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1. Introduction

• Sparse coding.

• Structured sparsity (e.g., disjunct groups, trees): increased performance in several applications.

• Our goal : develop a dictionary learning method, which

– enables general overlapping group structures,
– is online: fast, memory efficient, adaptive,
– applies non-convex sparsity inducing regularization:

∗ fewer measurements,
∗ weaker conditions on the dictionary,
∗ robust (w.r.t. noise, compressibility).

– can deal with missing information.

Current approaches can exhibit two of these features at most.

2. Problem

Task:

• Group structure inducing on the hidden representation α through regularization:

Ω(α) = ‖(‖αG‖2)G∈G‖η, (1)

Ω(α) = ‖(‖dG ◦ α‖2)G∈G‖η, (2)

Ω(α) = ‖(‖AG
α‖2)G∈G‖η, η ∈ (0, 2). (3)

• Approximate on the observed coordinates (xO) using dictionary D:

1

2
‖xO − DOα‖2

2 . (4)

• Loss for a fixed observation (κ > 0):

l(xO,DO) = min
α

[

1

2
‖xO − DOα‖2

2 + κΩ(α)

]

. (5)

• Goal: minimize online the average loss of the dictionary

min
D

ft(D) :=
1

t

t
∑

i=1

l(xOi
,DOi

). (6)

• Possible dictionary/representation constraints:

– D ∈ D = ×dα

i=1Di ⊆ R
dx: closed, convex, and bounded.

– α ∈ A ⊆ R
dα: convex, closed.

3. Special cases

Oi = {1, . . . , dx} (∀i): fully observed OSDL task.
Special cases for G:

‘Traditional’ sparse dictionary G = {{1}, {2}, . . . , {dα}}.
Hierarchical dictionary G = descendants of the nodes.
Grid adopted dictionary G = nearest neighbors of the nodes.
Group Lasso G = partition.
Elastic net G = singletons and {1, . . . , dα}.
Contiguous, nonzero representations G = intervals.

Special cases for D,A:

‘Traditional’ setting ℓ2 constrained D.
Structured NMF non-negative D and α.
Structured mixture-of-topics ℓ1 constained D, non-negative D, α.
‘Hard’ representation constraints group norm/elastic net/fused Lasso constrained α.
Double structured dictionaries group norm constraints to α and D.

Special cases for {AG}G∈G:

Fused Lasso Ω(α) =
∑dα−1

j=1 |αj+1 − αj|

Graph-guided fusion penalty Ω(α) =
∑

e=(i,j)∈E:i<j wij|αi − vijαj|

Linear trend/polynomial filtering Ω(α) =
∑dα−1

j=2 | − αj−1 + 2αj − αj+1|

Generalized Lasso penalty Ω(α) = ‖Aα‖1

Total variation Ω(α) =
∑d1

i=1

∑d2

j=1

∥

∥(∇α)ij
∥

∥

2

4. Optimization

Online optimization of dictionary D through alternations:

1. (xOt
,Dt−1, Ot) 7→ αt:

αt = argmin
α∈A

[

1

2

∥

∥xOt
− (Dt−1)Ot

α

∥

∥

2
2 + κΩ(α)

]

. (7)

Solution idea: iterated reweighted least squares using the variational property of ‖·‖η.

2. {αi}
t
i=1 7→ Dt by means of quadratic optimization:

f̂t(Dt) = min
D∈D

ft(D, {αi}
t
i=1). (8)

Solution idea:

• block-coordinate descent optimization: update column dj, while keeping the others fixed,

• statistics of the cost f̂t can be efficiently updated online (matrix recursions).

5. Numerical experiments

5.1 Inpainting of natural images
We focused on the following questions:

• structured (toroid) vs. unstructured dictionary for inpainting,

• efficiency in case of missing observations,

• inpainting of full images using dictionaries learned on partially observed patches.

First experiment (complete observation):

• increasing neighbor size = decreasing MSE.

• r = 3: 13 − 19% improvement compared to the unstructured case (r = 0).

Second experiment (neighbor size: r = 3, missing pixels: ptr ≤ 0.9):

• Up to about ptr = 0.7: MSE grows slowly.

•D-s in Fig. 1(d)-(f).

• For ptr = 0.9, MSE still relatively small, see Fig. 2(a).

Third experiment (neighbor size: r = 3, missing pixels: ptr = 0.5):

• Task: inpainting of a full unseen image.

• Result: sliding average, Fig. 2(a), pval
test = 0.7, PSNR = 29 dB.

(a) (b) (c) (d) (e) (f)

Figure 1: Group-structured D-s. (a)-(c): complete; increasing neighbor size (r = 0, 2, 3). (d)-(f): increasing
incompleteness (ptr = 0, 0.1, 0.5).

5.2 Online structured non-negative matrix factorization o n faces

• Online, G-NMF: special case of OSDL.

• Illustration: color FERET large-scale (140 × 120) facial dataset.

• G: complete, 8-level binary tree (dα = 255).

(a) (b)

Figure 2: (a): full image inpainting illustration; top: observed, bottom: estimated. (b): structured NMF dictio-
nary, training samples at the upper left corner.

5.3 Collaborative Filtering

• Joke recommendation (Jester): 100 jokes × 73, 421 users.

• Observation: xOt
= ratings of the tth user.

• Baseline: best known RMSE = 4.1123 (item neighbor), 4.1229 (unstructured dictionary, dα = 100).

• Result: toroid G (dα = 100) → RMSE = 4.0774, hierarchical (dα = 15) → 4.1220.
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