

1. Introduction

- Sparse coding.
- Structured sparsity (e.g., disjunct groups, trees): increased performance in several applications.
- Our goal: develop a dictionary learning method, which
- -enables general overlapping group structures,
- -is online: fast, memory efficient, adaptive,
- -applies non-convex sparsity inducing regularization:
- * fewer measurements,
- * weaker conditions on the dictionary,
- * robust (w.r.t. noise, compressibility).
- -can deal with missing information.

Current approaches can exhibit two of these features at most.

2. Problem

Task:

• Group structure inducing on the hidden representation α through regularization:

$$\Omega(\boldsymbol{\alpha}) = \|(\|\boldsymbol{\alpha}_G\|_2)_{G\in\mathcal{G}}\|_{\eta},$$

$$\Omega(\boldsymbol{\alpha}) = \|(\|\mathbf{d}^G \circ \boldsymbol{\alpha}\|_2)_{G\in\mathcal{G}}\|_{\eta},$$

$$\Omega(\boldsymbol{\alpha}) = \|(\|\mathbf{A}^G \boldsymbol{\alpha}\|_2)_{G\in\mathcal{G}}\|_{\eta}.$$

• Approximate observation x on the observed coordinates (x_0) using dictionary D:

$$\frac{1}{2} \|\mathbf{x}_O - \mathbf{D}_O \boldsymbol{\alpha}\|_2^2.$$

• Loss for a fixed observation:

$$l(\mathbf{x}_O, \mathbf{D}_O) = \min_{\boldsymbol{\alpha}} \left[\frac{1}{2} \| \mathbf{x}_O - \mathbf{D}_O \boldsymbol{\alpha} \|_2^2 + \kappa \Omega(\boldsymbol{\alpha}) \right],$$

• Goal: minimize the average loss of the dictionary

$$\min_{\mathbf{D}} f_t(\mathbf{D}) := \frac{1}{t} \sum_{i=1}^t l(\mathbf{x}_{O_i}, \mathbf{D}_{O_i}).$$

- Possible dictionary/representation constraints:
- $-\mathbf{D} \in \mathfrak{D} = \times_{i=1}^{d_{\alpha}} \mathfrak{D}_i \subseteq \mathbb{R}^{d_x}$: closed, convex, and bounded. $- \alpha \in A \subseteq \mathbb{R}^{d_{\alpha}}$: convex, closed.

3. Special cases

 $O_i = \{1, \ldots, d_x\}$ ($\forall i$): fully observed OSDL task. **Special cases for** 9:

- 'Traditional' sparse dictionary Hierarchical dictionary Grid adopted dictionary Group Lasso Elastic net Contiguous, nonzero representations g = intervals.
- $\mathfrak{G} = \{\{1\}, \{2\}, \dots, \{d_{\alpha}\}\}.$
 - g = descendants of the nodes.
 - g = nearest neighbors of the nodes.
 - g = partition.
 - $g = singletons and \{1, \ldots, d_{\alpha}\}.$

Online Group-Structured Dictionary Learning

Zoltán Szabó¹

Barnabás Póczos²

¹Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary email: szzoli@cs.elte.hu, andras.lorincz@elte.hu; web: http://nipg.inf.elte.hu

Fused Lasso	\sum
Graph-guided fusion penalty	\sum
Linear trend/polynomial filtering	\sum
Generalized Lasso penalty	\sum
Total variation	\sum

4. Optimization

Online optimization of dictionary D through alternations: 1. $(\mathbf{x}_{O_t}, \mathbf{D}_{t-1}, O_t) \mapsto \boldsymbol{\alpha}_t$:

Structured NMF

$$\boldsymbol{\alpha}_t = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \boldsymbol{\mathcal{A}}} \left[\frac{1}{2} \| \mathbf{x}_{O_t} \right]$$

Solution idea: iterated reweighted least squares using the variational property of $\|\cdot\|_n$. 2. $\{\alpha_i\}_{i=1}^t \mapsto \mathbf{D}_t$ by means of quadratic optimization:

- block-coordinate descent optimization: update column d_i , while keeping the others fixed,
- statistics of the cost \hat{f}_t can be efficiently updated online (matrix recursions).

5. Numerical experiments

5.1 Inpainting of natural images

We focused on the following questions:

- structured (toroid) vs. unstructured dictionary for inpainting,
- efficiency in case of missing observations,
- inpainting of *full images* using dictionaries learned on partially observed patches.

First experiment (complete observation):

- increasing neighbor size = decreasing MSE.
- r = 3: 13 19% improvement compared to the unstructured case (r = 0).
- Second experiment (neighbor size: r = 3, missing pixels: $p_{tr} \le 0.9$):
- Up to about $p_{tr} = 0.7$: MSE grows slowly.
- D-s in Fig. 3(d)-(f).
- For $p_{tr} = 0.9$, MSE still relatively small, see Fig. 4(a).
- Third experiment (neighbor size: r = 3, missing pixels: $p_{tr} = 0.5$):
- Task: inpainting of a *full* unseen image.

András Lőrincz¹

(8)

²School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, 15213, Pittsburgh, PA, USA email: bapoczos@cs.cmu.edu; web: http://www.autonlab.org

non-negative D and α . Structured mixture-of-topics model ℓ_1 constained D, non-negative α .

> $\Omega(\boldsymbol{\alpha}) = \sum_{j=1}^{d_{\alpha}-1} |\alpha_{j+1} - \alpha_j|$ $\Omega(\boldsymbol{\alpha}) = \sum_{e=(i,j)\in E: i < j} w_{ij} |\alpha_i - v_{ij}\alpha_j|$ $\Omega(\boldsymbol{\alpha}) = \sum_{j=2}^{d_{\alpha}-1} |-\alpha_{j-1} + 2\alpha_j - \alpha_{j+1}||$ $\Omega(\boldsymbol{\alpha}) = \|\mathbf{A}\boldsymbol{\alpha}\|_{1}$ $\Omega(\boldsymbol{\alpha}) = \sum_{i=1}^{d_1} \sum_{j=1}^{d_2} \left\| (\nabla \boldsymbol{\alpha})_{ij} \right\|_2$

$$(\mathbf{D}_{t-1})_{O_t} \boldsymbol{\alpha} \|_2^2 + \kappa \Omega(\boldsymbol{\alpha})].$$
 (7)

 $\hat{f}_t(\mathbf{D}_t) = \min_{\mathbf{D} \in \mathbf{D}} f_t(\mathbf{D}, \{\boldsymbol{\alpha}_i\}_{i=1}^t).$

5.2 Online structured non-negative matrix factorization on faces

- Online, g-NMF: special case of OSDL.
- 9: complete, 8-level binary tree ($d_{\alpha} = 255$).

(a)nary, training samples at the upper left corner.

The research was partly supported by the Department of Energy (grant number DESC0002607).

• Result: sliding average, Fig. 4(a), $p_{test}^{val} = 0.7$, PSNR = 29 dB.

Figure 3: Group-structured D-s. (a)-(c): complete; increasing neighbor size. (d)-(f): increasing incomplete-

• Illustration: color FERET large-scale (140×120) facial dataset.

Figure 4: (a): full image inpainting illustration; top: observed, bottom: estimated. (b): structured NMF dictio-

Nemzeti Fejlesztési Ügynökség www.ujszechenyiterv.gov.hu 06 40 638 638

MAGYARORSZÁG MEGÚJUL

The Project is supported by the European Union and co-financed by the European Social Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).