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1. Introduction

Thanks to the several successful applications, sparse
signal representation has become one of the most
actively studied research areas in machine learning.
In the sparse coding framework one approximates
the observations with the linear combination of a
few vectors (basis elements) from a fixed dictionary

(Tropp & Wright, 2010). The general sparse coding
problem, i.e., the ℓ0-norm solution that searches for
the least number of basis elements, is NP-hard. To
overcome this difficulty, a popular approach is to ap-
ply ℓp (0 < p ≤ 1) relaxations. The p = 1 special
case, the Lasso problem, has become particularly pop-
ular since in this case the relaxation leads to a convex
problem.

The traditional form of sparse coding does not take
into account any prior information about the struc-
ture of hidden representation (also called covariates, or
code). However, using structured sparsity, that is, forc-
ing different kind of structures (e.g., disjunct groups or
trees) on the codes can lead to increased performances
in several applications, for example in multiple kernel
learning, multi-task learning (a.k.a. transfer learning,
joint covariate selection, multiple measurements vec-
tor model, simultaneous sparse approximation), fea-
ture selection, and compressed sensing (Zhao et al.,
2009; Huang & Zhang, 2010; Baraniuk et al., 2010;
Bach et al., 2011).

Both dictionary learning and structured sparse cod-
ing (when the dictionary is given) are very popular;
however, very few works have focused on the combina-
tion of these two tasks, i.e., learning structured dictio-

naries by pre-assuming certain structures on the rep-
resentation (Kavukcuoglu et al., 2009; Jenatton et al.,
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2010a;b; Mairal et al., 2010b; Rosenblum et al., 2010).

We are interested in structured dictionary learning al-
gorithms that possess the following four properties:
(i) They can handle general, overlapping group struc-
tures. (ii) The applied regularization can be non-
convex and hence allow less restrictive assumptions on
the groups’ sparsity. (iii) We want online algorithms
(Mairal et al., 2010a). Online methods have the ad-
vantage over offline ones that they can process more in-
stances in the same amount of time (Bottou & LeCun,
2005), and in many cases this can lead to increased per-
formance. In large systems where the whole dataset
does not fit into the memory, online systems can be
the only solutions. Online techniques are adaptive: for
example in recommender systems when new users ap-
pear, we might not want to relearn the dictionary from
scratch; we simply want to modify it by the contribu-
tions of the new users. (iv) We want an algorithm that
can handle missing observations. Using a collaborative
filtering example, users usually do not rate every item,
and thus some of the possible observations are miss-
ing. Several successful structured dictionary learning
method have been proposed in the literature; however,
to the best of our knowledge, they can possess only two
of our four requirements at most.

Our contributions:

•We formulate a general dictionary learning approach,
which is (i) online, (ii) enables overlapping group
structures with (iii) non-convex group structure induc-
ing regularization, and (iv) handles the partially ob-
servable case. We call this problem online structured

dictionary learning (OSDL).

• We show that several famous structured sparse cod-
ing and dictionary learning problems emerge as a spe-
cial case of OSDL. In particular, we (i) present an
application in collaborative filtering where we demon-
strate that our algorithm can outperform the state-of-
the-art competitors on the Jester (joke recommenda-
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tion) dataset, and (ii) we show an illustrative example
for finding structured facial components in the color
FERET dataset.

Notations. | · | denotes the number of elements in a
set. AO ∈ R

|O|×D contains the O ⊆ {1, . . . , d} rows
of matrix A ∈ R

d×D. I and 0 stand for the iden-
tity and the null matrices, respectively. For positive
numbers p, q, (i) (quasi-)norm ℓq of vector a ∈ R

d is

‖a‖q = (
∑d

i=1 |ai|
q)

1
q , (ii) ℓp,q-norm (group norm) of

the same vector is ‖a‖p,q = ‖[‖aP1
‖q, . . . , ‖aPK

‖q]‖p,

where {Pi}
K
i=1 is a partition of the set {1, . . . , d}.

Sd
p = {a ∈ R

d : ‖a‖p ≤ 1} is the unit sphere associated

with ℓp in R
d. For a given set system G, elements of

vector a ∈ R
|G| are denoted by aG, where G ∈ G, that

is a = (aG)G∈G. ΠC(x) = argminc∈C‖x− c‖2 denotes
the orthogonal projection to the closed and convex set
C ⊆ R

d, where x ∈ R
d. R

d
+ = {x ∈ R

d : xi ≥ 0 (∀i)}.
χ stands for the characteristic function.

2. Problem Definition

We define the online structured dictionary learning
(OSDL) task as follows. Let the dimension of our ob-
servations be denoted by dx. Assume that in each time
instant (i = 1, 2, . . .) a set Oi ⊆ {1, . . . , dx} is given,
that is, we know which coordinates are observable at
time i, and our observation is xOi

. We aim to find a
dictionary D ∈ R

dx×dα that can approximate the ob-
servations xOi

well from the linear combination of its
columns. We assume that the columns of D belong to
a closed, convex, and bounded set D = ×dα

i=1Di. To
formulate the cost of dictionary D, we first consider
a fixed time instant i, observation xOi

, dictionary D,
and define the hidden representation αi associated to
this triple. Representation αi is allowed to belong to
a closed, convex set A ⊆ R

dα (αi ∈ A) with certain
structural constraints. We express the structural con-
straint on αi by making use of a given G group struc-
ture, which is a set system (also called hypergraph) on
{1, . . . , dα}. We also assume that a set of linear trans-
formations {AG ∈ R

dG×dα}G∈G is given for us. We
will use them as parameters to define the structured
regularization on the codes. Representation α belong-
ing to a triple (xO,D, O) is defined as the solution of
the structured sparse coding task

l(xO,DO) = lA,κ,G,{AG}G∈G
,η(xO,DO) (1)

= min
α∈A

[

1

2
‖xO −DOα‖

2
2 + κΩ(α)

]

, (2)

where l(xO,DO) denotes the loss, κ > 0, and

Ω(y) = ΩG,{AG}G∈G
,η(y) = ‖(‖AGy‖2)G∈G‖η (3)

is the group structure inducing regularizer associated
to G and {AG}G∈G, and η ∈ (0, 2). Here, the first term
of (2) is responsible for the quality of approximation
on the observed coordinates, and (3) performs regular-
ization defined by the group structure/hypergraph G

and the {AG}G∈G linear transformations. The OSDL
problem is defined as the minimization of the cost func-
tion:

min
D∈D

ft(D) :=
1

∑t
j=1(j/t)ρ

t
∑

i=1

(

i

t

)ρ

l(xOi
,DOi

),

(4)
that is, we aim to minimize the average loss of
the dictionary, where ρ is a non-negative forgetting
rate. If ρ = 0, the classical average ft(D) =
1
t

∑t
i=1 l(xOi

,DOi
) is obtained. When η ≤ 1, then

for a code vector α, the regularizer Ω aims at elim-
inating the AG

α terms (G ∈ G) by making use of
the sparsity inducing property of the ‖·‖η norm. For
Oi = {1, . . . , dx} (∀i), we get the fully observed OSDL
task.

Below we list a few special cases of the OSDL problem:

Special cases for G:

• If |G| = dα and G = {{1}, {2}, . . . , {dα}}, then no
dependence is assumed between coordinates αi, and
the problem reduces to the classical task of learning
“dictionaries with sparse codes”.

• If |G| = dα and G = {desc1, . . . , descdα
}, where desci

stands for the ith node (αi) of a tree and its descen-
dants, then we have a tree-structured, hierarchial rep-
resentation.

• If |G| = dα, and G = {NN1, . . . , NNdα
}, where NNi

denotes the neighbors of the ith point (αi) in radius r
on a grid, then we obtain a grid representation.

• If G = {{1}, . . . , {dα}, {1, . . . , dα}}, then we have an
elastic net representation.

• If G is a partition of {1, . . . , dα}, then non-
overlapping group structure is obtained.

Special cases for {AG}G∈G:

• Let (V,E) be a given graph, where V and E de-
note the set of nodes and edges, respectively. For each
e = (i, j) ∈ E, we also introduce (wij , vij) weight
pairs. Now, if we set Ω(y) =

∑

e=(i,j)∈E:i<j wij |yi −

vijyj |, then we obtain the graph-guided fusion penalty
(Chen et al., 2010). The groups G ∈ G correspond to
the (i, j) pairs, and in this case AG = [wij ,−wijvij ] ∈
R

1×2. As a special case, for a chain graph we get the
standard fused Lasso penalty by setting the weights to
one: Ω(y) = FL(y) =

∑dα−1
j=1 |yj+1 − yj |.
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• Let ∇y ∈ R
d1×d2 denote the discrete differen-

tial of an image y ∈ R
d1×d2 at position (i, j) ∈

{1, . . . , d1} × {1, . . . , d2}: (∇y)ij = [(∇y)1ij ; (∇y)2ij ],

where (∇y)1ij = (yi+1,j − yi,j)χ{i<d1} and (∇y)2ij =
(yi,j+1− yi,j)χ{j<d2}. Using these notations, the total
variation of y is defined as follows: Ω(y) = ‖y‖TV =
∑d1

i=1

∑d2

j=1 ‖(∇y)ij‖2.

Special cases for D,A:

•Di = Sdx

2 ∩R
dx

+ (∀i), A = R
dα

+ : This is the structured
non-negative matrix factorization (NMF) problem.

•Di = Sdx

1 ∩R
dx

+ (∀i), A = R
dα

+ : This is the structured
mixture-of-topics problem.

• Beyond R
d, Sd

1 , Sd
2 , Sd

1 ∩ R
d
+, and Sd

2 ∩ R
d
+, sev-

eral other constraints can also be motivated for Di

and A. In the above mentioned examples, the group-
norm, elastic net, and fused Lasso constraints have
been applied in a “soft” manner, with the help of the
Ω regularization. However, we can enforce these con-
straints in a “hard” way as well: During optimization
(Section 3), we can exploit the fact that the projection
to the Di and A constraint sets can be computed effi-
ciently. Such constraint sets include, e.g., {c : ‖c‖p,q ≤

1} group norms, the {c : γ1 ‖c‖1 +γ2 ‖c‖
2
2 ≤ 1} elastic

net, and the {c : γ1 ‖c‖1 + γ2 ‖c‖
2
2 + γ3FL(c) ≤ 1}

fused Lasso (γ1, γ2, γ3 > 0).

• When applying group norms for both the codes α

and the dictionary D, we arrive at a double structured
dictionary learning scheme.

In sum, the OSDL model provides a unified dictionary
learning framework for several actively studied struc-
tured sparse coding problems, naturally extends them
for partially observable inputs, and allows non-convex
regularization as well.

3. Optimization

In this section we briefly summarize our pro-
posed method for solving the OSDL problem.
The optimization of cost function (4) is equiva-
lent to the joint optimization of dictionary D and
representation {αi}

t
i=1, i.e., the minimization of

arg minD∈D,{αi∈A}t
i=1
ft(D, {αi}

t
i=1), where

ft =
1

Pt

j=1
(j/t)ρ

t
X

i=1

„

i

t

«ρ »

1

2
‖xOi − DOiαi‖

2

2
+ κΩ(αi)

–

.

We optimize D online in an alternating manner by
using the sequential observations xOi

. We use the ac-
tual dictionary estimation Dt−1 and sample xOt

to
optimize (2) for representation αt. For the estimated
representations {αi}

t
i=1, we derive our dictionary es-

timation Dt from the quadratic optimization problem

f̂t(Dt) = min
D∈D

ft(D, {αi}
t
i=1). (5)

3.1. Representation Optimization (α).

Using the variational properties of ‖·‖η, one can
show that the solution α of the following op-
timization task is equal to the solution of (2):
arg min

α∈A,z∈R
|G|
+

J(α, z), where

J(α, z) =
1

2
‖xOt − (Dt−1)Otα‖2

2
+ κ

1

2

“

α
T
Hα + ‖z‖β

”

,

and H = H(z) =
∑

G∈G
(AG)T AG/zG. The opti-

mization of J(α, z) can be carried out by iterative al-
ternating steps. One can minimize the quadratic cost
function on the convex set A for given z with standard
solvers. For fixed α, z = (zG)G∈G can be calculated
as follows: zG = ‖AG

α‖2−η
2 ‖(‖AG

α‖2)G∈G‖
η−1
η .

3.2. Dictionary Optimization (D).

We use the block-coordinate descent method for the
optimization of D: we optimize columns dj in D one-
by-one by keeping the other columns (di, i 6= j) fixed.

For a given j, f̂t is quadratic in dj . We find the min-

imum by solving ∂f̂t

∂dj
(uj) = 0, and then we project

this solution to the constraint set Dj (dj ← ΠDj
(uj)).

One can show by differentiation that uj satisfies the

Cj,tuj = bj,t − ej,t + Cj,tdj (Cj,t ∈ R
dx×dx) (6)

linear equation system, where

Cj,t =

t
∑

i=1

(

i

t

)ρ

∆iα
2
i,j , ej,t =

t
∑

i=1

(

i

t

)ρ

∆iDαiαi,j ,

Bt =
t

∑

i=1

(

i

t

)ρ

∆ixiα
T
i = [b1,t, . . . ,bdα,t], (7)

matrices Cj,t are diagonal, ej,t ∈ R
dx , Bt ∈ R

dx×dα ,
∆i ∈ R

dx×dx is the diagonal matrix representation
of the Oi set (for j ∈ Oi the jth diagonal is 1 and
is 0 otherwise). It is sufficient to update statistics
{{Cj,t}

dα

j=1,Bt, {ej,t}
dα

j=1} online for the optimization

of f̂t, which can be done exactly for Cj,t and Bt:

Cj,t = γtCj,t−1 + ∆tα
2
tj , Bt = γtBt−1 + ∆txtα

T
t ,

where γt =
(

1− 1
t

)ρ
and the recursions are initial-

ized by (i) Cj,0 = 0, B0 = 0 for ρ = 0 and (ii) in
an arbitrary way for ρ > 0. According to numerical
experiences, ej,t = γtej,t−1 + ∆tDtαtαt,j is a good
approximation for ej,t with the actual estimation Dt

and with initialization ej,0 = 0.
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4. Illustration

In this section we demonstrate the applicability of the
proposed OSDL approach on (i) structured NMF, and
(ii) collaborative filtering problems.

4.1. Online Structured NMF on Faces

It has been shown on the CBCL database that dictio-
nary vectors of the offline NMF method can be inter-
preted as face components. However, to the best of
our knowledge, there is no existing NMF algorithm as
of yet which could handle general G group structures
in an online fashion. Our OSDL method is able to
do that, can also cope with only partially observed in-
puts, and can be extended with non-convex sparsity-
inducing norms. We illustrate our approach on the
color FERET dataset, which is a large scale 140× 120
face dataset. These images were the observations for
our ODSL method (xi, dx = 49, 140 = 140×120×3 mi-
nus some masking at the bottom corners). The group
structure G was chosen to be hierarchical; we applied
a full, 8-level binary tree (dα = 255), η was set to 0.5
and κ was 1

210.5 . The optimized D dictionary is shown
in Fig. 1. We can observe that the proposed algorithm
is able to naturally develop and hierarchically organize
the elements of the dictionary, and the colors are sep-
arated as well. This example demonstrates that our
method can be used for large scale problems where
the dimension of the observations is about 50, 000.

Figure 1. Illustration of the online learned structured NMF
dictionary. Upper left corner: training samples.

4.2. Collaborative Filtering

The OSDL approach can also be used for solving the
online collaborative filtering problem by simply set-
ting the tth user’s known ratings to be the observations
(xOt

). We have chosen the Jester, joke recommenda-
tion dataset for the illustrations, which is a standard
benchmark for CF. To the best of our knowledge, the

top results on this database are RMSE (root mean
square error) = 4.1123 based only on neighbor infor-
mation and RMSE = 4.1229 using an unstructured
dictionary learning model. Our extensive numerical
experiments demonstrate that using toroid (hexagonal
grid) and hierarchical group structures increase perfor-
mance; our OSDL method achieved RMSE = 4.0774
on this problem.
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