonable approach is to �t ARX, mAR, or fAR processes to the observations
and then use ISA on the estimated n̂t innovations.

The parameter estimation of ARX processes can be done by either recent
active learning methods [84], or by means of more traditional approaches
[85, 86]. The mAR �t can be accomplished, e.g., by the maximum likelihood
principle [85], the subspace technique [86], or in a Bayesian framework [87].
For the identi�cation of fAR processes, one can use nonparametric regression
[88, 89].

5. Consequences of the Separation Principles

The ISA Separation Theorem (Section 3) and its extensions (Section 4)
have a number of important consequences that we discuss here.

According to the ISA Separation Theorem, the ISA task can be solved
by �nding the optimal permutation of the ICA elements by rendering the
elements into statistically dependent subspaces. State-of-the-art solvers use
this approach since it scales well and enables the estimation for unknown
component dimensions ({dm}M

m=1, M) too. These properties are detailed
below.

First, assume that the dimensions (dm) of the hidden sources are given.
Then according to the ISA Separation Theorem, cost function (2) can be
minimized by considering all demixing matrices W = PWICA, where P
denotes a permutation. Below we list a few possibilities for �nding P.

4We note that these tricks can be used for other processes as well which have this prop-
erty, such as Markov-switching AR-IPA processes. For Markov-switching AR processes,
see [83].
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Exhaustive way: the possible number of all permutations, i.e., the num-
ber of P matrices is D!, where �!� denotes the factorial function. Consid-
ering that the ISA cost function is invariant to the exchange of elements
within the subspaces (see, e.g., (2)), the number of relevant permutations
decreases to D!

QM
m=1 dm!

. This number can still be enormous, and the related

computations could be formidable justifying searches for e�cient approx-
imations that we detail below.

Greedy way [78]: We exchange two estimated ICA components belong-
ing to di�erent subspaces, if the exchange decreases the value of the ISA
cost J as long as such pairs exist.

�Global� way: Our experiences show that greedy permutation search is
often su�cient for the estimation of the ISA subspaces. However, if the
greedy approach cannot �nd the true ISA subspaces, then global permuta-
tion search method of higher computational burden may become necessary
[90]: the cross-entropy solution suggested for the traveling salesman prob-
lem [91] can be adapted to this case.

Now, let us assume that source dimensions (dm) are not known in advance.
The lack of such knowledge causes combinatorial di�culty in such a sense that
one should try all possible D = d1 + . . . + dM (dm > 0,M ≤ D) dimension
allocations to the subspace (em) dimensions, where D is the dimension of
the hidden source e. The number of these f(D) possibilities grows quickly
with the argument, its asymptotic behaviour is known [92, 93]: f(D) ∼
exp(π

√
2D/3)/(4D

√
3) as D → ∞. An e�cient method with good scaling

properties has been put forth in [67] for searching the permutation group for
the ISA Separation Theorem (see Table A.3). This approach builds upon the
fact that the mutual information between di�erent ISA subspaces em is zero
due the assumption of independence. The method assumes that coordinates
of em that fall into the same subspace can be paired by using the pairwise
dependence of the coordinates. For the clustering of the coordinates, one
may apply di�erent approaches:

Greedy solutions: The AR-IPA task (Section 4.1.1) can be solved by
greedy solutions as in [94] for Ls = 1 and [95] for Ls ≥ 1 assuming that
F[z] is block-diagonal, i.e, the sources sm are not coupled through the dy-
namics. Using the basis transformation rule of AR processes, we can see
that after ICA preprocessing of the estimated innovation of the observa-
tions, it is su�cient to jointly block diagonalize the coe�cient matrices of
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the polynomial matrix F̂s[z] := WICAF̂[z]W−1
ICA. The optimal permutation

to get block diagonal matrices can be estimated using, e.g., greedy clus-
tering of the coordinates. Similarly, greedy considerations can be applied
in the ISA problem by replacing {|F̂ s

ij| ∈ RD×D}D
i,j=1, for example, with

generalized variance [96], or cumulant based [50] matrices.

Robust approaches: It has been reported that the previous greedy ap-
proach is not robust enough in certain applications, and more robust clus-
tering methods have been proposed to overcome this di�culty. These
robust approaches include hierarchical clustering [20, 97], tree-structured
clustering [98], deterministic annealing [30], and spectral clustering meth-
ods [67]. We note that spectral clustering methods scale well; for those
ISA problems that satisfy the conditions detailed in Table A.3, a single
general desktop computer can handle about a million observations (in our
case estimated ICA elements) within several minutes [99]. Spectral clus-
tering thus �ts large-scale applications, and for large ISA tasks ICA is the
main bottleneck.

It is worth noting that one can construct examples where algorithms that
only use pairwise dependencies cannot work well [100, 90].

For all of the problems de�ned in Section 3-4, the dimensions of the source
components may di�er or may even be unknown. The quality of the solu-
tion can be measured by the Amari-index detailed in Section 2.2. Thanks
to the separation principle, these problems can be reduced to well-known
subtasks, such as ICA, clustering, estimation of mutual information between
one-dimensional random variables, gaussianization, estimation of linear mod-
els, principal component analysis, nonparametric regression, etc, enabling the
exploitation of well-studied solution techniques of these subproblems.

6. Numerical Illustrations

In this section we provide three numerical experiments to demonstrate
some of the algorithms presented above.

In our �rst experiment we compare ISA and AR-IPA methods on a
facial dataset [59]. Separating mixed facial images is a common application
of ISA. We chose 6 di�erent facial images (M = 6) with 50 × 50 pixels
(Fig. A.5(a)). The pixel values were linearly scaled and truncated to integers
such that their sum was 100, 000. Then we scanned the images from left-
to-right and from top-to-bottom and took the 2D coordinate samples of the

19



pixels as many times as the value of each pixel. When we mixed these two-
dimensional sources, ISA was not able to �nd the proper subspaces because
the sampling is very far from being temporally independent (Fig. A.5(c),
(e)). Nevertheless, the AR-IPA method was able to estimate the subspaces
of the faces (Fig. A.5(d), (f)).

In our second experiment we compare the TCC and LPA methods
on the separation task of the convolutive mixture of stereo Beatles songs
(A Hard Day's Night, Can't Buy Me Love) [66]. The sources are not i.i.d.,
and their dimension is dm = 2 (stereo songs). We studied the Dx = 2De

case in the uBSSD problem, using sample number 1, 000 ≤ T ≤ 75, 000
and convolution length 1 ≤ Le ≤ 30. The performances measured by the
Amari-index are shown in Figs. A.6 (here we averaged 50 independent ex-
periments). Fig A.6(a) demonstrates that the TCC performed well when the
sample size was T ≥ 50, 000. The LPA method provided good results for
T ≥ 30, 000 (Fig. A.6(b)), and for this sample size it worked better than
TCC. For larger convolution parameter Le, the LPA method is even more
superior. For T = 75, 000 and Le = 1, 2, 5, 10, 20, 30, Fig. A.6(c) shows that
on average LPA performs 1.50, 2.24, 4.33, 4.42, 9.03, 11.13 times better than
TCC, respectively.

In our third experiment we compared the AR-IPA and fAR-IPA meto-
hds on the ikeda dataset [52]. Here, the hidden sm

t = [sm
t,1, s

m
t,2] ∈ R2 sources

(M = 2) are realized by the ikeda map sm
t+1,1 = 1 + λm[sm

t,1 cos(wm
t ) −

sm
t,2 sin(wm

t )], sm
t+1,2 = λm[sm

t,1 sin(wm
t )+sm

t,2 cos(wm
t )], where λm is a parameter

of the dynamical system and wm
t = 0.4 − 6

1+(sm
t,1)2+(sm

t,2)2
, see Fig. A.7(a). We

mixed these sources by a random A mixing matrix; they formed our obser-
vations xt. We compared the AR-IPA and fAR-IPA methods on this datset.
The results of 10 independent experiments can be seen in Fig. A.7(b). As
the results show, the standard AR-IPA method could not �nd the proper
subspaces, but the fAR-IPA method was able to estimate the subspaces for
T ≥ 10, 000 sample size.

7. Conclusions

We have reviewed known results on several di�erent generalizations of in-
dependent subspace analysis and the ISA separation principle. According to
this principle, the ISA task can be solved by applying ICA, and then cluster-
ing the ICA components into statistically dependent subspaces. The theorem
has recently been rigorously proven for some distribution types. Joint block
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diagonalization based methods have an analogous approach with a similar
separation principle. The Separation Theorem enables one to construct ISA
methods that scale well with the dimensions even if the dimensions of the
subspaces di�er or are unknown. It also makes possible to extend the ISA
problem to di�erent linear-, controlled-, post nonlinear-, complex valued-,
and partially observed systems, as well as to systems with nonparametric
source dynamics.
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Appendix A. Abbreviations

We summarize the notations in Table A.1. The �rst part of the list contains
the acronyms. It is followed by a few mathematical notations.

Acronyms

Abbreviation Meaning

AR, MA, ARMA AutoRegressive, Moving Average, AR MA
ARX, ARIMA AR with eXogenous input, Integrated ARMA
fAR, mAR Functional AR, AR with Missing values
PNL, �u-� Post NonLinear, pre�x for �undercomplete�

ECG, EEG, Electro-Cardiography, Electro-Encephalography

EPI Entropy Power Inequality

FIR Finite Impulse Response

fMRI Functional Magnetic Resonance Imaging

ICA/ISA/IPA Independent Component/Subspace/Process Analysis

i.i.d. Independent Identically Distributed

JBD Joint Block Diagonalization

LPA Linear Prediction Approximation

TCC Temporal Concatenation

Mathematical notations

R, RL, RL1×L2 , R[z]L1×L2 real and complex numbers, L-dimensional vectors,
C, CL, CL1×L2 L1 × L2 sized matrices, -polynomial matrices

OD, UD D × D sized orthogonal and unitary matrices

H, I entropy, mutual information

Sd
R, Sd

C d-dimensional unit sphere over R and C
⊗, <(·), =(·) Kronecker product, real and imaginary part

Table A.1: Acronyms and mathematical notations.
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Input of the algorithm:
observation ({xt}T

t=1), AR order (Ls),
optional (depending on the applied ISA solver):
number of components (M) and source dimensions ({dm}M

m=1).
Optimization:
AR estimation of order Ls on x ⇒ F̂AR[z],
Estimation of the innovation of x ⇒ n̂ = F̂AR[z]x,
ISA on the estimated innovation n̂ ⇒
ISA demixing matrix: ŴISA; optional: M̂ , {d̂m}M̂

m=1.
Output of the algorithm:

estimated mixing matrix, hidden source: Â = Ŵ−1
ISA, ŝ = ŴISAx,

source dynamics, driving noise: F̂[z] = ŴISAF̂AR[z]Ŵ−1
ISA, ê = ŴISAn̂,

optional:
number of components and dimensions of sources: M̂ , {d̂m}M̂

m=1.

Table A.2: AR-IPA Algorithm - pseudocode.

Construct an undirected graph with nodes corresponding to ICA coordi-
nates and edge weights (similarities) de�ned by the pairwise statistical
dependencies, i.e., the mutual information of the estimated ICA elements:
S = [Î(êICA,i, êICA,j)]

D
i,j=1. Cluster the ICA elements, i.e., the nodes using

similarity matrix S.

Table A.3: Approximation that scales well for the permutation search task
in the ISA Separation Theorem.
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(a) (b) (c) (d)

Figure A.1: Illustration: Density functions (for variables em) invariant to 90◦

rotation or permutation and sign changes. (a) and (c): density function f
takes identical values at the arrowheads. Matrix R and matrix M are 90◦

counter-clockwise rotation and re�ection to axis x, respectively. (b) and (d):
density functions (illustrated as 2D images) for (a) and (c), respectively.

invariance to 90◦

rotation (dm = 2)

%-RRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRR

spec. //
invariance to
sign and

permutation
spec. // Lp-spherical (p > 0)

Takano's dependency
(dm = 2)

+3 w-EPI

��

spherical symmetryks

generalization for dm = 2

OO

Eq. (6): su�cient for the
ISA Separation Theorem

Figure A.2: Su�cient conditions for the ISA Separation Theorem. For de-
tails, see Theorem 1.

complex spherical
symmetry

+3 complex w-EPI +3
Eq. (15): su�cient for the

complex ISA
Separation Theorem

Figure A.3: Su�cient conditions for the complex ISA Separation Theorem.
For details, see Section 4.3.
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ARIMA-IPA

r = 0
��

ARX-IPA
Lu = 0

��

mAR-IPA
Mt=identity

wwooooooooooo

ARMA-IPA

Ls = 0
��

Le = 0// AR-IPA

Ls = 1

��

fAR-IPA
f=linearoo

MA-IPA
(BSSD)

dm = 1

��

Le = 0 // ISA

dm = 1

��

PNL-ISA
f=identityoo

dm = 1

��
BSD

Le = 0 // ICA PNL-ICA
f=identityoo

(a)

C linear
ϕv, ϕM // R linear

PNL
gaussianization // linear

uMA-IPA
TCC // ISA

uARIMA-IPA,
MA-IPA

LPA // ISA

AR-, ARX-,
mAR-, fAR-IPA

AR-, ARX- //
mAR-, fAR �t

// ISA

(b)

Figure A.4: Illustration of the IPA problem family. (a): Connections between
problems; arrows point to special cases. (b): Separation principles. Pre�x �u�
denotes undercomplete case. According to the �gure, complex linear models
(Section4.3) can be reduced to linear models (Section 4.1) using the ϕv, ϕM

transformations. Similarly, PNL problems (Section 4.2) can be reduced to
linear problems (Section 4.1) using gaussianization, etc.

(a) (b) (c) (d) (e) (f)

Figure A.5: AR-IPA vs ISA illustration on facial dataset. (a): Original facial
images, the hidden st sources. (b): Mixed sources, the observation (xt). (c)-
(d): Independent sources estimated (ŝt) by ISA and AR-IPA, respectively.
(e)-(f): Hinton-diagram of G, the product of the estimated demixing ma-
trix and the mixing matrix for ISA and AR-IPA, respectively. When the
separation is perfect, it is a block-permutation matrix with 2 × 2 blocks.
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(c)

Figure A.6: LPA vs TCC illustration on convolved Beatles songs. (a):
Hinton-diagram of G using the TCC method with Le = 5. When the sepa-
ration is perfect this is a block-permutation matrix of two blocks. (b): LPA
performance as a function of the sample size (T ) and the convolution length
(Le). (c): same as (b), but here we show the quotient of the TCC and LPA
Amari-indices (showing how many times LPA is better than TCC).
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Figure A.7: AR-IPA vs fAR-IPA illustration on the ikeda dataset. (a): hid-
den st sources. (b): Amari-index as a function of the sample number for the
AR-IPA and the fAR-IPA method; βc ∈ (0, 1): kernel regression bandwith
parameter. (c): Observation, xt. (d): Hinton-diagram of G with average
Amari-index. When the separation is perfect it is block-permutation ma-
trix of 2 × 2 sized blocks. (e): Estimated subspaces (ŝt) using the fAR-IPA
method (βc = 1

2
, T = 20, 000).
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